
REVIEW

Epigenetics and gestational diabetes: a review of epigenetic
epidemiology studies and their use to explore epigenetic mediation
and improve prediction

Hannah R. Elliott1,2 & Gemma C. Sharp1,3
& Caroline L. Relton1,2,4

& Deborah A. Lawlor1,2,4

Received: 27 February 2019 /Accepted: 22 July 2019
# The Author(s) 2019

Abstract

Epigenetics encapsulates a group of molecular mechanisms including DNA methylation, histone modification and microRNAs

(miRNAs). Gestational diabetes (GDM) increases the risk of adverse perinatal outcomes and is associated with future offspring risk

of obesity and type 2 diabetes. It has been hypothesised that epigenetic mechanisms mediate an effect of GDM on offspring adiposity

and type 2 diabetes and this could provide a modifiable mechanism to reduce type 2 diabetes in the next generation. Evidence for this

hypothesis is lacking. Epigenetic epidemiology could also contribute to reducing type 2 diabetes by identifying biomarkers that

accurately predict risk of GDM and its associated future adverse outcomes. We reviewed published human studies that explored

associations between any of maternal GDM, type 2 diabetes, gestational fasting or post-load glucose and any epigenetic marker (DNA

methylation, histonemodification or miRNA). Of the 81 relevant studies we identified, most focused on the potential role of epigenetic

mechanisms in mediating intrauterine effects of GDM on offspring outcomes. Studies were small (median total number of participants

58;median number of GDMcases 27) andmost did not attempt replication. Themost common epigeneticmeasure analysedwasDNA

methylation. Most studies that aimed to explore epigenetic mediation examined associations of in utero exposure to GDM with

offspring cord or infant blood/placenta DNA methylation. Exploration of any causal effect, or effect on downstream offspring

outcomes, was lacking. There is a need for more robust methods to explore the role of epigenetic mechanisms as possible mediators

of effects of exposure to GDM on future risk of obesity and type 2 diabetes. Research to identify epigenetic biomarkers to improve

identification of women at risk of GDM and its associated adverse (maternal and offspring) outcomes is currently rare but could

contribute to future tools for accurate risk stratification.
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Epigenetic epidemiology and its use
in gestational diabetes research

Epigenetics encapsulates a group of molecular mechanisms,

including DNA methylation, histone modification and

microRNAs (miRNAs), which can influence gene expression

and variation in both cellular and whole-organism phenotype.

An increasing number of clinical applications are emerging

that use data generated in the field of epigenetic epidemiology.

These include studies increasing our understanding of mech-

anistic pathways culminating in adverse health outcomes

across the life course [1] as well as the use of epigenetic

biomarkers as informative biomarkers in diagnosis, risk pre-

diction and prognosis [2, 3].

In this review we describe the potential of epigenetic re-

search: (1) to improve understanding of the causal paths be-

tween in utero exposure to gestational diabetes (GDM) or

pregnancy hyperglycaemia and offspring adiposity and type

2 diabetes (type 2 diabetes) risk; and (2) as biomarkers for

increasing the accuracy of predicting GDM risk and its asso-

ciated adverse (maternal and offspring) outcomes. We then

review and summarise current published human studies on

the epigenetic epidemiology of GDM with a focus on these

two areas of research.

Epigenetic mediation of in utero exposure to GDM on off-

spring health Normal pregnancy is associated with insulin

resistance, particularly from the second trimester, similar to

that found in type 2 diabetes [4–6]. These changes facilitate

transport of glucose across the placenta to ensure normal fetal

growth and development [4–6]. If maternal gestational insulin

resistance becomes too pronounced then maternal GDM may

be diagnosed. Traditionally, GDM has been defined as any

hyperglycaemia that is first identified during pregnancy, in-

cluding existing undiagnosed diabetes/hyperglycaemia.

Whilst early pregnancy tests are increasingly used to identify

and treat women with existing hyperglycaemia [7], this is not

universal and any impact of ‘GDM’ on epigenetic mecha-

nisms or adverse outcomes may be due to existing

hyperglycaemia or pregnancy-induced insulin resistance.

GDM is associated with adverse perinatal [6] and longer-

term offspring outcomes, including higher adiposity and ad-

verse cardiometabolic risk factors such as higher circulating

glucose and insulin [6, 8–10]. The latter may be due to devel-

opmental overnutrition and it has been hypothesised that epi-

genetic dysregulation is one mechanism underlying this asso-

ciation. However, other mechanisms could explain these as-

sociations, including shared familial socioeconomic, lifestyle

and genetic factors [11–13] (Fig. 1, pathways b and c).

Mediation is concerned with causal effects but it is com-

monly explored through conventional multivariable regres-

sion using the method suggested by Baron and Kenny more

than 30 years ago [14], without exploring the assumptions

specified by those authors [15]. The challenges of researching

causal molecular mediation, together with suggestions for

novel appropriate approaches, have recently been described

[15]. The path between maternal GDM and future offspring

type 2 diabetes risk could be mediated by multiple mecha-

nisms. For epigenetic mechanisms to mediate a hypothesised

developmental origins path between in utero exposure to

GDM and future offspring type 2 diabetes risk (Fig. 1,

pathway a), evidence for all three of the following causal

effects are required: (1) effect of GDM on future offspring

type 2 diabetes; (2) effect of GDM on some epigenetic mech-

anism in relevant tissues; and (3) effect of those epigenetic

mechanisms on future offspring type 2 diabetes.

Determining such causal effects requires robust replication

of associations and triangulation [16] of two or more different

methods with different sources of bias for assessing causality,

such as Mendelian randomisation (MR), [15], parental nega-

tive control studies [17], matched within-sibship designs [10]

and cross cohort comparisons [16]. Within-sibship analyses

provide some evidence for a causal effect of GDM on greater

offspring BMI [8, 10]. In epigenetic epidemiology, a paternal

negative control study found that most of the epigenome-wide

associations of maternal early pregnancy BMI with cord-

blood DNA methylation were similar to those of paternal

BMI, suggesting the maternal associations were unlikely to

be causal [17]. The extent to which such methods have been

used to explore epigenetic mediating mechanisms between in

utero exposure to GDM and offspring outcomes is one subject

of this review.

Given the systems and tissues potentially involved in this

hypothesised epigenetic mediating path, any research should

ideally explore epigenetic mechanisms in offspring blood (in-

cluding cord blood), placenta, pancreas, liver, muscle and ad-

ipose tissue. Access to blood and placental tissue should be

feasible as an increasing number of birth cohorts collect cord
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Fig. 1 Summary of pathways that produce an intergenerational associa-

tion between GDM and offspring type 2 diabetes (T2D). This figure is

available as part of a downloadable slideset
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blood or infant blood from screening blood spots, as well as

placental tissue [18–22]. However, taking fat, muscle, pancre-

as and liver biopsies is unlikely to be feasible and ethical

except in clinical cohorts where there is a clinical need. In

silico reference data, such as that available in resources like

the Genotype-Tissue Expression (GTEx) project [23], may be

valuable for information on differential epigenetic phenomena

in these tissues but those data are likely to come from small,

select and usually adult populations.

Epigenetics as biomarkers for diagnosis and risk prediction in

relation to GDMCurrent guidelines for screening and diagnos-

ing GDM vary between countries and institutions. Universal

OGTT of all pregnant women is rare and the benefit of doing

this is debated [7, 24, 25]. The practice of early pregnancy risk

factor screening to identify those at most risk of GDM (to

enable selection for a later diagnostic OGTT) does not appear

effective [24, 26, 27]. Other early pregnancy screening ap-

proaches, such as glucose challenge tests, HbA1c and random

or fasting glucose measurements, can be useful in identifying

women with undiagnosed type 2 diabetes [7] but do not seem

to be useful in identifying women with GDM or predicting

associated adverse outcomes [24, 28]. A definitive diagnosis

of GDM is made with an OGTT at around 26–28 weeks of

gestation. However, emerging evidence shows that fetal

growth trajectories already differ in those whose mothers are

subsequently diagnosed with GDM compared with those

whose mothers are not, from at least 12 weeks of gestation

[29, 30]. Thus, there is a need for biomarkers that are mea-

sured on samples collected in early pregnancy that accurately

predict GDM and its associated adverse perinatal and later

(offspring and maternal) outcomes. These could indicate

which women would benefit from early interventions (life-

style or pharmaceutical) to reduce risk, including future risk

of obesity and type 2 diabetes in mothers and offspring.

Unlike the use of epigenetic measures to explore me-

diation, their use as biomarkers does not require them to

be causally related to the outcome they are predicting

[31]. Causal methods and tissue specificity are therefore

not the focus in epigenetic biomarker research. What is

required is to show that epigenetic biomarkers that can be

readily assessed in blood or urine (which are routinely

collected at antenatal visits) improve the discrimination

and calibration of current risk prediction tools. It is also

important that prediction tools developed in one study are

validated in independent studies.
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Fig. 2 An overview of the PubMed search strategy to identify studies of interest. This figure is available as part of a downloadable slideset
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A review of current published literature

We searched PubMed for any pregnancy-related studies that

explored associations between any of maternal GDM, type 2

diabetes, gestational fasting or post-load glucose and any epi-

genetic marker (DNA methylation, histone modification or

miRNA) (Fig. 2). We did not restrict our search solely to

studies of GDM because of the varying methods that were

likely to have been used to diagnose GDM in different studies

and because existing hyperglycaemia or pregnancy-related in-

sulin resistance may have influenced both short-term and

long-term outcomes. We included any study, whatever its

aim and whether it hypothesised epigenetic variation that pre-

ceded the diabetes-related outcomes or vice versa. Cross-sec-

tional, case–control or cohort designs and global, epigenome-

wide and candidate gene studies were all included. We re-

stricted studies to those conducted in humans and written in

English. We extracted key data from each study with the aim

that this would provide important information on what is cur-

rently available in the published literature and how these stud-

ies might contribute to the two different potential uses of epi-

genetic epidemiology in GDM. We did not extract results or

assess risk of bias in each study as this was considered beyond

the scope of this paper. Similarly, we did not attempt to syn-

thesise or pool results from different studies. We do, however,

provide references from all studies and the data we extracted

from them in electronic supplementary material (ESM)

Table 2 (summarised in Fig. 3).

There were two main themes of research effort identified

from our literature search: (1) studies of associations of GDM

with offspring and/or placenta epigenetics (n = 55 studies),

which were primarily concerned with epigenetic mediation

of in utero exposure to hyperglycaemia on offspring subse-

quent health; and (2) studies of maternal epigenetics (n = 23

studies), which were mostly concerned with the role of epige-

netics in the aetiology of GDM or its progression to type 2

diabetes. Three articles spanned both of these themes, so the

total numbers of studies contributing to offspring/placenta and

maternal epigenetics were 58 and 26, respectively, and the

denominator used whenwe consider study themes (rather than

individual papers) was 84 (Fig. 3).

Fifty-eight of the 84 studies (69%) explored associations of

GDM, glucose levels/response or pre-existing maternal diabe-

tes in pregnancy with offspring and/or placenta epigenetics

(Fig. 3a). The most commonly studied epigenetic mechanism

in these studies was DNA methylation (48/58; 83%). There

were ten studies of offspring miRNA and one study of his-

tones (Fig. 3a). There were 25 studies of offspring tissues (22

in blood, one in adipose, one in adipose and muscle, one in

skeletal muscle), 24 studies of placenta and nine studies of

both offspring blood and placenta (Fig. 3c). In most of these

studies, the hypothesis or background rationale was that epi-

genetic mechanisms mediate any effect of GDM/glucose traits

on offspring outcomes. However, these studies mainly pre-

sented associations of GDM (or a related exposure) with

offspring/placenta methylation and exploration of any causal

effect or effect on downstream offspring outcomes was lack-

ing. Five of the studies conducted mediation analysis. In one

study, two-step MR provided some evidence for differential

DNAmethylation levels near the leptin gene (LEP) mediating

the effect of maternal fasting glucose on neonatal leptin levels

[32]. This study was conducted in just 485 mother–offspring

pairs and both offspring DNA methylation and leptin were

measured in cord blood. In a study of 835 mother–offspring

pairs, evidence from structural equation modelling suggested

that GDMmediated an effect of obesity on fetal-side placental

DNA methylation of the LEP promotor region [33]. Three

further studies using the Baron and Kenny method reported

evidence that DNA methylation might mediate the following

effects: (1) the effect of in utero exposure to GDM on child-

hood cardiometabolic traits (specifically, differential methyla-

tion around VCAM-1 [also known as VCAM1]) [34]; (2) the

effect of maternal hyperglycaemia on offspring leptin levels at

birth [35]; and (3) the effect of gestational type 2 diabetes on

type 2 diabetes risk in offspring [36]. Of these five mediation

analyses, one attempted to replicate findings in an indepen-

dent study. Overall, just under half of the studies (27/58; 47%)

attempted replication of findings in an independent cohort or

conducted in vitro assays to support the main study findings,

although at least 12 of the 58 studies (21%) noted the need for

additional replication or validation (see ESM Table 2).

The second predominant theme of research effort was in

identifying associations between maternal epigenetics and

GDM or glucose levels/response in pregnancy (26/84 studies;

31%; Fig. 3a). Most of these studies aimed to explore the

aetiology of GDM and/or the progression to type 2 diabetes.

There were 20 studies of blood, two of the maternal side of the

placenta, two of maternal adipose tissue, one of omentum and

one of both blood and the maternal side of the placenta (Fig.

3c). Most studies of maternal epigenetics evaluated miRNA

expression (15/26; 58%; Fig. 3a). Four studies explored pre-

diction of GDM risk, using area under the receiver operating

curve (AUROC) to test predictive discrimination and two of

these four studies attempted to validate or replicate their find-

ings. However, it was unclear whether the miRNAs identified

from these studies were predictive of disease independently of

known (clinical) predictors, or were more accurate than these

known predictors, as these comparisons were not made.

�Fig. 3 Summary of human epigenetic studies related to GDM or

hyperglycaemia in pregnancy. In (c) the size of the circles reflects the

number of studies in each tissue. The numbers of studies (given within

the circles) total 84 (rather than 81) because three studies contributed to

both of the broad areas and are depicted twice in this figure. In (d), for

case–control studies, the length of the vertical bar below the white

horizontal line shows the proportion of GDM cases, relative to the total

length of the bar. T1D, type 1 diabetes. This figure is available as part of a

downloadable slideset
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Overall, among the 26 studies that examined maternal epi-

genetics as causal risk factors for (or predictors of) GDM, only

ten (38%) attempted validation or replication of their results or

included in vitro assays to support the main study findings. At

least five of the 26 studies (19%) noted that additional repli-

cation or validation of study findings were needed (see ESM

Table 2).

Across both research themes, studies were split evenly be-

tween candidate-gene- and array-based approaches, with a

small proportion of studies assessing global or other measures

(Fig. 3b). Sample sizes were small (median n = 58, median n

cases = 27) and there was no obvious pattern of association

between sample size and studied epigenetic mechanism or

data type (Fig. 3d).

Discussion: conclusions and future research

Our review shows that there is a substantial body of

epigenetic epidemiology research in relation to GDM.

Most of this articulates an interest in the possible me-

diation by epigenetic phenomena of a possible causal

effect of maternal GDM on offspring future health in-

cluding future risk of obesity and type 2 diabetes.

Future research in this area should attempt to replicate

findings, expand the range of causal analysis approaches

applied to this question and, where possible, triangulate

across these to explore whether epigenetic mechanisms

that may be influenced by GDM relate to future adverse

offspring outcomes.

Seeking replication and exploring causality through

other methods such as negative control paternal studies

and MR require large samples sizes and necessitate col-

laboration across studies. Thus, endeavours such as the

Pregnancy And Childhood Epigenetics (PACE) consor-

tium [37] are important for taking this research forward.

Any study that has epigenome-wide data collected using

the Ilumina 450K or EPIC BeadChip and any pregnan-

cy, neonatal or childhood data can join PACE. There are

no restrictions on sample size, geography or ethnicity of

participants and members of the consortium can propose

and lead projects (https://www.niehs.nih.gov/research/

atniehs/labs/epi/pi/genetics/pace/index.cfm). To date, the

collaboration has largely looked at multivariable

observational association, although one study (of

maternal BMI) included a parental negative control

study [17].

MR is increasingly being adopted to strengthen caus-

al inference in epigenetic studies [38, 39]. The two-step

MR framework is relevant to the exploration of the

causal pathways linking GDM to offspring outcomes

via epigenetic mechanisms [15]. The feasibility of ap-

plying MR to address questions pertaining to the

potential long-term consequences of in utero exposures,

such as GDM, is improving due to the increasing avail-

ability of relevant genome-wide genetic data and the

development of relevant statistical methods [40–43].

However, it may not be feasible to use MR to deter-

mine a specific intrauterine effect of exposure to mater-

nal GDM on offspring type 2 diabetes given the over-

lapping pathophysiology and genetic correlates between

GDM and type 2 diabetes [15]. It may also not be

feasible to use MR if there are no strong genetic instru-

ments available for a particular epigenetic mark.

However, genome-wide association studies of DNA

methylation have been published [44, 45], with a

large-scale meta-analysis underway by the Genetics of

DNA Methylation Consortium (GoDMC). These efforts

are generating an extensive catalogue of SNPs that tag

methylation variation (meQTL) and these in turn can be

used in MR and have been applied in a systematic way

across many outcomes simultaneously [45].

Assessment of epigenetic measures for prediction of

GDM was rare among studies identified (n = 4). The abil-

ity of epigenetic marks to integrate genetic and non-

genetic factors in a biologically stable and technically

reproducible way means they have high potential as bio-

markers. Perhaps uniquely, epigenetic marks can ‘capture’

information on endogenous and exogenous exposures, in-

cluding risk factors and very early consequences of dis-

ease processes, thus promising to be an effective tool in

early detection and future prediction and prognosis. The

use of epigenetic biomarkers in this way is established in

cancer research [46], and this is an area of research that is

likely to see considerably more attention in other areas in

future years (including pregnancy complications, where

accurate risk prediction remains poor).

In conclusion, determining whether GDM causes (via

intrauterine mechanisms) increased risk of future offspring

type 2 diabetes is important, because if it does there could

be an intergenerational cycling or risk that would acceler-

ate the increasing risk of type 2 diabetes and GDM. If there

is a causal effect, epigenetic mechanisms could provide a

potential modifiable target for intervention development to

break this cycle. There is increasing optimism that epige-

netic information can be used as a biomarker to predict

future likelihood of adverse outcomes. As methods for

identifying risk of GDM early in pregnancy (before fetal

overgrowth begins) are lacking, this could be valuable for

identifying women who might benefit most from more-

intensive antenatal monitoring and interventions (lifestyle

or pharmaceutical) to optimise fetal growth and minimise

maternal hyperglycaemia. The assembled published evi-

dence suggests that this is a fruitful avenue of research to

explore. However, larger, more robust studies are required

to strengthen the current evidence base.
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