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Abstract

The correlation between epigenetics and human reproduction represents a very interesting field of study, mainly

due to the possible transgenerational effects related to epigenetic modifications of male and female gametes. In

the present review, we focused our attention to the role played by epigenetics on male reproduction, evidencing

at least four different levels at which sperm epigenetic modifications could affect reproduction: (1) spermatogenesis

failure; (2) embryo development; (3) outcome of assisted reproduction technique (ART) protocols, mainly as

concerning genomic imprinting; and (4) long-term effects during the offspring lifetime. The environmental agents

responsible for epigenetic modifications are also examined, suggesting that the control of paternal lifestyle prior to

conception could represent in the next future a novel hot topic in the management of human reproduction.
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Background

You shall not bow down to them or worship them;

for I, the Lord your God, am a jealous God,

punishing the children for the sin of the parents

to the third and fourth generation of those who hate me

(Esodus, 20.5)

Infertility represents a growing emergency in western

countries, affecting about one out of seven couples who

attempt to generate a child. In 2010, an estimated 48.5

million couples worldwide were infertile, against 42 mil-

lion in 1990 [1]. In about 50 % of the cases, this condi-

tion is ascribable to the male partner, mainly due to a

failure in the spermatogenesis process causing azoosper-

mia or oligozoospermia at the sperm count [2]. Despite

the large number of tools available for the identification

of the pathogenesis of male infertility, in many cases, no

specific cause is detected and no personalized thera-

peutic protocol can be established. A large number of

studies have investigated in the last decades the presence

of genetic alterations responsible for the failure of

spermatogenesis, which are nevertheless identified only

in 15–30 % of infertile males, even when stringent selec-

tion criteria are used [3, 4]. Despite the identification of

several rare genetic variants associated to disruption of

spermatogenesis, so far, the only two categories of

genetic alterations responsible for a significant portion

of cases of male infertility, and thus commonly tested in

the clinical practice, are represented by chromosomal

alterations and Yq microdeletions [5–10]. The presence

of other genetic mechanisms, such as partial Yq

microdeletions [11–14], specific Y-chromosome hap-

logroups [15–18], and polymorphism in genes related

to mitochondrial function [19–21] as risk factors for

infertility have been suggested, but with inconclusive

results. More recently, the presence of X-linked copy

number variants (CNVs) in infertile males has been

reported by several studies [22, 23], but the overall
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incidence of these variants accounts only for a limited

portion of all cases.

In recent years, great interest has been raised by the

novel acquisitions on the epigenetic mechanisms of

regulation of gene expression. Epigenetics can be defined

as the study of mitotically or meiotically heritable modi-

fications in the function of specific genes not related to

modification in the DNA sequence [24]. This novel field

of study has obtained large relevance also in the world

of mass media, usually transmitting the “take-home

message” that human destiny is not written inside genes,

since environmental agents or experiences can influence

human heredity [25]. As a matter of fact, the interaction

between genes and environment in the determination of

human phenotypes is very well known from many years,

but the real novelties provided by the studies on epigen-

etics are that (1) environmental agents can modify the

expression of specific genes without changing their

sequence or copy number, and (2) these modifications

can be transmitted to the offspring, so that either rare

congenital diseases or the susceptibility to common

diseases appearing during the lifetime can be the result

of a gene-environment interaction that occurred in one

parent of a subject, not in the subject himself. In this

view, epigenetic studies represent a breakthrough in the

field of human reproduction. In fact, since epigenetic

modifications can be transmitted to the offspring,

they obviously involve germ cells, and in some cases,

they could affect gametogenesis as well as the embryo

development, thus representing a potential cause of

infertility of the couple. Moreover, since epigenetic

alterations do not induce modification in the gene

sequence or copy number, they could account for at

least a portion of cases of male infertility in which no

genetic abnormalities are detected using the conven-

tional techniques of genetic analysis.

Several studies have investigated in the last years the

role played by epigenetic modification in male gameto-

genesis and in male infertility. The aim of this review is

to analyze the state-of-art of this field of research in

order to give an answer to the following questions. (1)

Can epigenetic mechanisms be related to the quality of

the spermatogenesis process? (2) Can sperm epigen-

etic alterations affect embryo development? (3) Is

there a relationship between sperm epigenetic modifi-

cations and outcome of assisted reproduction tech-

nique (ART) procedure? (4) Which environmental

agents can be responsible for epigenetic modifications

of sperm DNA?

Molecular basis of epigenetics

The main epigenetic mechanisms of gene expression

regulation are represented by DNA methylation, histone

modifications, and small, non-coding RNAs.

DNA methylation

In mammalians, DNA methylation occurs at the 5′- pos-

ition of cytosine residues, mainly within CpG dinucleo-

tides, 60–80 % of which are methylated within the

promoter regions of genes [24]. Methylation of CpG

dinucleotides within the promoter regions leads to the

silencing of transcription process, mediated by modifica-

tions in the condensation status of the chromatin. The

process of DNA methylation is catalyzed by enzymes

known as DNA methyltransferases (DNMTs), which can

be classified in “de novo” DNMTs (which methylate

specific chromosomal sequences during early embryo-

genesis), and maintenance methyltransferases (DNMT1),

faithfully restoring the methylation patterns after each

DNA replication cycle [26]. The process of DNA methyla-

tion is closely related with gametogenesis, since primordial

germ cells (PGCs), when entering the developing gonad,

undergo a process of deep decrease of DNA methylation,

which will be subsequently restored in the prenatal life in

males and during post-natal follicle development in

females (Fig. 1) [27].

Cytosine methylation can occur also in non-CpG sites

(CpA > CpT > CpC), although the significance of these

variants is still unknown. Methylation at non-CpG sites

was previously considered to be largely present in the

brain, embryonic stem cells (ESCs), induced pluripotent

stem cells, and in oocytes [28–32]. However, Ichiyanagi

et al. observed methylation at non-CpG sites in male

germ cells as well, demonstrating that the level of the

non-CpG methylation is higher in prospermatogonia

and decreases along with mitotic division. In addition,

this study also suggested the absence of a template-

dependent mechanism for copying non-CpG methyla-

tion in prospermatogonia [33].

Another kind of epigenetic DNA modification is

represented by 5-hydroxymethylcytosine (5hmC), an

intermediate of DNA demethylation with important

regulatory functions in various biological and patho-

logical processes in the mammalian genome such as

transcriptional regulation, DNA methylation regula-

tion, and tumorigenesis [34]. Gan et al. showed that

the highly ordered 5hmC alterations are critical for

the differentiation of spermatogenic cells in the mouse

[35]. Recently, Wang et al. for the first time compared

5-hydroxymethylcytosine profiles in normal, abnor-

mal, and globozoospermia sperms, identifying 6664,

9029, and 6318 genes containing 5hmC, respectively

[36]. In addition, since some 5hmC-containing genes

are significantly involved in spermatogenesis, sperm

motility, and morphology, the authors suggested that

the 5hmC distribution differences may contribute to

the sperm phenotype [36].

DNA methylation was originally investigated by

Southern blot and methylation-sensitive restriction
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endonuclease digestion followed by PCR amplification

[37]. Nowadays, gene-specific techniques are available

including bisulfite sequencing, combined bisulfite

restriction analysis (COBRA) [38], MethyLight [39],

and bisulfite pyrosequencing [40], all based on bisul-

fite conversion of cytosine residue to uracil, leaving 5-

methylcytosine residue unaffected [41], detectable by

DNA sequencing. All the abovementioned techniques

are sensitive, specific, and relatively inexpensive but

not suitable for analysis of the whole genome, which

includes about 28 million CpGs.

The next-generation sequencing (NGS) approach

represents a new powerful tool for the study of human

DNA methylome [42]. The NGS DNA methylation

procedures are based on three main steps: digestion of

genomic DNA with methyl-sensitive restriction enzymes,

affinity-based enrichment of methylated DNA fragments,

and chemical conversion methods [43, 44].

Another large-scale approach is represented by whole-

genome bisulfite sequencing (WGBS), which is able to

analyze DNA methylation profiles of whole genomes at

single-base resolution [45]. Recently, several studies have

reported WGBS accurate data on methylome both of

human embryonic stem cells [46] and induced pluripo-

tent stem cells [47].

Histone modifications

Modifications of histone tails represent other epigenetic

chromatin marks critical for transcriptional regulation.

Post-translational modifications of histone tails include

methylation, acetylation, phosphorylation, ubiquitina-

tion, ribosylation, and sumoylation. Histone marks are

dynamic process, since histone modifications can be

easily induced and removed by a wide range of enzymes

[48]. The most relevant histone change is represented by

acetylation at lysine residues on the amino-terminal tail

domains, whose correct levels are maintained by the

combined action of two enzymes known as histone acetyl

transferase (HAT) and histone deacetylase (HDAC).

Generally, acetylation reduces the affinity of histones for

DNA, making genes functionally active; on the other

hand, histone deacetylation leads to chromatin condensa-

tion, making genes transcriptionally inactive. Conversely,

histone methylation is a key regulator for both activation

and inactivation of transcription. For example, lysine 4 of

histone H3 (H3-K4) methylation is linked to gene expres-

sion, while H3K9 and H3K27 di- and tri-methylation is

associated with gene silencing [49, 50].

Histone H3T is the testis-specific H3 variant in

mammals. Tachiwana et al. showed that H3T nucleo-

somes can be assembled by Nap2 chaperone and that

Fig. 1 Epigenetic modifications during spermatogenesis. During the different steps of spermatogenesis, several epigenetic modifications involving

DNA methylations and histone modifications occur. (1) PGCs undergo a process of demethylation involving DNA (with erasure of genomic imprinting)

and histones (namely, K4 and K9 residues of H3). Also, a process of H4 deacetylation is present. DNMT3A, DNMT3B, and DNMT3L are expressed at this

time. (2) In spermatogonia, a progressive DNA methylation occurs, with establishment of paternal methylation. (3) In spermatocytes, H3K9 and H3K4

methylation is observed. (4) In round spermatids, H4 becomes hyperacetylated, DNMT1 is expressed, and the transition from histones to TPs occurs.

(5) Elongated spermatids show a maintenance of DNA methylation, together with H3K9 demethylation. The transition from TPs to protamines occurs

at this step. (6) In spermatozoa, the genomic imprinting is maintained
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this structure is significantly unstable as compared to the

conventional H3.1-containing nucleosomes [51, 52].

Furthermore, these authors suggested that the unstable

H3T-containing nucleosome structure can influence

the chromatin re-organization essential for spermato-

genesis [52].

Histone modifications were originally investigated by

Western blot with specific antibodies to modified

histones, but nowadays, they are mainly studied by

mass-spectrometry-based proteomic technologies [53].

Recently, NGS technologies have been developed able to

analyze whole-genome histone modifications. These

techniques are based on chromatin immunoprecipitation

followed by sequencing maps of the genome-wide bind-

ing pattern of chromatin-associated proteins, which

includes modified histones (ChIP-seq) [44, 54].

Small non-coding RNAs

A third mechanism of epigenetic regulation of gene

activity is represented by small RNAs and large inter-

genic non-coding RNAs (lincRNAs). Small RNAs, not

encoding proteins, are located in the nucleus of sperm-

atozoa and play an essential role as epigenetic modifiers

both in recognizing and preserving the DNA that

remains bound to histones during the transition to

protamine in spermiogenesis and in early embryonic

development [55]. On the other hand, lincRNAs act at

the level of chromatin allowing to select the histone

modification enzymes, such as in the case of lincRNAs

HOTAIR which acts as a scaffold for PRC2 and LSD1

enzymes to regulate lysine 27 methylation and lysine 4

demethylation in H3 histone [56].

Small non-coding RNAs are generally identified by

RT-PCR analysis, in situ hybridization, or small RNA

sequencing studies. Furthermore, the recent develop-

ment of microarray technologies has permitted the

global analysis of spermatozoal microRNAs (miRNAs)

evidencing different expression profiles between fertile

and infertile men [57, 58].

Genomic imprinting

A specific feature of epigenetic control of gene function

is represented by genomic imprinting, a process leading

to the expression of a specific set of genes (about 70–80,

the majority of which clustered in 16 specific chromo-

somal regions) based on their maternal or paternal

origin [59]. Genomic imprinting plays a key role in the

regulation of resource acquisition by the offspring from

the mother during prenatal and early postnatal life.

Paternally and maternally imprinted genes play different

roles in this mechanism, being many paternally expressed

alleles able to increase resource transfer to the child,

which is on the other side reduced by maternally

expressed genes (“parental conflict hypothesis”) [60]. The

correct balance between the activity of maternally and

paternally imprinted genes can be disrupted by different

mechanisms, such as chromosome deletions, uniparental

disomy (UPD), or alterations in the imprinting center. In

human, alterations of the process of genomic imprint-

ing cause several congenital diseases mainly involving

fetal growth (e.g., Beckwith–Wiedemann syndrome,

Russell–Silver syndrome), hormone systems after birth

(e.g., Albright hereditary osteodystrophy, pseudohypo-

parathyroidism 1A, transient neonatal diabetes mellitus),

or behavior (e.g., Prader–Willi syndrome, Angelman

syndrome) [60]. Moreover, imprinting alterations have

been suggested as responsible for intrauterine growth

restriction, in turn associated with an increased risk of

cardiovascular disease, diabetes, and mental defects later

in life [60, 61].

The discovery of the role played by epigenetic modifi-

cations on the function of paternal genome has

prompted novel attention on the function of sperm

DNA during embryo development. In fact, sperms have

been historically viewed as specialized cells with the

unique function of delivering the 23 paternal chromo-

somes to the oocyte, considered as the only gamete

playing an active role in driving embryo development,

thanks to its availability of cellular organelles, RNAs,

and cellular machinery. Actually, the role played by the

male gamete in embryo development appears to be

more relevant than previously hypothesized. In this

view, a full knowledge of the epigenetics of sperm could

provide novel information about germ cell biology,

paternal effects on embryogenesis, and the pluripotency

of embryonic stem cells [62].

Epigenetics and spermatogenesis

The process of spermatogenesis

The formation of a mature sperm requires different

processes, namely (1) mitotic proliferation of spermato-

gonia; (2) meiotic divisions; and (3) morphological differ-

entiation of sperm precursors (spermiogenesis), leading

to the generation of highly specialized cells characterized

by the presence of a head, an intermediate portion, and

a flagellum. Such a specific organization of the male

germ cells is necessary to allow sperms to traverse a po-

tentially hostile female reproductive tract, penetrate the

cumulus oophorus and the zona pellucida, penetrate the

oocyte, and finally complete multiple post-penetration

events [62, 63]. During fetal life, spermatogenesis begins

in the wall of the seminiferous tubules from undiffer-

entiated diploid cells known as spermatogonia, which

undergo several mitotic divisions in order to increase

the pool of available precursors of germ cells. At

puberty, some spermatogonia are transformed in type

I spermatocytes, which undergo the first meiotic

division producing haploid type II spermatocytes. A

Stuppia et al. Clinical Epigenetics  (2015) 7:120 Page 4 of 15



second meiotic division occurs in these cells, originating

haploid spermatids. The last phase of spermatogenesis is

represented by spermiogenesis, characterized by a mor-

phological and structural transformation complex process

of the round spermatid. This step, occurring without

further cell division, leads to the production of mature

sperm, characterized by the differentiation of the flagellum

and the acrosome, essential prerequisites for sperm motil-

ity and fertilization capacity.

Histone–protamine replacement as the main epigenetic

change in sperms

In addition to the typical morphology and motility, sperms

are characterized also by a highly organized chromatin

structure. In fact, sperm chromatin during spermiogenesis

undergoes further condensation, due to the replacement

of 90–95 % of the histones with one or more sperm-

specific basic proteins, known as protamines [64]. This

modification induces the formation of disulfide bonds (SS)

that confer extreme stability to the core of the sperm

nucleus, producing a number of relevant effects, such as

improvement of sperm motility, protection from oxidative

stress and toxic agents present within female reproductive

tract, and block of the transcriptional activity of the sperm

DNA [65]. The complex mechanism of histone–protam-

ine transition is a finely regulated multi-step process. In

the first step, the histones in round spermatids are

replaced by a heterogeneous group of nuclear proteins

(transition proteins (TP)), as the result of histone hypera-

cetylation [66] (Fig. 1). The second step takes place in

elongating spermatids, determining the replacement of

TP1 and TP2 with protamines [62, 67] (Fig. 1). Protamines

have different functions: they allow the compaction of the

nucleus ensuring the genetic integrity of the sperm and

play an important role in epigenetic imprinting [62].

Mature spermatid nuclei present two types of protamines:

the P1 protamine and the P2 family of protamines, consti-

tuted by P2 (the most abundant), P3, and P4 members.

P1/P2 ratio appears to be critical for male fertility [68, 69].

In fact, the P1/P2 ratio, which in fertile males is close to 1

(range 0.8–1.2), is altered in infertile patients [69, 70].

Patients with a P1/P2 ratio <0.8 present inadequate DNA

condensation and important alterations in sperm

parameters, such as motility, counts, and structure

[68–71]. Moreover, Aoki et al. demonstrated that low

P1/P2 ratios are also associated with an increased

DNA fragmentation, which is also inversely correlated

with global sperm P1 and P2 concentrations, suggest-

ing a protective role of the protamines against sperm

DNA damage [72]. There is also evidence that subfer-

tility can be correlated with an excess of protamine P2

precursors (pre-P2), determined by an alteration of

the process leading to the mature protamine P2

formation [68, 71, 73, 74].

DNA methylation and histone modifications during

spermatogenesis

Various and specific epigenetic marks are required

during male gametogenesis for proper maturation of

gametes. In fact, before meiosis, the first epigenetic

events take place in the form of progressive demethyla-

tion–remethylation of DNA. During meiosis, DNMT3A,

DNMT3B, and cofactor DNMT3L activity regulates the

levels of de novo DNA methylation, completing this

process after birth at the stage of pachytene sperm-

atocyte [75]. Subsequently, the methylation profile is

maintained by DNMT1 activity. In addition to the

above-described processes, also histone modifications

(methylation and acetylation) occur, which modify

DNA accessibility to transcription factors (Fig. 1). In

fact, specific enzymes such as histone methyltransfer-

ase (HMT) and histone demethylase (HDM) regulate

lysine 9 of histone H3 (H3-K9) and lysine 4 of his-

tone H3 (H3-K4) methylation patterns. Generally,

histone H3-K9 methylation is high in meiosis but is

removed at the end of this process, promoting gene

activation, whereas histone H3-K4 methylation, which

decreases during meiosis, is associated to DNA silen-

cing [50] (Fig. 1). In addition, during spermatogenesis,

several enzymes, such as HAT and HDAC, regulate

the processes of acetylation and deacetylation of H3

and H4 lysine residues. During spermiogenesis, hyper-

acetylation of H4 plays a crucial role for correct his-

tone to protamine transition and allows nucleosome

disassembly in elongating spermatids [66, 76] (Fig. 1).

Epigenetic alterations and spermatogenesis disruption

The above-described epigenetic marks in germ line

genes play a key role in the proper spermatogenesis pro-

cesses, and several studies have demonstrated that aber-

rant epigenetic modification of genes expressed in the

testes are associated with male infertility. Navarro-Costa

et al. for the first time hypothesized that one of the fac-

tors of male gametogenic defects could be represented

by epigenetic alterations of specific genes, evidencing

increased methylation defects of the germ line regulator

DAZL gene in different quality-fractioned sperm popula-

tions of oligoasthenoteratozoospermic (OAT) patients as

compared to normozoospermic (NZ) men [77]. On the

contrary, no variation in the methylation state of the

DAZL gene promoter between NZ e OAT men was

observed. This study also highlighted the existence of

homogeneous DAZL methylation levels when comparing

the normal sperm-enriched fractions of NZ men. This

evidence has been subsequently confirmed on a larger

scale by Krausz et al. who detected no differences in the

DNA methylation status of several genes in the different

sperm subpopulations of normozoospermic individuals

[78]. Subsequently, other studies have identified more
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genes whose epigenetic modifications are related to alter-

ation of both semen parameters and fertility maintenance.

Hammoud et al., by analyzing seven imprinted loci (LIT1,

MEST, SNRPN, PLAGL1, PEG3, H19, and IGF2), corre-

lated alterations in the DNA methylation pattern of oligo-

zoospermic patients with abnormal protamine levels [70].

Interestingly, alterations in the mRNA levels of the genes

involved in the histone–protamine transition have been

evidenced also by studies carried out by investigating the

global testis transcriptome of normal and oligozoospermic

patients by microarray analysis [79]. Other studies have

demonstrated that DNA hypermethylation of the pro-

moter of several genes (such as MTHFR, PAX8, NTF3,

SFN, HRAS, RASGFR1, GTL2, PLAG1, D1RAS3, MEST,

KCNQ1, LT1, SNRPN and others) plays a critical role in

male infertility, being associated to alterations of sperm

concentration, motility, and morphology, while hypome-

thylation of the IGF2/H19 imprinting control region 1

(ICR1) has been detected in patients with low concentra-

tion and sperm motility as compared to normozoospermic

controls [70, 80–86].

Due to the increased knowledge about the epigenetic

alterations occurring in sperm DNA of infertile patients,

it has become clear that specific errors in the processes

of epigenetic control may occur during each stage of

spermatogenesis, adversely affecting male fertility and

embryonic development [49]. In fact, epigenetic alter-

ations occurring in mitosis can affect the expression of

specific genes involved in the first steps of spermatogen-

esis, leading to a decreased efficiency of the process.

When the meiotic stage is involved, these alterations can

induce double-strand breaks or chromosomal non-

disjunction. Finally, during spermiogenesis, epigenetic

alterations can involve histone-to-protamine transition

and histone removal and degradation, inducing protam-

ine replacement errors [49]. Taken together, all these

evidences suggest that different features of male infertil-

ity, such as alterations in sperm count or morphology,

DNA fragmentation, chromosomal aneuploidies, and al-

terations in the chromatin package, could be all related

to epigenetic mechanisms occurring at different stages

of spermatogenesis.

Epigenetics and embryo development

DNA methylation and histone modifications play a crucial

role in the process of genome reprogramming during early

embryogenesis [87–89]. Preimplantation embryo develop-

ment is a dynamic process characterized by deep gene

expression profile change and modifications in the

histone and chromatin organization [87, 90–92]. After

fertilization, the genome of paternal and maternal

origin is subjected to a process of reprogramming: at

first, the male pronucleus is demethylated [93, 94], and

after the formation of the zygote, the chromosomes of

both parents are demethylated by a passive mechanism

erasing most parts of the methylation marks except those

involved in the process of genomic imprinting [95]. The

methylation of imprinted genes is erased only in PGC,

cells of epiblast that give rise to male and female gametes.

Here, an extraordinary epigenetic regulation occurs in the

early stages of embryonic development, when the methy-

lation is erased and specific genes of pluripotency (OCT4

and NANOG) are expressed. De novo methylation starts

in the inner cell mass of the blastocyst and the levels of

methylated DNA increase in primitive ectoderm, while

methylation is inhibited in the trophoblast and in the

primitive endoderm [96, 97]. This alternation of demethyl-

ation and remethylation can be explained by the necessity

during preimplantation to activate zygotic genes essential

for early development, while de novo methylation could

establish a state of global silencing in order to suppress

retrotransposons [87]. In post-implantation embryos, the

maintenance of DNA methylation is crucial for embryonic

development. In female embryos, X inactivation, due to

increased expression and accumulation of Xist RNA,

occurs [98]. The X chromosome is inactivated to compen-

sate the number of X-linked genes in males and females,

and the process of inactivation takes place after the

implantation of female embryos or during the process of

differentiation of ESCs [99, 100]. A reactivation of the X

chromosome occurs in the inner cell mass of the blasto-

cyst and in the epiblast, followed by a random inactiva-

tion, a biological process in which both X chromosomes

have the same probability of being inactivated [101, 102].

A first relevant role played by paternal genome in the

above-described process is represented by genomic

imprinting. In fact, at least three paternally imprinted

genes, H19-IGF2, RASGRF, and DLK1-GTL2 are consid-

ered among the most relevant for embryonic develop-

ment and placentation [103–105]. However, genomic

imprinting does not appear to represent the only mech-

anism of paternal control on embryo development. As a

matter of fact, it has been demonstrated that the pres-

ence of modified histones in the spermatozoa could

represent a potential paternal contribution in epigenetic

reprogramming of the zygote regardless of the imprint-

ing process [106–108]. In fact, despite the exchange of

histones with protamine is essential for the maturation

of sperm, a residual percentage of genome (5–15 %) re-

tains the nucleosomal organization [109]. These retained

nucleosomes play a key role in the contribution of the

paternal genome in embryonic development [110]. In

fact, the paternal DNA packaging in spermatozoa seems

to have a potential role in transmitting an epigenetic

profile to the zygote in early embryogenesis [111], since

the nucleosome retention takes place in hypomethylated

regions corresponding to the promoters of developmen-

tal transcription and signaling factors which are the
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target of transcription factors such as OCT4, NANOG,

SOX2, and KLF4 [110]. In this view, it is possible to

hypothesize that an alteration of the correct distribution

of nucleosome retention within sperm DNA could

produce an impairment of embryo development. As a

matter of fact, Hammoud et al. demonstrated the pres-

ence in infertile men of randomly distributed histone

retention genome-wide, with alteration of the methyla-

tion status of candidate developmental promoters and

imprinted loci [111]. Moreover, genes in histone-bound

regions appear more susceptible to DNA damage in-

duced by smoking, obesity, and aging as compared to

protamine-bound regions, due to the incapacity of

sperm to repair DNA damage [112]. Histone-bound

regions play a crucial role in the activation of paternal

genome transcription in the early embryo, since while

paternal protamines are replaced by maternal histones

in the first 4 to 6 h after fertilization, this does not

occur for paternal histones, which are thus likely

inherited by the embryo [113]. Thus, the reported

data above suggest that, in some instances, epigenetic

defects of the sperm could induce not only a poor

sperm quality, but also a decreased ability of develop-

ment of the generated embryo after the fusion of the

gametes, providing a possible explanation for a num-

ber of early pregnancy loss after both in vivo and in

vitro fertilization.

Epigenetics and ART

A large amount of literature data, including human and

animal studies, has raised concerns about an increased

risk of different diseases in the offspring generated by

the use of ART [114, 115]. Several evidences have

suggested that the majority of these abnormal conditions

are related to epigenetic alterations.

Data from ART in animal models

Early studies carried out in mice had showed that alter-

ations affecting the development and growth of the

fetuses were linked to ovulation induction, manipulation

of eggs, or embryo culture in vitro [116–119]. A con-

firmation came from Khosla et al. showed that preim-

plantation mouse embryos cultured in the presence of

serum can change the expression and methylation of

several imprinted genes (such as H19, IGF2, GRB10, and

GRB7) and that these aberrant epigenetic modifications

lead to abnormal fetal growth in ART animals [120].

Moving to different animal models, Young et al. evi-

denced the presence of the “large offspring syndrome”

(LOS) (large size at birth, increased birth weight,

breathing difficulties, reluctance to suckle, and sudden

perinatal death) in sheep and cattle derived from

cultured embryo [121]. Subsequently, the pathogenesis

of LOS was suggested to be associated with epigenetic

abnormalities, leading to loss of imprinting and over-

expression of IGF2 receptor gene [122, 123]. Factors in

the ART procedures, triggering these imprinting errors,

were not clearly identified, but the onset of the

syndrome appeared to be dependent by in vitro culture

conditions [122, 123].

Data from ART in human

In human, a larger prevalence of syndromes related to

imprinting alteration, particularly Beckwith-Wiedemann

and Angelman syndromes, has been reported in children

born after ART when compared to non-ART children

[124–126]. Interestingly, the phenotype of Beckwith-

Wiedemann syndrome, an overgrowth condition char-

acterized by large size at birth, macroglossia, and

visceromegaly, closely remembers the previously de-

scribed LOS in cows and sheep generated by in vitro

fertilization, suggesting a common mechanism of ori-

gin of these conditions. On the other hand, also a

disproportionate number of low birth weight cases has

been observed in ART children [127].

The association between ART and altered DNA

epigenetic profiling has been demonstrated also by stud-

ies based on the analysis of the methylation status of

CpG sites in the promoters of 700 genes of placenta and

cord blood obtained from children conceived in vitro

and in vivo [128]. This analysis showed hypomethylation

of most CpG sites in the placenta and hypermethylation

of most CpG sites in cord blood in the group of children

conceived by in vitro fertilization as compared to natur-

ally conceived children. Interestingly, the genes showing

different expressions in the two groups appeared to be

involved in chronic metabolic disorders including obes-

ity, type II diabetes, and high blood pressure [128].

These data are in agreement with other studies reporting

an increased risk of disturbs in body fat composition,

changes in blood pressure, and increase in the late

infancy growth velocity in children generated by ART

procedures as compared to control children [129–131].

In addition, other studies showed a high risk of obes-

ity or type II diabetes in adult life in children gener-

ated by ART [132]. These results strongly suggest

that the effect of ART procedures could be mani-

fested not only at birth, but also in late infancy or

even in adult life.

As in animal models, the in vitro culture conditions

have been suggested as a main cause of epigenetic

defects in the offspring generated by ART also in human

[133]. In addition, it has been proposed that the low

birth weight observed after ART, as well as in small for

gestational age and very premature children, is the result

of an unfavorable embryonic, fetal, or neonatal environ-

ment, involving also epigenetic mechanisms, potentially

related to metabolic alterations in late childhood [134].
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However, several evidences have suggested that a

crucial role could be also played by epigenetic defects

in the sperms used in ART protocols. In fact, several

authors suggested that DNA methylation changes at

imprinted loci are inherited from the sperm of men

with oligozoospermia [82, 135, 136]. This could sug-

gest that the increase of DNA methylation variations

in ART depends, at least in part, on the presence of

epigenetic defects of male gamete. In this view, some

authors have proposed the possible usefulness of ana-

lyzing the imprinting methylation status in the rou-

tine sperm examination for ART treatment [136].

Moreover, it has been hypothesized that the use of

sperms with an abnormal P1/P2 ratio or defects of

histone–protamine may be responsible of imprinting

diseases in the offspring conceived with ART [50].

Unfortunately, this argument remains poorly under-

stood, as demonstrated by other studies reporting that

epigenetic abnormalities detected in sperms of oligo-

zoospermic patients do not appear to be associated

with ART outcome, suggesting that further studies

are required in order to shed light on the relationship

between sperm epimutation and alterations in chil-

dren generated by ART [137].

Environmental agents inducing epigenetic modifications

Several environmental and lifestyle factors (stress, phys-

ical activity, alcohol intake, smoke, shift work) are

known to affect male and female fertility [138], and in

many cases, they have been shown to influence the

occurrence of epigenetic modifications with implica-

tions for human diseases [139]. The presence of an en-

vironmental epigenetic inheritance through gametes

has been evidenced by studies carried out on different

animal models [140]. A few studies have suggested that

food or physical activity can influence histone modifica-

tions and miRNA expression. Dashwood et al. demon-

strated that a single intake of cruciferous vegetables

inhibits HDAC activity in mononuclear cells of periph-

eral blood promoting H3 and H4 acetylation [141],

while other studies demonstrated that exposure to

cigarette smoke causes a down-regulation of mir-34b,

mir-421, mir450-b, mir-466, and mir-469 [142]. Any-

way, the largest body of evidence comes from studies

investigating the environmental effects on DNA methy-

lation. Alterations in this process have been demon-

strated to be induced in specific genome regions by

toxic chemicals, high intake of alcohol and mother’s

diet, or smoking during intrauterine life [143, 144].

Further information in this field has been provided by

studies investigating the role played by paternal expo-

sures to various pollutants and lifestyle-related condi-

tions on the health status of the offspring and of the

future generations.

Paternal exposure to toxins or ionizing radiation

Great attention has been devoted to the effects of pater-

nal exposures to environmental toxins or low-dose

ionizing radiation, and of paternal lifestyle [145]. Several

studies had previously demonstrated the presence of a

strong association between paternal occupational expo-

sures to chemicals and harmful health outcomes in the

offspring. Feychting at al. demonstrated an increased risk

of nervous system tumors related to paternal occupa-

tional exposure to pesticides and of leukemia related to

woodwork by fathers [146]. Reid et al. evidenced the

presence of high exposure to exhausts by paternal

grandmothers of children with acute lymphoblastic

leukemia [147]. However, many of these conditions are

likely related to the presence of mutations in sperm

DNA, thus representing a genetic, rather than epigen-

etic, mechanism. Is there any evidence supporting the

presence of epigenetic mechanism driving the effects to

the offspring of the paternal exposure to chemicals?

Once again, the most relevant data in support of this

hypothesis come from studies on animal models, show-

ing that male exposure to pesticides or other harmful

chemicals can be responsible for defects in the gametes

and abnormal development of the offspring mainly via

altered DNA methylation patterns in the germ line

[148, 149]. Anway et al. evidenced that a transient em-

bryonic exposure to the endocrine disruptor vinclozolin

during gonadal sex determination in rats produced several

diseases affecting the prostate, kidney, immune system,

testis, as well as different cancers in the subsequent gener-

ations, suggesting a potential transgenerational effect

[148]. Similar results were obtained by Guerrero-Bosagna

et al., who showed that transient exposure of the F0

generation gestating female to vinclozolin during

gonadal sex determination caused adult onset disease

in the F3 generation male and female mice [149].

Also, ionizing radiations have been recently invoked as

a risk factor for alterations of DNA methylation. These

radiations trigger a series of processes on the cells as

genotoxic alterations including DNA breaks, but the

actual mechanism leading to a transgenerational effect is

still poorly understood. Dubrova et al. suggested an

epigenetic mechanism of transmission of the radiation-

exposure signal through sperm, likely involving DNA

methylation and affecting DNA repair processes [150].

These authors suggested that the persistence of instabil-

ity into the germ line of unexposed offspring of irradi-

ated mice could be responsible of mosaicism in germ

cells, a well-known mechanism in the origin of human

genetic disorders [150].

More recently, it has been suggested that a crucial

role in transgenerational radiation effects, such as

genomic and epigenomic instability, could be played by

the Piwi-interacting RNAs (piRNA) pathway, involved
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in the maintenance of genomic stability by facilitating

DNA methylation of transposable elements and also

implicated in other epigenetic alterations affecting a

variety of cellular regulation processes [151]. Another

experiment on animal models supports transgenera-

tional epigenetic changes as a result of parental expos-

ure to genotoxic stressors, as irradiation, nutrition, and

intake of anti-androgen compounds [152]. For example,

it has been demonstrated that treatment with the anti-

androgen compound vinclozolin on female mice in-

duces epigenetic effects in the sperm of their offspring

as compared to controls [153]. This study highlighted

an increased methylation of the differentially methyl-

ated domains (DMDs) of maternal PEG1, PEG3, and

SNRPN genes and decreased methylation of paternal

H19 and GTL2 genes.

Paternal diet

One of the most intriguing topics in the field of epigen-

etic modifications of the germ line is represented by the

influence played by the paternal diet on gametogenesis.

The first evidences of this association came from animal

models. Carone et al. demonstrated that male mice fed

with low-protein diet generated an offspring showing an

increased expression of genes involved in the synthesis

of lipids and cholesterol, as compared to the offspring of

control male mice fed with a normal diet. Based on

these results, authors suggested that cholesterol and

lipid metabolism in an offspring can be strongly affected

by paternal diet [154]. This study was carried out by a

whole-genome characterization of cytosine methylation

patterns and RNA content in sperm obtained from mice

submitted to low-protein or caloric restriction diets and

controls. Authors detected similar cytosine methylation

patterns in all three conditions, thus suggesting that the

sperm epigenome is largely unaffected by these diets and

that changes in relatively few loci can have profound

effects in the developing animal [154]. However, in a

more recent study, Radford et al. demonstrated that in

utero undernourishment perturbs the adult sperm

methylome, suggesting that alterations in gamete methy-

lation could induce alterations in chromatin architec-

ture, transcriptional networks differentiation, or tissue

structure, and in turn is able to contribute to the inter-

generational transmission of environmentally induced

diseases [155].

In another animal study, Ng et al. showed the pres-

ence of pancreatic alterations, with early onset impaired

insulin secretion and glucose tolerance worsening with

time, in the female offspring of male mice fed with a

high-fat diet [156]. This effect was mediated by the

altered expression in adult female offspring of 642 pan-

creatic islet genes, belonging to 13 functional clusters,

including cation and ATP binding, and cytoskeleton

and intracellular transport. Fullston et al. demonstrated

the presence of altered global methylation in mature

sperm and abnormal testis transcription of male mice

consuming a high-fat diet, with metabolic disturbances

in the next generations [157]. In addition to experimen-

tal data on animal models, very interesting data about

the role played by diet on the epigenetic modifications

and on the consequent transgenerational effects are

available in human as well. During the winter of 1944–45

of World War II, in the Netherlands, as a reprisal against

the activity of the Dutch government-in-exile aimed to

disrupt the transport of German reinforcements and

troops, the Germans banned all food and fuel transports

to Netherlands, inducing a severe famine, with the official

daily rations for the general adult population decreasing

gradually from about 1800 calories (December 1943) to

below 800 calories (April 1945). The situation improved

in a very short time after the liberation of the Netherlands

on May 1945, with the rations raising up to over 2000

calories a day by June 1945 [158]. The famine caused a

severe mortality in the population of Amsterdam, but

nevertheless, several babies were conceived and birthed

during that period. Several decades later, a number of

studies investigated the health status of people born in

Amsterdam during the famine period in order to shed

light on the effects of malnutrition on the health of the

offspring in adult life. In a first time, these studies

evidenced an association with chronic diseases in adult life

in the offspring (coronary heart disease, atherogenic lipid

profile, obesity, raised levels of plasma fibrinogen, and

decreased levels of factor VII), strongly related to the

timing in gestation of exposure to famine [158, 159]. How-

ever, by analyzing the results of these epidemiological

studies with the aid of molecular tools, it has become clear

that the Dutch famine families study has provided the first

direct evidence for epigenetic programming through

prenatal famine exposure. In fact, it was clearly demon-

strated that periconceptional exposure to famine pro-

duced an under-methylation (likely related to a deficiency

in methyl donors) in the differentially methylated region

(DMR) of the maternally imprinted IGF2 gene [160],

suggesting that early undernutrition can cause epigenetic

changes persisting throughout life. On the other hand,

there was no variation in IGF2 methylation status in

individuals exposed to famine in later gestation.

Further studies evidenced that persistent changes in

DNA methylation represent a common consequence

of prenatal famine exposure and that they can be

affected by the sex of the exposed individual and the

gestational timing of the exposure [161]. More recently, it

has been demonstrated that prenatal malnutrition-

associated DMRs (P-DMRs) mostly occur in regulatory

regions of genes showing differential expression during

early development [162].
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All the above-reported studies suggest that undernu-

trition plays a direct effect on the fetus during the early

phases of development. However, why should we exclude

that the target of the famine could be represented also

by gametes other than by embryo? Several evidences

strongly suggest a role played by paternal diet on the

healthy status of children, as confirmed by the above-

described results on animal models. In human, the link

between grandparental nutrition and grandchild’s growth

was at first examined by Bygren et al., who demon-

strated that a surfeit of food in the environment when

the paternal grandfather was a boy was related to a

shortening of the proband survival [163]. The same

group subsequently demonstrated that a limited avail-

ability of food during the father’s prepuberal age was

related to a low cardiovascular disease mortality of the

proband, while paternal grandfather exposure to a surfeit

of food during the same period was related to increased

diabetes mortality in the proband [164], suggesting

epigenetic inheritance as a strong candidate for these

phenomena [165]. Soubry et al. demonstrated the pres-

ence of alterations in the methylation status at multiple

imprint regulatory regions in children with obese par-

ents, suggesting a preconceptional influence of parental

lifestyle and nutrition on the programming of imprint

marks during gametogenesis [166]. In particular, the

significant association between paternal obesity and

altered methylation in the offspring suggests the sus-

ceptibility of the developing sperm to environmental

insults. Very recently, the evidence of a role played by

changes in paternal grandmothers’ early food supply on

the risk of cardiovascular mortality of the female grand-

children have also suggested an X-linked epigenetic

inheritance via spermatozoa [167]. However, it has also

been stressed that a true transgenerational inheritance

in response to diet should be examined on the third

generation, which represents the actual first “unex-

posed” one, being the first filial generation directly

exposed to the maternal diet, and deriving the second

from gametes exposed in utero [168]. Despite these

limitations, the possible presence of transgenerational

effects related to the epigenetic effect of paternal diet

remains a very interesting topic.

The four windows of epigenetic susceptibility

A crucial question concerning the role played by envir-

onmental agents in the epigenetic modifications of the

male gamete is the following: when are the effects of

such exposures transferred to the male gamete? Soubry

et al. identified four potential windows of susceptibility

during the development of the paternal germ line and

zygote [145]. The first window is represented by paternal

embryonic development, when PGC undergo genome-

wide epigenetic erasure during migration to the genital

ridge. Defects in this process, as well as in the mainten-

ance of some protected regions, could be caused by

internal or external factors during early development.

The second window is represented by paternal pre-

puberty, since in this period, de novo methylation at

imprinted gene loci occurs. The third window can be

identified in the period in which spermatogenesis, and in

particular the development from spermatogonium to

spermatocytes, occurs, since methylation patterns are

established during this time. This window appears to be

a very important one, representing the reproductive

period of the subject, when a careful evaluation of his

lifestyle, with prevention of environmental stressors,

could be used as a preventive strategy. Finally, the fourth

window is represented by the periconception period and

the zygote stage, when histone retention in certain genes

could represent a potential mechanism for inheritance of

environmentally induced epigenetic marks. While stud-

ies investigating the effect of environmental agents in

the latter three windows are currently carried out,

mostly on animal models but also in humans, it is more

difficult to investigate epigenetic modifications in PGCs.

However, the recently reported discovery that amniotic

fluid stem cells (AFSCs) share a number of features with

PGCs [169] provides a novel cellular model for the study

of the effect played by environmental agents in altering

the epigenetic processes occurring in these cells, opening

new scenarios in this field of study.

Finally, it must be stressed that aging represents

another possible risk factor for epigenetic modifica-

tions increasing the risk of neuropsychiatric disorders

such as autism and schizophrenia. Jenkins et al. have

recently identified 139 regions significantly and

consistently hypomethylated and 8 regions signifi-

cantly hypermethylated with aging, with a total of 117

genes involved [170]. These authors evidenced that a

portion of the age-related changes in sperm DNA

methylation involves genes previously associated with

schizophrenia and bipolar disorder.

Conclusions

As evidenced by the large amount of studies carried out in

this field, epigenetic mechanisms play a key role in the

proper function of the male gamete, and alterations in

these mechanisms can widely affect human reproduction.

The effect of epigenetic modification of sperm gene func-

tion can affect the reproductive outcome in at least four

different levels: (1) impairment of male fertility due to

alterations in sperm number and morphology; (2) alter-

ations of embryo development; (3) poor outcome of the

ART protocols; and (4) risk of pathologies in the adultness

for the offspring (Fig. 2). Due to the huge interest devoted

to this topic by the scientific community, related to the

possible implications in the field of human reproduction
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and health, our knowledge about the above-discussed

mechanisms are increasing day by day. Recent studies

have highlighted the molecular mechanisms underlying

the epigenetic transgenerational inheritance of some

disease. Guerrero-Bosagna et al. have demonstrated the

presence of unique consensus DNA sequence motifs,

zinc finger motifs, and G-quadruplex sequences in

transgenerational DMR in sperm, which, by the inter-

action of molecular factors, could induce alterations of

the chromatin structure and accessibility of proteins

with DNA methyltransferases altering de novo DNA

methylation patterns [171].

It can be suggested that in the next future, the study

of epigenetics and epigenomics will likely represent a

crucial step in the diagnostic workup of the infertile

male, especially in cases submitted to ART, where it will

be necessary to select adequately functional sperm to

avoid the epigenetic alteration impact on the procedure.

So far, the application of the analysis of epimutations in

the male gamete in the clinical practice is hampered by

the lack of complete information about the involved

genes and by the use of expensive, low-throughput tech-

niques. However, due to the large number of ongoing

studies in this field, a clearer picture of the situation

should be available in a short time, and the set-up of

specific assays will likely reduce the costs and the time

of these analyses. Further information will likely be

provided by studies investigating the role played by

sperm non-coding RNA in male fertility, which repre-

sents a very promising field of study [172]. Another very

exciting field is represented by the potential role played

by the non-sperm fraction of the seminal fluid, since

postejaculatory effects on sperm survival and functional

competence have been reported [173]. Surprisingly,

seminal plasma may affect offspring independently of

sperm, by stimulating the production of embryotrophic

cytokines and growth factors by the female reproductive

tract [173]. The alteration of this process induces abnor-

mal fat deposition and metabolic phenotype in the

offspring, particularly in the males [174]. Finally, great

attention should be devoted to the role played by envir-

onmental agents both in determining and in repairing

epigenetic alterations. In fact, the identification of the

specific doses and times of action of agents able to

induce epigenetic alteration of sperm DNA or to restore

the functional conditions will be likely of great help in

the treatment of spermatogenetic defects and/or poor

outcome of both normal and in vitro fertilization.

Most importantly, the possibility that paternal lifestyle

could affect the health of the offspring during lifetime

opens a novel and exacting scenario in the prevention

of common, late onset diseases [175].

Fig. 2 Epigenetic alterations induced by lifestyle and environmental factors (diet, smoking, radiation, alcohol consumption, etc.) can

have substantial effects on the sperm function. As a first consequence, these modifications can induce sperm alterations leading to

impairment of male fertility. When fertilization occurs, spontaneously or by ART, transgenerational epigenetic effects can be observed,

in details leading to (1) alterations of embryo development, (2) congenital diseases at birth, and (3) late onset diseases (obesity,

hypertension, diabetes, etc.) in the adult life
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