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Epigenetic mechanisms act to change the accessibility of
chromatin to transcriptional regulation locally and glo-
bally via modifications of the DNA and by modification
or rearrangement of nucleosomes. Epigenetic gene regu-
lation collaborates with genetic alterations in cancer de-
velopment. This is evident from every aspect of tumor
biology including cell growth and differentiation, cell
cycle control, DNA repair, angiogenesis, migration, and
evasion of host immunosurveillance. In contrast to ge-
netic cancer causes, the possibility of reversing epige-
netic codes may provide new targets for therapeutic in-
tervention.

Epigenetic programming is crucial in mammalian devel-
opment, and stable inheritance of epigenetic settings is
essential for the maintenance of tissue- and cell-type-
specific functions (Li 2002). With the exception of con-
trolled genomic rearrangements, such as those of the im-
munoglobulin and T-cell receptor genes in B and T cells,
all other differentiation processes are initiated or main-
tained through epigenetic processes. Not surprisingly
therefore, epigenetic gene regulation is characterized
overall by a high degree of integrity and stability. Evi-
dence is accumulating that suggests that the intrinsic
stability is caused by multiple interlocking feedback
mechanisms between functionally unrelated epigenetic
layers, such as DNA methyltransferases (DNMTs) and
histone modifying enzymes, resulting in the stable com-
mitment of a locus to a particular activity state. In so-
matic cells, the transcriptional status of most genes is
epigenetically fixed. However, other genes, such as cell
cycle checkpoint genes and genes directly affected by
exogenous stimuli such as growth factors or cell–cell
contact, likely reside in a balanced state sensitive to dy-
namic adjustments in histone modifications, thereby al-
lowing for rapid responses to specific stimuli. Perturba-
tion of epigenetic balances may lead to alterations in
gene expression, ultimately resulting in cellular trans-
formation and malignant outgrowth; the involvement of
deregulated epigenetic mechanisms in cancer develop-
ment has received increased attention in recent years.

Per definition, epigenetic regulators alter the activities
and abilities of a cell without directly affecting and mu-
tating the sequence of the DNA. In this review, we deal
with epigenetic gene regulation as imposed by DNA
methylation, covalent modifications of the canonical
core histones, deposition of variant histone proteins, lo-
cal nucleosome remodeling, and long-range epigenetic
regulators. Understanding the molecular details behind
“epigenetic cancer diseases” holds potentially important
prospects for medical treatment, as it allows for novel
strategies for drug development. A number of recent re-
views have provided details on epigenetic mechanisms
and their involvement in cancer, and we refer to these for
more in-depth information on individual epigenetic
mechanisms (Bird 2002; Jones and Baylin 2002; Jaenisch
and Bird 2003; Feinberg and Tycko 2004; Hake et al.
2004).

Epigenetic gene regulation

Epigenetic gene regulation has the nucleosome on center
stage. The nucleosome is made up of approximately two
turns of DNA wrapped around a histone octamer built
from two subunits of each histone, H2A, H2B, H3, and
H4, respectively, In between core nucleosomes, the
linker histone H1 attaches and facilitates further com-
paction (for a recent review, see Khorasanizadeh 2004).
Aside from the core histones, a variety of variant histone
proteins exist and can be inserted into the nucleosome,
possibly serving as landmarks for specific cellular func-
tions (discussed following). The N-terminal tails of the
histone proteins are protruding out from the nucleo-
somal core particles, and these tails serve as regulatory
registers onto which epigenetic signals can be written.
Covalent modification of histones includes acetylation
of lysines, methylation of lysines and arginines, phos-
phorylations of serines and threonines, ADP-ribosyla-
tion of glutamic acids, and ubiquitination and sumolya-
tion of lysine residues (Fig. 1). The pattern of histone
modifications signifies the status of the chromatin lo-
cally and has been coined the histone code (Strahl and
Allis 2000). A second group of proteins, containing bro-
modomain and chromodomain modules, use the epige-
netic marks on the histone tails as recognition land-
marks to bind the chromatin and initiate downstream
biological processes such as chromatin compaction,
transcriptional regulation, or DNA repair (Fig. 2). Al-
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though histone acetylation in general correlates with
transcriptional activity, histone methylations can serve
as anchorage points for both activator and repressor com-
plexes and are thereby involved in conferring an epige-
netic inheritance to the cell, carrying information re-
lated to differentiation commitment and function. Al-
though most histone modifications are reversible, no
histone demethylase has been identified as yet, suggest-
ing histone methylation to be involved in processes of
long-term regulation.

Histone imprints impinge on each other. This is ex-
emplified in gene activation where phosphorylation of
histone H3 Ser 10 facilitates acetylation of Lys 14 and
methylation of Lys 4, resulting in an open chromatin
conformation (Cheung et al. 2000; Lo et al. 2000). Ser 10
phosphorylation also facilitates acetylation of Lys 9,
thereby preventing the setting of repressive Lys 9 meth-
ylation marks (Rea et al. 2000). Hence, some histone
modifications may act as molecular switches, enabling
or blocking the setting of other covalent marks (Fischle
et al. 2003). Also DNA methylation affects histone
modifications and vice versa, to make up a highly intri-
cate epigenetic control mechanism, the impact of which
we have only just begun to comprehend.

In the following sections, we describe emerging
themes involving variant histone proteins and RNA-
guided epigenetic mechanisms, and we review some of
the known connections between epigenetic gene regula-
tors and cancer.

Histone modification: setting the mark

Histone proteins can be mono-, di-, or trimethylated at
the � amino group of lysine residues and either mono- or
dimethylated at arginine residues. In combination with
other covalent modifications such as acetylation, phos-
phorylation, and ubiquitination, methylations of histone

proteins are thought to represent an epigenetic code by
the creation of binding interfaces for proteins involved
in chromatin regulation (Strahl and Allis 2000; Jenuwein
and Allis 2001; Lachner et al. 2003). Several SET
(SuVar39, Enhancer of Zeste, and Trithorax) domain pro-
teins have been demonstrated to be methyltransferases
capable of covalently altering the lysine residues of his-
tone proteins. Many SET domain proteins have been
tightly linked to cancer development (Huang 2002;
Schneider et al. 2002) and in the following section, the
most prominent cases are briefly reviewed.

Setting Polycomb imprints

Polycomb-group (PcG) proteins form transcriptional re-
pressor modules that functionally can be divided into at
least two distinct complexes: the initiation complex,
Polycomb repression complex 2 (PRC2), the core of
which in humans consists of EZH2, EED, and SUZ12;
and the maintenance complex, PRC1, with the core pro-
teins RNF2, HPC, EDR, and BMI1. Both PRC1 and PRC2
complex members have been linked to cell cycle control
and cancer. Together with the Trithorax group (TrxG) of
proteins, which form positively acting transcriptional
regulators (see following), the PcG complexes are
thought to constitute a cellular memory system respon-
sible for maintaining the epigenetic status of target genes
throughout the lifetime of the organism (Jacobs and van
Lohuizen 1999; Orlando 2003; Lund and van Lohuizen
2004). Members of both PcG and TrxG protein com-
plexes harbor SET domains. Recent data have demon-
strated that the SET domain present in EZH2 is respon-
sible for methylation of Lys 9 and, more prominently,
Lys 27 of histone H3 (Cao et al. 2002; Czermin et al.
2002; Kuzmichev et al. 2002; Muller et al. 2002) and Lys
26 on histone H1 (Kuzmichev et al. 2004). Interestingly,
emerging data suggest that the PRC2 complex composi-
tion may influence the type of methylation imprint im-
posed by EZH2, thereby adding yet another level of regu-
lation (Kuzmichev et al. 2004).

EZH2 is overexpressed in many cancers (Varambally et
al. 2002; Bracken et al. 2003; Kleer et al. 2003; Raaphorst
et al. 2003) and the expression level of EZH2 correlates
with a poorer prognosis in both prostate (Varambally et
al. 2002) and breast cancer (Kleer et al. 2003). Surpris-
ingly, although PRC2 complex members are directly
controlled by the RB tumor-suppressor pathway, their
expression levels do not appear to fluctuate in a cell
cycle-dependent manner (Weinmann et al. 2001; Bracken
et al. 2003). RNAi-mediated knockdown of EZH2 or EED
in human primary or transformed cells results in a block
of proliferation (Varambally et al. 2002; Bracken et al.
2003), and the observed overexpression of EZH2 in can-
cers is likely causally related to tumorigenesis and not a
mere consequence of deregulated RB–E2F functioning, as
the EZH2 locus is amplified in several cancers (Bracken
et al. 2003). This, however, remains to be confirmed in
mouse models. The oncogenic mechanism underlying
EZH2 overexpression is unknown. It has been speculated
that EZH2 overexpression may exert dominant negative

Figure 1. Covalent modifications of the N-terminal tail of the
canonical core histones. Phosphorylations are shown as yellow
circles, acetylations as red squares, and methylations as blue
hexagons.
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effects on PRC2 complex functions (Kuzmichev et al.
2004); however, experimental overexpression of EZH2
results in target gene suppression only (Varambally et al.
2002), and hence does not sustain a notion of dominant
negative effects. The PRC2 complex is also required for
X-chromosome inactivation (Plath et al. 2003; Silva et al.
2003) and for correct imprinting of autosomal loci (Wang
et al. 2001b). These functions point to long-range mecha-
nisms of transcriptional repression and suggest that
PRC2 activity may have global consequences to the cell,
perhaps via more generally skewing the balance between
specific histone methylation imprints.

Setting Trithorax imprints

The human homologs of the Drosophila Trithorax genes
are well known to cancer research. The mixed lineage
leukemia gene (MLL1, also known as HRX or ALL1) is
involved in 11q23 translocations in acute leukemias
(Djabali et al. 1992; Gu et al. 1992; Tkachuk et al. 1992),
and the other four human MLL homologs all reside in
cancer-related loci.

Trimethylation of Lys 4 on histone H3 correlates with
transcriptional activity (Santos-Rosa et al. 2002), and
MLL1 was recently shown to be a histone H3 Lys 4-spe-
cific methyltransferase (Milne et al. 2002; Nakamura
et al. 2002). MLL1 has been found to associate with other
epigenetic regulators, such as the HAT CBP (Ernst et
al. 2001) and INI1 (Rozenblatt-Rosen et al. 1998), a sub-
unit of the SWI/SNF nucleosome remodeling complex,
and one study found MLL1 to reside in a large pro-
tein assembly containing subunits capable of regulat-
ing transcription preinitiation, nucleosome remodeling,
histone acetylation, and histone methylation (Naka-
mura et al. 2002). A similarly orchestrated epigenetic
regulation was demonstrated for the Drosophila Tritho-
rax-like protein Ash1, a histone methyltransferase
(HMT) capable of methylating Lys 4 and Lys 9 of histone
H3 and Lys 20 on histone H4 (Beisel et al. 2002). The
Ash1-specific methylation imprint was found to displace
HP1 and PcG proteins, which are normally bound to re-
pressed genes, and instead facilitates the binding of the
Brahma chromatin remodeling complex (Beisel et al.
2002). Interestingly, recent data from Drosophila studies

Figure 2. Epigenetic gene regulation. Nucleosomal
arrays depicting proteins known to be involved in
epigenetic gene regulation. On the left-hand side are
proteins involved in setting the histone code and on
the right-hand side are proteins capable of reading
histone imprints. See text for details.
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indicate that TrxG proteins such as Trx and Ash1, rather
than being general transcriptional coactivators, specifi-
cally function to prevent inappropriate silencing medi-
ated by the PcG of transcriptional repressors (Klymenko
and Muller 2004).

More than 40 specific translocations involving MLL1
have been described in human cancers to date (Ayton
and Cleary 2001). Intriguingly, all fusion proteins retain
the N-terminal part of MLL1, whereas the C-terminal
part encoding the SET domain is lost. The oncogenic
capacity of several MLL fusion proteins has been verified
in transgenic mice (Corral et al. 1996; Dobson et al.
1999). Mll heterozygous mice do not appear tumor
prone, making haploinsufficiency a less likely cause of
leukemogenesis (Corral et al. 1996). Rather, the fusion
proteins appear to exert dominant-negative functions
over wild-type MLL (Arakawa et al. 1998; Ayton and
Cleary 2001). It remains enigmatic how MLL fusion pro-
teins retain transcription activation capacity while lack-
ing a functional SET domain and how structurally diver-
gent fusion partners of MLL1 can result in relatively
similar consequences in terms of cellular transforma-
tion. Recent data have demonstrated that dimerization
of the MLL fusion partners may be an important virtue
in some translocations (So et al. 2003). This could ex-
plain the diversity in MLL fusion partners, but leaves
open the question of which targets are selectively being
(de)regulated by the MLL fusion proteins as compared
with the wild-type MLL. Intriguingly, the known MLL
target genes HoxA7 and HoxA9 are both required for
leukemia induction by an MLL fusion oncogene (Ayton
and Cleary 2003). In other MLL translocation products,
the fusion partner moiety is likely capable of sequester-
ing coactivators or nucleosome remodeling factors con-
tributing to oncogenesis (discussed in So and Cleary
2004).

SUV39H1 is the mammalian homolog of the Dro-
sophila position effect variegation modifier Su(var)3-9
and was the first SET domain protein to be recognized as
a histone methyl transferase (Rea et al. 2000). The fun-
damental importance of this finding is reflected in the
current intense research interest in HMTs. SUV39H1 is
involved in stabilizing heterochromatic regions of the
genome via trimethylation of histone H3 Lys 9 (Rea et al.
2000; Peters et al. 2001). This methyl imprint creates an
anchor point for chromodomain proteins of the HP1 fam-
ily (Bannister et al. 2001; Lachner et al. 2001). This an-
cient repressive system is self-sustaining in a cyclic
manner, as HP1 associates directly with SUV39H1. Mice
deficient for the two Suv39 homologs display chromo-
somal instability and are prone to develop B-cell lym-
phomas resembling human non-Hodgkin lymphomas,
albeit with long latency (Peters et al. 2001). Whereas
Suv39h deficiency in the mouse predominantly was
found to affect heterochromatin stability, the Suv39h
methyltransferases associate with numerous proteins in-
volved in cell cycle regulation including pRB (Nielsen et
al. 2001; Vandel et al. 2001), PcG-proteins (Sewalt et al.
2002), and SMADs (Frontelo et al. 2004). Tumor-derived
mutants of pRB have been identified that do not bind

SUV39H proteins, signifying the importance of the asso-
ciation (Nielsen et al. 2001). Recently, Suv39h1/2 was
also shown to be important for regulating the length of
mammalian telomeres (Garcia-Cao et al. 2004). The re-
duced histone H3 methylation resulting from loss of
Suv39h caused a decrease in HP1 association to the telo-
meres and abnormal telomere elongation (Garcia-Cao et
al. 2004). In embryonic stem (ES) cells lacking both
Suv39 homologs the pericentromeric heterochromatin is
devoid of the characteristic trimethylation of histone
H3, Lys 9. Instead, an alternative methylation imprint
consisting of monomethylated Lys 9 and trimethylated
Lys 27 has accumulated (Peters et al. 2003). This sug-
gests a functional redundancy between different epige-
netic gene repression mechanisms, which may serve to
explain why loss of Suv39h-mediated repression does not
have an even stronger phenotype.

RIZ1, originally isolated from its interaction with the
RB tumor suppressor protein (Buyse et al. 1995), was the
first SET domain protein demonstrated to be a tumor
suppressor (Steele-Perkins et al. 2001). The RIZ1 SET
domain was recently shown to be a histone H3 Lys 9-
specific methyltransferase (Kim et al. 2003). The RIZ
gene is situated on chromosome 1p36 in one of the most
frequently deleted regions in human cancers (Buyse
et al. 1996; Huang 2002), and RIZ has been found to be
inactivated by mutations or DNA methylation in a
wide variety of human tumors including breast cancer,
liver cancer, colorectal cancer, lung cancer, lymphomas,
and melanomas (Chadwick et al. 2000; Du et al. 2001;
Poetsch et al. 2002; Sasaki et al. 2002; Oshimo et al.
2004). The RIZ gene produces two proteins, RIZ1 and
RIZ2, because of the use of alternative promoters. Inter-
estingly, only RIZ1 harbors a SET domain and appears
to be the main target of inactivation in tumors (Huang
2002), and mice lacking Riz1 function only are prone
to tumor formation (Steele-Perkins et al. 2001). In ac-
cordance with a tumor-suppressive function of RIZ1,
ectopic expression in cancer cell lines results in cell
cycle arrest and/or apoptosis (He et al. 1998; Jiang et al.
1999).

SMYD3 was recently identified as a SET and MYND
domain-containing protein overexpressed in colorectal
carcinomas and hepatocellular carcinomas (Hamamoto
et al. 2004). SMYD3 was found to interact with the RNA
polymerase II complex and activate target genes via
methylation of histone H3 Lys 4. Interestingly, the
MYND domain appears to confer sequence-specific bind-
ing to target genes. Whereas the oncogenic capacity of
SMYD3 is yet to be confirmed in an in vivo model, over-
expression of SMYD3 results in colony formation of NIH
3T3 cells. Conversely, siRNA-mediated knockdown of
SMYD3 in cell lines derived from hepatomas and colo-
rectal cancers was shown to have growth-inhibitory ef-
fects (Hamamoto et al. 2004).

MDS-EVI1 was originally annotated as two indepen-
dent genes. Evi1 was characterized in the mouse as a
cancer-related retroviral integration site in myeloid leu-
kemia (Morishita et al. 1988), and EVI1 was subse-
quently identified as a translocation breakpoint in hu-
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mans (Morishita et al. 1992). The 5� MDS part of MDS-
EVI1 contains a SET domain, and both retroviral
integrations in the mouse and translocations in humans
result in the selective overexpression of the EVI1 variant
lacking a SET domain. EVI1 acts dominantly over its
presumed antagonist MDS-EVI1 (Soderholm et al. 1997;
Sitailo et al. 1999), and high EVI1 expression correlates
with poor prognosis in patients with acute myeloid leu-
kemia (Barjesteh van Waalwijk van Doorn-Khosrovani et
al. 2003).

An emerging central theme is that several SET domain
proteins can be found in a cancer-promoting and a can-
cer-preventing isoform. This is true for the RIZ and
MDS-EVI1 genes, both of which contain two promoters
dictating separate protein isoforms, one form holding
and one form lacking the SET domain. The same picture
emerges from the translocation fusion proteins involving
MLL, all of which lack the SET protein domain. In addi-
tion, cancer-specific translocations of the SET domain
protein MMSET/NSD2 have been characterized, in
which the SET domain is selectively lost (Bergsagel and
Kuehl 2001). Together, these findings have led to the
ying-yang theory (Huang 2002), proposing that the natu-
ral homeostasis existing between protein isoforms with
and without SET domain is perturbated in cancers, re-
sulting in selective expression of the oncogenic over the
tumor-suppressive isoform.

Arginine methyltransferases

Although no arginine-specific methyltransferases have
been implicated in cancer development yet, several of
these enzymes are involved in gene regulatory com-
plexes important for cell cycle regulation. PRMT4/
CARM1 positively regulates transcription of, among
others, estrogen receptor-responsive genes via binding to
the histone acetyl transferase CPB/p300 and methyl-
ation of Arg 17 of histone H3 (Xu et al. 2001; Daujat et al.
2002). The PRMT5 arginine methyltransferase can
methylate both histone H3 and H4 in vitro and interacts
directly with components of the SWI/SNF complex (Pal
et al. 2003). PRMT5 was furthermore found to associate
with and negatively regulate the cyclin E promoter (Fab-
brizio et al. 2002). It is unknown whether methylated
arginines form recognition sites for chromatin-associ-
ated proteins. Alternatively, arginine methylations may
regulate other histone codes. To this end, methylation of
Arg 3 of histone H4 by PRMT1 has been found to facili-
tate H4 acetylation and enhance transcriptional activity
(Wang et al. 2001a). It is conceivable, therefore, that ar-
ginine methyltransferases also will display links to can-
cer once we learn more about these enzymes.

Histone acetylation

Acetylation of histone proteins correlates with transcrip-
tional activation and a dynamic equilibrium of histone
acetylation is governed by the opposing actions of HATs
and histone deacetylases (HDACs) (for recent reviews,

see Marks et al. 2001; Yang 2004). Aside from histones,
many transcriptional regulators, chromatin modifiers,
and intracellular signal transducers are posttranslation-
ally modified by acetylation. Both HATs and HDACs
have been found mutated or deregulated in various can-
cers.

The two closely related HATs, p300 and CBP, act as
transcriptional cofactors for a range of cellular oncopro-
teins, such as MYB, JUN, FOS, RUNX, BRCA1, p53, and
pRB, as well as for the viral oncoproteins E1A, E6, and
SV40 large T (for review, see Caron et al. 2003; Iyer et al.
2004). CBP and p300 are functional tumor suppressors as
demonstrated by several lines of evidence. Both genes
reside in regions frequently lost in tumors, and cancer-
specific mutations abolishing the enzymatic activity of
p300 have been identified (Muraoka et al. 1996; Gayther
et al. 2000; Ozdag et al. 2002). CBP and p300 are found
disrupted by translocations in leukemia with transloca-
tion partners including MLL, MOZ, and MORF (Borrow
et al. 1996; Sobulo et al. 1997; Panagopoulos et al. 2001).
Germ-line mutations in CBP causes the developmental
disorder Rubenstein-Taybi syndrome, and these patients
suffer an increased cancer risk (Petrij et al. 1995; Murata
et al. 2001). Finally, genetic ablation studies of Cbp and
p300 in mouse models have confirmed that both proteins
function as tumor suppressors (Yao et al. 1998; Kung et
al. 2000; Kang-Decker et al. 2004).

HDACs have, not unlike DNA methylation, dualistic
and opposite functions in cancer development. On the
one hand, HDACs play prominent roles in the transcrip-
tional inactivation of tumor-suppressor genes. This is
evident from studies using pharmacological inhibitors of
HDAC activity in cancer therapies (discussed following).
On the other hand is the reliance of important tumor-
suppressor mechanisms on HDAC function, as exempli-
fied by the dependency of RB on HDAC1 for transcrip-
tional repression of E2F target genes (Luo et al. 1998;
Magnaghi-Jaulin et al. 1998; Robertson et al. 2000).
Hdac1-deficient mice are not viable and ES cells with
homozygous Hdac1 deletion display proliferation de-
fects correlating with increased levels of the cyclin-de-
pendent kinase inhibitors p21 and p27 (Lagger et al.
2002), demonstrating the involvement of HDAC1 in cell
cycle regulation. Recently, Hdac2 was genetically linked
to the Wnt pathway, as Hdac2 is overexpressed in tu-
mors and tissues from mice lacking the adenomatosis
polyposis coli (APC) tumor suppressor (Zhu et al. 2004a).
Likewise, RNAi-mediated knockdown of HDAC2 in co-
lonic cancer cells resulted in cell death, indicating a role
for HDAC2 in protecting cancer cells against apoptosis
(Zhu et al. 2004a).

Importantly, HDACs are associated with a number of
other epigenetic repression mechanisms, including his-
tone methylation (Ogawa et al. 2002; Vaute et al. 2002),
PcG-mediated repression (van der Vlag and Otte 1999),
and DNA methylation (Fuks et al. 2000; Rountree et al.
2000). Importantly, HDAC activity is often crucial to
prepare the histone template for methyltransferases by
removing acetyl groups obstructing methylation.
HDACs are, moreover, often found as “partners in
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crime” when captured by oncoproteins such as PML–
RAR� or AML–ETO to induce aberrant gene silencing
(see following).

DNA methylation

DNA methylation remains the best-studied epigenetic
mechanism. Methylation at the C-5 position of cytosine
residues present in CpG dinucleotides by DNMTs has
evolved relatively late in evolution and is generally con-
sidered to facilitate static long-term gene silencing
and to confer genome stability through repression of
transposons and repetitive DNA elements (Yoder et al.
1997). CpG dinucleotides are statistically underrepre-
sented in the genome, likely because methylation of
cytosine makes them more susceptible to deamina-
tion, but are locally enriched in shorter stretches of
DNA (0.5 to several kilobases) known as CpG islands
(Bird 2002). CpG islands are most often associated with
promoter regions and an estimated 60% of human genes
contain a CpG island (Antequera and Bird 1993). Patterns
of DNA methylation are laid out during early embryo-
genesis via the interplay of at least three active DNA
methyltransferases, DNMT1, DNMT3A, and DNMT3B,
and targeted deletions of these genes in the mouse
have demonstrated that the enzymes are essential for
normal development (Li et al. 1992; Okano et al. 1999).
DNMT1 associates with the DNA replication fork and
functions as a hemi-methylase responsible for main-
taining correct methylation patterns on DNA replica-
tion. DNMT3A and DNMT3B are instead de novo
methyltransferases important for establishing methyl-
ation patterns during embryogenesis, and they associate
with the replication fork in late S-phase during the rep-
lication of constitutive heterochromatin (Bachman et al.
2001).

DNA methylation is tightly connected to cancer de-
velopment and can act as a double-edged sword. On the
one hand, oncogenesis is promoted by local hypermeth-
ylation of tumor-suppressor genes, whereas global ge-
nomic hypomethylation, on the other hand, affects on-
cogene expression and genomic stability (Jones and Bay-
lin 2002). All three methyltransferase enzymes have
been found to be overexpressed in human tumors, al-
though to moderate levels only (De Marzo et al. 1999;
Robertson et al. 1999; Girault et al. 2003; Nagai et al.
2003). Dnmt1 was shown to be necessary and sufficient
for Fos-induced transformation of mouse fibroblast cells
(Bakin and Curran 1999), and DNMT1 knockdown ex-
periments in human cancer cell lines have demonstrated
an essential role for DNMT1 in maintaining aberrant
repression of tumor-suppressor loci (Robert et al. 2003).
Likewise, cell culture studies have demonstrated an im-
portant role for DNMT3A in cancer cell survival (Beau-
lieu et al. 2002). Germ-line mutations in DNMT3B un-
derlies ICF syndrome, a rare disorder characterized by
immunodeficiency, centromeric instability, and facial
abnormalities (Hansen et al. 1999; Xu et al. 1999). Inter-
estingly, mouse embryo fibroblasts deficient for Dnmt3b

are resistant to transformation by SV40 largeT and acti-
vated Ras oncogenes (Soejima et al. 2003), demonstrating
that epigenetic and genetic mechanisms likely act in
concert during cellular transformation.

Ectopic cytosine hypermethylation is generally asso-
ciated with transcriptional repression and, ultimately,
tumor formation. Collaboration between genetic and
epigenetic cancer causes has been directly demonstrated
by examples in which one tumor-suppressor allele is in-
activated by mutations and the other allele is transcrip-
tionally silenced because of hypermethylation (Myo-
hanen et al. 1998; Grady et al. 2000). Also, hypermeth-
ylation of tumor-suppressor genes may be an early event
in cancer development (Waki et al. 2003; Lee et al. 2004;
Suter et al. 2004), suggesting that epigenetic and muta-
tional cancer causes may collaborate from an early time
point in disease progression. The list of tumor-suppres-
sor genes found transcriptionally inactivated by hyper-
methylation in cancer is long and steadily growing (Jones
and Baylin 2002), includes genes that are part of every
cancer-related pathway, and contains prominent genes
such as CDKN2A (Herman et al. 1995), pRB (Ohtani-
Fujita et al. 1993), APC (Hiltunen et al. 1997), PTEN
(Whang et al. 1998), BRCA1 (Rice et al. 1998), VHL (Her-
man et al. 1994), and CDH1 (Graff et al. 1995). By exten-
sion, epigenetic silencing may underlie genetic cancer
causes. Epigenetic induction of a classical mutator phe-
notype via transcriptional inactivation of the DNA mis-
match repair gene MLH1 has been proposed to account
for microsatellite instability in colorectal cancers (Kane
et al. 1997; Herman et al. 1998; Toyota et al. 1999a,b),
and silencing of the DNA repair gene coding for O6-
methylguanine-DNA methyltransferase has been associ-
ated with specific mutations in K-RAS (Esteller et al.
2000) and p53 (Nakamura et al. 2001).

In contrast to hypermethylation of tumor-suppressor
genes, tumor cells globally display an overall hypometh-
ylation of DNA (Feinberg and Vogelstein 1983a; Goelz et
al. 1985) and hypomethylation was the first epigenetic
mechanism to be linked to cancer development (Fein-
berg and Tycko 2004). Global genomic demethylation
appears to progress with age in a tissue-dependent man-
ner (Richardson 2003) and may in part explain the higher
incidence of cancer among the elderly. Loss of DNA
methylation has also been linked to nutrition, as lack of
S-adenosylmethione, the primary methyl donor in the
cell, has been shown to predispose to cancer (Huang
2002). A decrease in global methylation can be detected
prior to tumor formation in rats maintained on a meth-
yldeficient diet (Christman et al. 1993; Pogribny et al.
1997), and hypomethylation has been found to increase
the expression of several known oncogenes including
CYCLIN D2 (Oshimo et al. 2003), BCL2 (Hanada et al.
1993), and HRAS (Feinberg and Vogelstein 1983b). On a
more positive note, global demethylation results in the
expression of “cancer and testis-specific” antigens (De
Smet et al. 1996; Banchereau et al. 2003). Aside from the
diagnostic value of cancer-specific antigens, these pro-
teins constitute potential targets for immunotherapy
procedures. Interestingly, microarray analyses have re-
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vealed that the aberrant methylation patterns associated
with cancer appears to be tumor-type specific (Eads et al.
2000; Esteller et al. 2001; Adorjan et al. 2002; Paz et al.
2003). Genomic hypomethylation may furthermore
cause genomic instability, presumably because demeth-
ylation predisposes to DNA strand breakage and recom-
bination within derepressed repetitive sequences (for re-
view, see Ehrlich 2002). Indeed, links between hypo-
methylation and genomic instability have been shown
for many cancer types including breast cancer (Tsuda et
al. 2002) and prostate cancer (Schulz et al. 2002). Mouse
models have further validated a role for genomic hypo-
methylation in tumor formation, as embryonic stem
cells deficient for the Dnmt1 maintenance methyltrans-
ferase display an increased frequency of chromosomal
rearrangements (Chen et al. 1998), and mice carrying a
hypomorph Dnmt1 allele develop aggressive lymphomas
displaying a high frequency of genomic rearrangements
(Gaudet et al. 2003).

The underlying mechanisms for the initiation and tar-
geting of ectopic hypermethylation are not known, al-
though it has been suggested that DNMTs may prefer-
entially bind to damaged or mismatched DNA (James
et al. 2003). Studies of remethylation of the p16INK4A

tumor-suppressor gene following genome-wide demeth-
ylation indicates a requirement for DNA replica-
tion prior to remethylation (Velicescu et al. 2002). As
discussed following, evidence from several model sys-
tems has demonstrated that histone methylation im-
print may direct DNA methylation (Tamaru and Selker
2001; Bachman et al. 2003). Transcriptional silencing of
genes with tumor-suppressive function may also occur
via spreading of heterochromatin out from nearby si-
lenced loci of repetitive DNA (Jones and Baylin 2002),
and the regulatory regions of many genes (including
known tumor suppressors) contain islands of repetitive
sequences, some of which have been shown to influence
transcriptional regulation (Jordan et al. 2003; Kelly
2003). Spreading of heterochromatin-associated repres-
sion may be concurrent with the breakdown of higher-
order chromatin structures such as boundary elements.
In normal cells, insulator proteins such as the transcrip-
tion factor CTCF establish chromatin boundaries, and
CTCF is involved in the regulation of imprinting, where
it is required to protect against de novo methylation (Fe-
doriw et al. 2004; Lewis and Murrell 2004). Loss of im-
printing of the IGF2 gene was recently suggested as a
predictive marker for colorectal cancer (Cui et al. 2003).
Intriguingly, methylation of the CTCF recognition se-
quence abolishes CTCF binding (Nakagawa et al. 2001),
indicating that specific DNA methylations may have
long-range consequences.

In analogy to the mapping of single-nucleotide poly-
morphisms, large-scale attempts to link epigenetic var-
iation, such as methylation-variable positions, are
currently being undertaken (Novik et al. 2002; Fazzari
and Greally 2004; e.g., see The Human Epigenome Con-
sortium, http://www.epigenome.org). Such approaches
promise to yield valuable tools for future research into
links between epigenetics and cancer.

Reading epigenetic codes

Two protein domain families have been described as rec-
ognizing epigenetic imprints on histone tails, bromodo-
main and chromodomain proteins, respectively. Histone
modification by acetylation appears to function in part
through altering the structural properties of the nucleo-
some and allowing transcription factors to access the
DNA. Also, acetylated lysines serve as binding sites for
bromodomain-containing proteins, such as HATs and
chromatin remodeling factors, some of which take part
in the transcription initiation complex (Dhalluin et al.
1999; Zeng and Zhou 2002; Kanno et al. 2004). Several
protein complexes containing a chromodomain (chroma-
tin organization modifier) module have been found
capable of reading histone methylation imprints and ini-
tiating downstream responses in terms of target gene
regulation. More than 25 chromobox proteins are recog-
nizable in the human genome, only a subset of which has
been characterized in any detail. In this section, we re-
view cancer connections for prominent “readers” of epi-
genetic codes.

HP1 proteins

The silencing of heterochromatic regions is in part me-
diated by the family of heterochromatin-associated pro-
teins, HP1. Three HP1 proteins are found in mammals,
where HP1� and HP1� localize to pericentric hetero-
chromatin and minor sites within euchromatin, whereas
HP1� localizes predominantly to euchromatic regions
(Eissenberg and Elgin 2000). In both mammals and flies,
HP1 acts in a dosage-dependent manner with heterozy-
gotes displaying a partial loss of gene silencing and HP1
overexpression resulting in an increase in silencing (Eis-
senberg et al. 1992; Festenstein et al. 1999). Whereas the
three mammalian HP1 members all hold chromodo-
mains capable of recognizing the methylated Lys 9 on
histone H3 (Bannister et al. 2001; Lachner et al. 2001),
the differences in subnuclear localizations point to the
presence of additional mechanisms for localizing and
tethering HP1 proteins. HP1 has been found to interact
with many different proteins, spanning from histones
over transcriptional regulators to proteins involved in
DNA replication and nuclear architecture (for review,
see Li et al. 2002). Loss of Suv39h in mice results in the
displacement of HP1 proteins from pericentromeric het-
erochromatin, resulting in anaploidy and cancer (Peters
et al. 2001). Few direct links have been established be-
tween HP1 expression or localization and cancer, al-
though the expression of HP1� is reportedly down-regu-
lated in invasive human breast cancer cells, and overex-
pression of HP1� results in diminished invasive
potential (Kirschmann et al. 2000). The apparent weak
link between HP1 malexpression and cancer develop-
ment is surprising, given the importance of HP1 proteins
in stabilizing critical heterochromatin regions including
centromeres. This could be taken to signify the presence
of compensatory mechanisms with the capacity to partly
substitute for HP1 function. Such compensatory mecha-
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nisms were demonstrated recently in mouse ES cells de-
ficient for both Suv39 homologs (Peters et al. 2003). Al-
ternatively, essential roles of HP1 may functionally pre-
clude a complete loss of function, tolerating only subtle
fluctuations in levels, which may be difficult to detect in
heterologous cancer samples.

Polycomb proteins

The methylation imprint set by EZH2 at Lys 27 on his-
tone H3 mechanistically links the PRC2 and PRC1 PcG
complexes, as methylated Lys 27 of histone H3 serves as
a binding site for the PRC1 member Pc (Cao et al. 2002;
Czermin et al. 2002; Kuzmichev et al. 2002). Bmi1 is the
most extensively studied PRC1 member, which has been
found to be overexpressed in human tumors (Bea et al.
2001; Vonlanthen et al. 2001; Leung et al. 2004). Origi-
nally identified as a potent collaborator with Myc in
mouse leukemia (van Lohuizen et al. 1991), Bmi1 was
subsequently demonstrated to exert oncogenic effects
through down-regulation of the CDK inhibitors p16ink4a

and p19Arf, thereby impinging on both the pRB and the
p53 pathways (Jacobs et al. 1999a,b). In cell culture mod-
els, BMI1 regulates replicative senescence in human fi-
broblasts and mammary epithelial cells via repression of
p16 and indirectly via induction of hTert (Dimri et al.
2002; Itahana et al. 2003). Edr1, another PRC1 member,
has been reported to be required for sustained hemato-
poiesis in the mouse (Ohta et al. 2002). Recently, a new
PRC1 member, Cbx7, was identified in a genetic screen
for bypass of cellular senescence and shown to suppress
the Ink4a tumor-suppressor locus independent of Bmi1
(Gil et al. 2004). In addition, individual PcG members
have been identified in several protein complexes central
to cell cycle regulation (Dahiya et al. 2001; Ogawa et al.
2002; Shi et al. 2003). Hence, ample evidence exists con-
necting PcG-mediated epigenetic repression to cancer
development. Recently, additional cancer-related func-
tions of Bmi1 were elucidated, as Bmi1 proved indispens-
able for the maintenance of hematopoietic and leukemic
stem cells (Lessard and Sauvageau 2003; Park et al. 2003)
and neuronal stem cell populations (Molofsky et al.
2003; Leung et al. 2004). These studies place Bmi1, and
thereby epigenetic gene regulation, central to the emerg-
ing concept of tumor stem cells, which aside from hav-
ing escaped cellular growth control mechanisms such as
the p53 and the pRB pathways, also have (re)instigated a
stem cell-like transcription program that allows for con-
tinuous self-renewal (Pardal et al. 2003; Valk-Lingbeek et
al. 2004).

Methyl-DNA-binding proteins

Why is methylated DNA transcriptionally silent? A few
cases have been described in which DNA-binding pro-
teins are unable to bind their cognate DNA recognition
sequence because of steric hindrance from an attached
methyl group (Nakagawa et al. 2001). A more predomi-
nant mechanism is mediated via a group of proteins with

the capacity to read the epigenetic methyl-CpG code: the
methyl-CpG-binding proteins (Bird 2002). Thus far, six
methyl-binding proteins have been described. MBD1,
MBD2, MBD3, MeCP2, and KAISO are all involved in
transcriptional repression, whereas MBD4 functions in
DNA mismatch repair. Methyl-CpG-binding proteins as-
sociate with histone modifying enzymes to maintain
transcriptional silence, and methyl-DNA-binding pro-
teins have been found associated with aberrantly meth-
ylated promoter regions of cancer-relevant genes such as
p16CDKN2A (Nguyen et al. 2001) and MGMT (Nakaga-
wachi et al. 2003). Although MeCP2, MBD2, and MBD4
have been found down-regulated in human cancers (Zhu
et al. 2004b), perhaps surprisingly, no firm cancer con-
nections have been established for any of the methyl-
binding proteins. MBD1 and MBD2 reside on human
chromosome 18q21, a region frequently lost in cancer,
but mutation analysis from human lung and colon can-
cers revealed few changes in MBD1 or MBD2, indicating
a limited role for these proteins in cancer (Bader et al.
2003). By extension, mouse knockout studies have not
demonstrated important tumor-suppressor functions for
Mecp2, although long-term studies have been precluded,
as these mice succumb early in life to neurological dis-
orders (Chen et al. 2001; Guy et al. 2001). In both mice
and humans, mutations in MECP2 cause the neurode-
velopmental disorder Rett syndrome; however, patients
with Rett syndrome do not appear to be predisposed to
cancer development (Amir et al. 1999; Chen et al. 2001;
Guy et al. 2001). Also, Mbd2 deficiency does not predis-
pose to tumor formation. On the contrary, when bred
onto a bona fide model for intestinal cancer, the Apcmin

mouse, loss of Mbd2 significantly delays tumorigenesis
(Sansom et al. 2003). Furthermore, MBD2 knockdown in
human cancer cell lines was found to suppress tumori-
genesis in a mouse xenograft model (Ivanov et al. 2003;
Campbell et al. 2004). Being the functional interpreters
of DNA methylation, prominent roles for methyl-DNA-
binding proteins in cancer could be envisioned. The lack
evidence supporting this could reflect the two-faced na-
ture of DNA methylation: promoting oncogenesis via
tumor-suppressor hypermethylation and protecting ge-
nome integrity through repression of repetitive DNA.
Also, additional methyl-binding proteins lacking the
classical methyl-binding domain may yet be discovered.

Messing around with nucleosomes

Nucleosome remodeling complexes modify chromatin
topology in an ATP-dependent manner by disrupting
DNA:histone interactions, thereby facilitating sliding of
the nucleosome, and hence the accessibility of the DNA
to transcription factors (Becker and Horz 2002).

The SWI/SNF complex regulates genes locally, and
analyses of yeast SWI/SNF mutants revealed that tran-
scription of ∼5% of all yeast genes is influenced by SWI/
SNF mutations (Sudarsanam et al. 2000). The SWI/SNF
core complex consists of SNF5/INI1, BRG1, BRM,
BAF155, and BAF170. SWI/SNF interacts with many pro-
tein complexes central to cancer development, such as
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RB, p53, MYC, MLL, BRCA1, and �-catenin; hence,
functional inactivation of SWI/SNF impinges on a mul-
titude of cellular growth control pathways (for a recent
review, see Roberts and Orkin 2004).

Most compelling, analyses of the SWI/SNF core sub-
unit SNF5 (INI1) have revealed the presence of inactivat-
ing mutations in highly aggressive human malignant
rhabdoid tumors (Versteege et al. 1998; Biegel et al.
1999). SNF5 mutations are underlying familial cancers
in which one SNF5 allele carries a germ-line mutation
and the other allele is lost during tumorigenesis (Ver-
steege et al. 1998; Sevenet et al. 1999; Taylor et al. 2000).
The tumor-suppressive effect of SNF5 is evident from
the fact that reintroduction of SNF5 into SNF5-mutant
tumor cells mediates cell cycle arrest (Betz et al. 2002;
Reincke et al. 2003) and from mouse models demonstrat-
ing Snf5 as a haploinsufficient tumor-suppressor gene
(Klochendler-Yeivin et al. 2000; Roberts et al. 2000),
complete loss of which causes mice to succumb early in
life to aggressive lymphomas or rhabdoid tumors (Rob-
erts et al. 2002).

BRM and BRG1 are ATPase core subunits of the mam-
malian SWI/SNF complex. The two proteins are 75%
similar in protein composition, are mutually exclusive
in chromatin remodeling complexes in vitro (Phelan et
al. 1999), and appear to have tumor-suppressor functions.
BRG1 has been found mutated in cell lines from lung,
pancreas, prostate, and breast cancers (Wong et al. 2000;
Decristofaro et al. 2001), and BRG1/BRM expression was
found lost in 10% of primary lung tumors correlating
with a poor prognostic outcome (Reisman et al. 2003).
Whereas Brg1-deficiency causes early embryonic lethal-
ity in mice, Brg1+/− animals are prone to epithelial tu-
mors, possibly due to haploinsufficiency for Brg1 in tu-
mor suppression, as the outgrowing tumors retained the
remaining wild-type Brg1 allele (Bultman et al. 2000).
Brm-deficient mice are viable, likely via adaptive up-
regulation of Brg1 (Reyes et al. 1998). Although Brm−/−

mice do not appear tumor prone, the mice are larger than
wild type, and isolated mutant fibroblast cells display
G0/G1 checkpoint failure on DNA damage, indicating a
role for BRM in cell cycle regulation (Reyes et al. 1998).
As BRM was originally identified in Drosophila as a sup-
pressor of Polycomb (Tamkun et al. 1992), it is tempting
to speculate that loss of BRM or BRG1 impinge on cel-
lular homeostasis by affecting the balance between TrxG
and PcG protein complexes.

Variant histones

Currently, dynamic deposition of variant histone pro-
teins is receiving increased attention. In contrast to ca-
nonical histones synthesized and deposited during
S-phase, variant histones can be synthesized between S-
phases and deposited in a dynamic manner (for review,
see Henikoff et al. 2004). Recent data suggest that depos-
ited variant histones may represent an additional layer of
epigenetic regulation. The H2A variant H2AX marks
DNA double-strand breaks, and H2AX-deficient cells
have increased genomic instability and impaired forma-

tion of radiation-induced foci of DNA repair proteins
such as BRCA1 (Bassing et al. 2002; Celeste et al. 2002).
Loss of H2AX results in a G2-M checkpoint defect simi-
lar to that observed in ATM-deficient cells (Fernandez-
Capetillo et al. 2002). H2AX-deficient mice are predis-
posed to lymphomagenesis, a condition dramatically in-
creased by loss of p53 (Bassing et al. 2003; Celeste et al.
2003). H2AX therefore appears to constitute a bona fide
epigenetic tumor suppressor mechanism.

In centromeric chromatin, CENP-A substitutes for
histone H3 in the nucleosome (Yoda et al. 2000), and
CENP-A was recently found to be overexpressed and
mislocalized in primary human colorectal tumors, sug-
gesting a link between CENP-A deregulation and aneu-
ploidy (Tomonaga et al. 2003). Other histone variants
directly influence transcriptional activity. In yeast, depo-
sition of H2AZ acts to prevent the binding of silencing
proteins to regions of euchromatin (Meneghini et al.
2003), and in mammalian cells H2AZ is necessary for
chromosome segregation and correct deposition of HP1�
(Rangasamy et al. 2004). Likewise, the presence of
macroH2A correlates with transcriptional repression,
possibly by precluding the access of transcription factors
to the DNA and impeding the function of nucleosome
remodeling factors (Angelov et al. 2003). The human ge-
nome encodes many more variant histone proteins, only
a few of which have been characterized in detail. Some
are likely epigenetic regulators of gene expression and
thus likely candidates to be captured in neoplastic dis-
orders.

RNA epigenetics and cancer

The significance of noncoding RNAs in processes such
as chromatin dynamics and gene silencing has received
increased attention over the last years, especially follow-
ing the unmasking of the large group of small regulatory
microRNAs (Bartel 2004). Noncoding RNAs have long
been known to regulate fundamental processes, such as
the function of Xist in the initiation of X-chromosome
inactivation (Plath et al. 2002); also, processes such as
Polycomb-mediated silencing (Pal-Bhadra et al. 2002)
and the association of HP1 to chromatin have been re-
ported to involve an RNA moiety (Maison et al. 2002). In
addition, noncoding antisense RNAs are involved in pro-
cesses of imprinting (Rougeulle and Heard 2002; Sleutels
et al. 2002), suggesting a pattern in which antisense RNA
can induce transcriptional silencing as a means of gene
regulation in normal and disease cells. This theory was
recently supported for the �-globin gene from a patient
carrying a deletion that juxtaposes the highly expressed
LUC7L gene in antisense to �-globin (Tufarelli et al.
2003). Importantly, the antisense RNA induces tran-
scriptional silencing of the �-globin gene associated with
methylation of the CpG island at the �-globin gene.
Also, data from fission yeast implicate the RNAi ma-
chinery in the initiation and maintenance of heterochro-
matin (Hall et al. 2002; Volpe et al. 2002).

MicroRNAs are small noncoding RNAs that regulate
gene expression by posttranscriptional mechanisms and
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many microRNAs could be prime suspects for cancer
promoters because, on the basis of computer predictions,
they have been proposed to regulate many cell cycle con-
trol genes (Lewis et al. 2003). Interestingly, the precursor
miR155/BIC was recently reported to be up-regulated in
cells of Hodgkin lymphoma (van den Berg et al. 2003).
Bic was originally identified by retroviral insertional
mutagenesis in chickens, as a locus specifically activated
by viral insertions and collaborating with c-myc in lym-
phomagenesis (Tam et al. 1997, 2002). Although the
causal relationship has not yet been tested in a suit-
able animal model, miR-155 appears to be a prime
candidate for a microRNA acting as a proto-oncogene.
The microRNA genes miR15 and miR16 are reportedly
down-regulated in two-thirds of analyzed cases of chronic
lymphocytic leukemia (Calin et al. 2002), and a genome-
wide survey of 186 human microRNAs genes has re-
vealed that microRNAs genes are nonrandomly dis-
tributed in the genome and frequently locate to known
fragile sites and loci involved in cancer (Calin et al.
2004). Furthermore, small noncoding RNAs are involved
in the silencing of repetitive DNA elements, such as
retrotransposons (Schramke and Allshire 2003), and in
the nucleation of heterochromatin silencing (Reinhart
and Bartel 2002; Pal-Bhadra et al. 2004; for a recent re-
view, see Grewal and Rice 2004) and may thereby be
important for genome stability and integrity. Conceiv-
ably, the emerging connections between the RNAi ma-
chinery and gene regulation will reveal fundamental bio-
logical knowledge of importance for the understanding
of both normal and neoplastic cells.

Stability and dynamics of epigenetic gene regulation

For most loci, epigenetic gene regulation is characterized
by a high degree of constancy and stability, ensuring that
cells remain in a correct stage of differentiation. How
then is this stability achieved and maintained? The
mechanism for semiconservative inheritance of DNA
methylation is well described. DNMT1 associates with
the replication machinery and, being a hemi-methylase,
recognizes one-sided methylation of the original strand
in CpG palindromes and consequently methylates the
newly synthesized complementary strand. Also, the bal-
ance between gene activation induced by TrxG proteins
and PcG-mediated gene repression is known to be stably
inherited, even through meiosis (Cavalli and Paro 1998).
The molecular basis for how the epigenetic information
carried in histone tail modifications is memorized is un-
known. Interestingly, biochemical data have suggested
the histones H3 and H4 to be deposited into nascent
nucleosomes as heterodimers (Tagami et al. 2004). This
opens the possibility that the existing epigenetically
coded H3/H4 dimers are divided on the two daughter
strands, thereby forming the basis for an epigenetic
memory imprint.

For historical reasons, much of the research in epige-
netic gene regulation has focused on mechanisms for
maintenance of stable gene repression, such as DNA
methylation, the Suv39-Hp1, and the PcG system. Often

these mechanisms have been portrayed as static suppres-
sors invoked to ensure long-term transcriptional silenc-
ing. This view has recently been challenged on several
fronts with evidence of highly dynamic regulation and
lively complex reassembly. For instance, recent data
suggest important functions outside heterochroma-
tin and point to Suv39-independent functions of HP1
members and vice versa (Greil et al. 2003). Further more,
photobleaching experiments using fluorochrome-tagged
HP1 demonstrated that the majority of the HP1 proteins
are highly mobile with rapid movements in and out
of heterochromatin domains (Festenstein et al. 2003;
Schmiedeberg et al. 2004).

Several studies have implicated epigenetic regulators
in dynamic tumor-suppressor complexes. Aside from in-
teractions between RB and HDACs, the RB protein has
been shown to interact with PcG proteins (Dahiya et al.
2001) and to associate with HP1 and SUV39H1 to direct
histone methylation to target promoters (Nielsen et al.
2001; Narita et al. 2003). As mentioned earlier, aside
from SUV39H, RB also associates with the RIZ HMT
(Buyse et al. 1995). Epigenetic setting can also be dy-
namically affected by external stimuli. This is well docu-
mented in plants where vernalization processes are sen-
sitive to temperature shifts. Vernalization is controlled
by the FLC protein, expression of which is influenced by
changes in DNA methylation and histone methylation
status in a temperature-dependent manner, conferring to
the plant an epigenetic memory of winter (Bastow et al.
2004; Sung and Amasino 2004). Also, recent work on the
regulation of brain-derived neurotrophic factor (BDNF)
underlines the short-term dynamic properties of epige-
netic gene regulation. BDNF is synthesized in response
to neuronal stimuli and has been implicated in a variety
of neuronal processes including learning and memory.
Interestingly, two groups showed that on stimulation of
cultured neurons, induction of BDNF expression is asso-
ciated with a decrease in CpG methylation at the BDNF
promoter and release of the MeCP2 repressive complex
(Chen et al. 2003; Martinowich et al. 2003). This work
challenges the notion of DNA methylation as a static
mechanism for long-term gene silencing.

Integrative epigenetics: forces of stability

Transcriptional inactivation can follow several routes
and ample evidence proves biochemical associations be-
tween different epigenetic layers en route to epigenetic
silencing: (1) DNA methylation may dictate histone
modification, (2) histone modification may mediate
DNA methylation, and (3) nucleosome remodeling may
facilitate DNA methylation.

DNA methylation can affect histone modification pat-
terns, as DNMT enzymes directly recruit both deacety-
lase and methyltransferase activity to mediate transcrip-
tional silence (Fig. 3) (Fuks et al. 2000; Robertson et al.
2000; Rountree et al. 2000). In extension, CpG-methyl-
ated DNA associates with methyl-CpG-binding pro-
teins, such as MeCP2 and MBD2, which in turn complex
with histone modifiers like HDACs (Jones et al. 1998;
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Nan et al. 1998; Wade et al. 1999) and HMTs (Fuks et al.
2003), thereby cementing transcriptional repression.
Several lines of genetic and biochemical evidence sug-
gest that histone modification may precede and promote
DNA methylation. This is evident during inactivation of
the redundant X-chromosome in female mammals,
where methylation of histone H3 Lys 9 and Lys 27 pre-
cedes DNA methylation (Okamoto et al. 2004). Genetic
links between histone modification and DNA methyl-
ation have been demonstrated in the fungus Neurospora
crassa, where mutation of the histone H3 Lys 9-specific
methyltransferase abolishes cytosine methylation (Ta-
maru and Selker 2001).

Also, methylation of histone H3 Lys 9 enables binding
of HP1 proteins, which in turn can recruit DNMTs
(Lehnertz et al. 2003). Finally, nucleosome remodeling
can affect DNA methylation, as evident from genetic
studies in Arabidopsis thaliana, where mutation of the
SNF2-like gene DDM1 causes a dramatic decrease in the
level of genomic cytosine methylation (Jeddeloh et al.
1999). In the mouse, disruption of the Lsh locus encoding
the SNF2-like helicase PASG results in genomic de-
methylation (Dennis et al. 2001; Sun et al. 2004), dem-
onstrating concerted functionality between nucleosome
remodeling and DNA methylation. Lsh deficiency also
affects histone methylation patterns at pericentromeric
heterochromatin, resulting in the accumulation of meth-
ylated Lys 4 of histone H3 and pointing to cross-talk
between epigenetic layers of regulation (Yan et al. 2003).

Interestingly, abrogation of the lsh locus results in a dra-
matic induction of the cyclin-dependent kinase inhibitor
p16Ink4a (Sun et al. 2004). This effect is independent of
p16Ink4a promoter methylation but could in part be ex-
plained by reduced levels of the known p16Ink4a regula-
tor Polycomb protein Bmi1 in lsh knockouts (Sun et al.
2004). Although factors other than Bmi1 are likely in-
volved, this example illustrates the multilayered nature
of epigenetic gene regulation and points to PASG as an
upstream regulator of several epigenetic machineries.

Integrative epigenetics: the Achilles’ heel

Although the integrative cooperativity between epige-
netic mechanisms acts to ensure proper gene expression
in the healthy cell, the same functional interlocking is
captured in some cancers to instigate aberrant gene ex-
pressions.

From hematopoietic cancers, several specific translo-
cations have been characterized, in which chimeric fu-
sion oncoproteins exhibit the opposite function from the
wild-type protein or have lost important regulatory fea-
tures. Clear examples follow. The AML1 gene (also
known as CBFA2 and RUNX1) is required for differen-
tiation of hematopoietic cells and can act as a gene ac-
tivator or repressor dependent on the association with
either the corepressor Groucho or the HAT complex
CBP/p300. The relatively common t(8;21) translocation
fuses the DNA-binding domain of AML1 to ETO (eight-

Figure 3. Integrative epigenetic gene repression. (Top) DNA methylation driving histone modification. (Middle) Histone modification
directing DNA methylation. (Bottom) Noncoding antisense RNA driving DNA methylation. See text for details.
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twenty-one), which in turn associates with gene repres-
sors such as HDACs and Sin3. The AML1–ETO fusion
suppresses AML1 target genes, leading to a block in my-
eloid differentiation and cellular transformation (for re-
view, see Peterson and Zhang 2004). Likewise, the nu-
merous translocations involving MLL1 likely promotes
leukemia through messing up epigenetic codes. Two
translocation events involving the retinoic acid recep-
tor-� have been characterized in some detail: PML–
RAR� and PLZR–RAR�. The leukemia-promoting PML–
RAR� (promyelocytic leukemia) fusion protein induces
hypermethylation and silencing of RAR� target genes
via the recruitment of HDACs and DNMTase activity
(Di Croce et al. 2002). The induced hypermethylation is
linked to oncogenesis and treatment with retinoic acid
reverses the transformed phenotype through the induc-
tion of target gene demethylation and re-expression. The
promyelocytic leukemia zinc finger (PLZR) protein also
associates with transcriptional repressors such as
HDACs and PcG proteins (Barna et al. 2002) and the
PLZR–RAR� fusion likewise represses genes normally
activated by RAR�. In contrast to PML–RAR� fusions,
PLZR–RAR� target genes are insensitive to retinoic acid
treatments, despite the fact that retinoic acid does in-
duce PLZR–RAR� degradation (Rego et al. 2000).

Conclusions

From a larger perspective, two phenomena demonstrate
the significance of epigenetics in cancer development.
First, the influence of epigenetics on tumor development
is reflected in the importance of extracellular matrix sig-
naling and tumor cell–stromal cell interactions. Not-
withstanding the importance of genetic alterations en-
abling tumor cells to escape defense mechanisms such as
the p53 and pRB pathways and the “telomere clock”,
malignant transformation is highly dependent on the
surroundings for successful outgrowth. Hence, the tu-
mor microenvironment may itself be viewed as an epi-
genetic modifier with the potential to promote or pre-
vent malignant outgrowth (Hanahan and Weinberg 2000;
Weaver and Gilbert 2004).

Second, directly proving the importance of epigenetics
in tumorigenic processes are the emerging successful
treatments of cancers with inhibitors of epigenetic regu-
lators. Many chemical agents have been discovered to
selectively inhibit either DNMTs or HDACs, and sev-
eral of these compounds are currently going through
clinical trials (Claus and Lubbert 2003; Egger et al. 2004).
The fundamental principle behind this type of epigenetic
therapy is that reversal of epigenetic silencing will rein-
state cellular cancer defense mechanisms, for instance
via induced expression of the cyclin-dependent kinase
inhibitors p16 and p21. Gene hypermethylation and his-
tone hypoacetylation are attractive targets for the treat-
ment of epigenetic diseases and differ in their intrinsic
reversibility from diseases founded in genetic alterations
such as translocations and mutations. Inhibitors of
DNMTs and HDACs affect cells on a global scale and
combination treatments using both drug types have

proven very useful, partly because of increased efficiency
after therapeutic targeting of independent epilayers, and
partly because combination treatments allow for the us-
age of lower doses of the drugs with fewer side effects
(Egger et al. 2004). In many cancers, several tumor-sup-
pressor pathways have become inactivated, and epige-
netic therapy offers the potential of targeting several
genes with one drug. The other side of that coin is that
many “innocent bystander genes” are likely to be af-
fected and, as yet, relatively little is known about poten-
tial side effects in patients.

The significance of epigenetic mechanisms for gene
regulation in cancer is now evident with cancer-related
mechanisms acting at all epilayers. The study of epige-
netic imprints is still in its infancy, as not all epigenetic
marks are known, and only few of the known ones are
understood in any detail. Hence, the near future is likely
to bring important new insights into epigenetic gene
regulation in both normal and neoplastic development as
high-quality tools such as methyl-specific histone anti-
bodies and new chromatin exploration methodologies
emerge.
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