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ABSTRACT: MicroRNAs (miRNAs) regulate protein-coding genes
post transcriptionally in higher eukaryotes. Argonaute proteins are
important in miRNA regulation and are also implicated in epigenetic
mechanisms such as histone modifications and DNA methylation.
Here, we review miRNA regulation and outline its connections to
epigenetics. (Pediatr Res 61: 17R–23R, 2007)

The discovery of RNA interference (RNAi)—a molecular
process where double-stranded RNA can deplete mRNA

via sequence-specific mechanisms—demonstrated both effec-
tive and specific RNA-mediated gene silencing (1). When, 3
years later, researchers identified a large class of nonprotein
coding RNAs called microRNAs (miRNA), they confirmed
the potential for large scale endogenous silencing (2–4). As
subsequent research has unraveled these processes, we have
seen that miRNAs have become increasingly important to our
understanding of gene regulation. Also, miRNAs appear to be
involved in many aspects of development, including the es-
tablishment and maintenance of tissue-specific expression
profiles. Previously defined epigenetic mechanisms, such as
DNA methylation and histone modification, are also important
modifiers of gene expression. In some species, regulatory
RNAs possess epigenetic-like properties, and in vitro experi-
ments have linked RNAi to the classic epigenetic mechanisms,
which further emphasize the need to view miRNAs as part of
a larger apparatus of regulatory mechanisms.

This review will briefly describe epigenetic mechanisms
before introducing important aspects of miRNA regulation.
This includes transcription, biogenesis, and targeting, in ad-
dition to the relationship of miRNAs to other RNAs that
associate with parts of the miRNA pathway. Also, we discuss
the various epigenetic traits that RNA regulation possess,
including possible links to the classical epigenetic mecha-
nisms, and finally outline the clinical importance of miRNAs
going forward.

EPIGENETICS AND THE EPIGENOME

Epigenetics is the study of heritable changes in gene func-
tion that cannot be attributed to changes in the DNA coding
sequences. For example, the regulatory state of a cell is inherited

by its daughter cells following cell division, but the cells’
DNA may be identical to that of other cells that do not share
the regulatory state. Epigenetic inheritance pertains to both
mitotic and meiotic cell divisions. The classical epigenetic
mechanisms include DNA methylation and histone modifica-
tions, but other mechanisms of gene regulation—especially
those that involve nonprotein coding RNA—have become
increasingly important. The epigenetic state of the cell, mean-
ing the status of the various epigenetic mechanisms, is often
referred to as the epigenome. Note, however, that the
biologic end point, which is the regulatory state of the cell,
is easier to observe directly than the actual epigenetic
modifications.

In the following, we will briefly introduce the classical
epigenetic mechanisms. Detailed reviews have been published
elsewhere (5–7).

DNA methylation. As the name suggests, DNA methylation
involves the addition of a methyl group to DNA residues. For
example, the most extensively studied methylation is that of
the fifth carbon of the cytosine’s pyrimidine ring—a poten-
tially mutagenic event that frequently causes C:G to T:A
transitions. CpG islands—phosphodiester-linked cytosine and
guanine pairs that span a region of at least 200 base pairs with
more than 55% GC content—are found in approximately 40%
of the promoters of mammalian genes. These islands are
usually unmethylated when the genes are expressed and vice
versa, which spurred the interest in DNA methylation as a
general mechanism for transcriptional gene silencing.

In addition to maintaining regulatory roles that are impor-
tant for the cell’s function, DNA methylation plays a role in
genome maintenance both in the defense against viral se-
quences and silencing of transposable elements. When the cell
divides, the pattern of DNA methylation is maintained in the
daughter cells. DNA methyltransferases—of which there are
three types in mammals—are responsible for the DNA meth-
ylation. DNA methyltransferases 3a and 3b (Dnmt3a and
Dnmt3b) initiate new methylation (8), whereas Dnmt1 is a
maintenance enzyme (9). The function of Dnmt2 was unde-
fined for a long time, but it was recently shown that Dnmt2
does not methylate DNA, but instead targets a specific posi-
tion of aspartic acid tRNAs (10). Thus, Dnmt2 is in fact an
RNA methyltransferase.

Histone modification. Histones are the main proteins of
chromatin, which allows DNA to be very condensed in the
cell’s nucleus. Four histone classes—a H3-H4 tetramer and
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two H2A-H2B dimers—form the octamer that constitute the
core histones around which a little less than two helical turns
of DNA’s double helix wrap (11). This situation is often
schematically illustrated like beads on a string, and the struc-
ture folds into higher order chromatin, which is very compact.
A gene can only be transcribed if the chromatin structure
changes temporarily to allow regulatory proteins to bind the
relevant portion of the DNA. Histone tails—short arms that
are separate from the main structure—can be acetylated,
methylated, phosphorylated, and ubiquitinated to change the
histone structure and therefore enable or prevent access to the
DNA. For example, acetylation most often marks active re-
gions of transcription, whereas methylation can be present in
both active and inactive regions. The vast number of combi-
nations that exist of such histone tail modifications means that
there may be a histone code that can be read by the transcrip-
tional apparatus (6).

Potential for RNA-mediated effects. A number of nonpro-
tein coding RNAs play important roles in modifying the
sequence, structure, or expression of mRNAs and thereby also
changes the protein expression from these genes. For example,
small nuclear RNAs (snRNA) are involved in a range of
processes, including gene splicing, telomere maintenance, and
transcription factor regulation, whereas small nucleolar RNAs
(snoRNA) guide chemical modifications to other RNA genes
and guide RNAs (gRNA) are involved in RNA editing. One of
the most interesting families of such nonprotein coding RNAs
is the main topic of this review, namely the miRNAs that
appear to be involved in gene regulation on multiple levels.

Whether regulatory changes are induced by transcription
factors or mediated by RNAs, the cells can maintain the
expression level long after the original factors that stimulated
the effect has vanished. Cells differentiate into various types,
but when their expression program has been established, their
daughter cells remain of the same type even though the factors
that triggered the changes may be gone. We currently have
only limited knowledge about how nonprotein coding RNAs
in general and miRNAs in particular play into this picture.
Also, while it is unclear whether these RNA effects are
inherited like epigenetic mechanisms, a recent paper demon-
strated the potential for RNA-mediated inheritance (12).

MICRORNA REGULATION

miRNAs are nonprotein coding RNA genes that reside
within longer transcripts as distinct hairpins that mature into
22 nucleotide (nt) long sequence-specific gene regulators.
Since the initial discoveries that the small RNAs let-7 and
lin-4 are crucial for C. elegans’ correct transition from larvae
into adult worm (13–16), researchers have identified miRNAs
as an abundant and highly conserved gene class (2–4). Cur-
rently, the online repository of miRNA sequence data, miRBase,
contains nearly 500 human miRNAs (474; miRBase release
9.0) (17), but recent reports estimate 1000 or more miRNAs in
the human genome (18,19). Although some miRNAs, such as
let-7, are conserved in most animals, many of the recently
identified human miRNAs are specific to primates (18,20) and
some are even human-specific (19). Curiously, the miRNAs

identified in the initial small RNA cloning efforts are both
highly expressed and widely conserved, whereas the more
lineage-specific miRNAs appear to be less abundant—
possibly because these newer miRNAs are very cell-specific
or expressed at low levels in many different cells and tissues.
Conservation of sequence does not, however, necessarily
imply conservation of function, as expression patterns for
some conserved miRNAs have diverged with evolutionary
distance (21).

Transcription. Although little is known of miRNA regula-
tion and transcription, the best characterized miRNAs origi-
nate from independent RNA polymerase II transcripts (22,23)
or from introns or exons of protein-coding or nonprotein-
coding genes (24). Intragenic miRNAs are relatively common,
as 130 of the 464 human miRNAs from miRBase 8.1 map to
protein-coding genes in UCSC’s genome browser database
(25). The majority of these intragenic miRNAs (107 of the
130) are sense transcripts that can be transcribed as part of the
host gene, then spliced out, and further processed. Such
intronic miRNAs rely on the established transcription and
splicing of their host genes and are therefore only present
when their host gene is transcribed. In effect, intronic miRNAs
represent a simple mechanism for a protein-coding gene to
down-regulate other protein-coding genes. Furthermore, mu-
tations that lead to new miRNAs in introns could be an
effective mechanism to establish a well-regulated miRNA and
thereby be a driving force in animal evolution (26). However
miRNAs are regulated and transcribed, they tend to cluster
throughout the genome (3,27), and many of these clusters are
likely transcribed as polycistrons (28).

Biogenesis. Post transcription—and splicing for intronic
miRNAs—miRNAs rely on at least three different protein
complexes to mature into the short �22 nt single-stranded
gene regulators. First, the nuclear Microprocessor complex,
which consists of DGCR8 and the ribonuclease (RNase) III
Drosha, processes the primary transcript into miRNA precur-
sors (pre-miRNAs) (29–32). Most known animal miRNAs
have a hairpin with a �33 base pair stem flanked by a
single-stranded region, and current models suggest that
DGCR8 recognize this characteristic structure and guides
Drosha to cleave the hairpin about 11 nts from the single-
stranded region (33). Drosha or other unknown co-factors
may, however, also recognize some of the miRNA hairpin’s
key features and thereby contribute to cleavage specificity
(34,35). Second, the carrier protein Exportin-5 and Ran GT-
Pase transport pre-miRNA from the nucleus to the cytoplasm
(36–38). Exportin-5 recognizes the precursor stem and the
characteristic RNase III 3= overhang (39) and may represent a
rate-limiting step in miRNA biogenesis (40,41). Third, the
cytoplasmic RNase III Dicer cleaves the pre-miRNA about 22
nts from its end (42–44). Dicer and the Tar RNA binding
protein (TRBP) hands the duplex over to Argonaute 2 (Ago2),
which then incorporates one of the duplex strands and cleaves
or dissociates the other strand (45–48). In Drosophila, Ago2,
with the aid of R2D2 (49), preferentially incorporates the
strand that has the least stable 5= end (50,51), which explains
why one of the duplex strands predominates as the mature
miRNA. Disruptions in any of these three processing steps can
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alter miRNA expression patterns (52,53). The mechanism by
which the antisense strand is appropriately handed off to Ago
2 in mammals is not clearly defined as of yet.

Targeting. The mature miRNA, bound to Ago2 (54,55),
forms the core of the RNA-induced silencing complex (RISC)
(56). The miRNA guides RISC to mRNAs that have miRNA-
complementary sites and RISC then cleaves (57,58), degrades
(59 – 61), or suppresses translation (14,15) of the target
mRNA, depending on the degree of complementarity between
miRNA and mRNA (Fig. 1). Cleavage is the strongest mech-
anism and is also the most specific, as the miRNA and mRNA
must form a near-perfect duplex to induce cleavage (62–65).
Degradation and translational suppression require less
complementarity; seven consecutive base pairs between the
mRNA and nucleotides 2–8 from the miRNA’s 5= end are
enough to reduce the protein levels of the target (66). Con-
secutive matches between mRNA and miRNA nucleotides
2–8 or 2–7 are commonly referred to as seed sites, and
analyses of conserved seed sites in 3= untranslated regions
(UTR) have shown that a single miRNA may regulate hun-
dreds of genes (66–70). An experiment that over-expressed
miR-1 and miR-124 confirmed this potential, as microarray
analyses showed that each miRNA down-regulated more than
100 mRNAs (71). Seed sites are not necessary for miRNA
targeting, however, as target sites can have mismatches or
GU-wobble base pairs within the seed region and still be
functional (72,73). To be functional, however, these sites do
require more extensive base-pairing between the mRNA and
the miRNA 3= end than do the seed sites (66). Furthermore,
even if conserved seed sites are the best current method for
predicting miRNA targets, a conserved seed site is not suffi-
cient for down-regulation (74). Instead, miRNA targeting
likely relies on the target site’s sequence context (72).

OTHER RNAS THAT ASSOCIATE WITH THE
MIRNA PATHWAY

As previously mentioned, animal miRNAs are only one of
several types of small regulatory RNAs (75). Some of these
are similar to miRNAs and associate with several of the
protein complexes that are used by animal miRNAs. Plant
miRNAs and exogenous and endogenous small interfering
RNAs (siRNAs) are the best characterized small RNAs that
associate with Dicer, Ago1, and their homologues, but cloning

studies have identified several other small RNA that may rely
on one or more of these proteins for biogenesis or function.
The different classes of small RNAs have been implicated in
many different mechanisms (Table 1).

Plants, like animals, have 22 nt RNAs that mature from
hairpins within longer primary transcripts in a series of dis-
tinct processing steps (76–78). Because of the similarities to
animal miRNAs, these RNAs were also named miRNAs, but
the processing pathways and dominant targeting mechanisms
for animal and plant miRNAs are so different that animal and
plant miRNAs can be considered two different gene classes.
The differences between animal and plant miRNAs can be
summarized as follows. First, plants lack a Drosha homo-
logue, and so a Dicer homologue processes the primary
transcript into a duplex form in the nucleus (79). This lack of
Drosha processing likely explains why plant miRNA hairpin
stems do not have the animal miRNAs’ well-defined length of
about three helical turns, but vary from 60 to more than 400
nucleotides (miRBase 8.2). Second, the ends of plant miRNAs
are methylated, whereas animal miRNAs end with free 2=, 3=
hydroxyl groups (80). Third, most plant miRNAs target mRNAs
with near-perfect complementarity thereby inducing mRNA
cleavage (81). Most animal miRNA targets have less comple-
mentarity thereby inducing translational suppression and
sometimes degradation. Furthermore, there are examples of
plant miRNAs that can direct methylation and transcriptional
gene silencing (82), but to date, there are no examples of
encoded animal miRNAs that do this.

Small interfering RNAs are processed from long double-
stranded RNAs (dsRNAs) by Dicer (42). The resulting 21 nt
long duplexes then enter the miRNA pathway and can induce
mRNA cleavage, degradation, and translational suppression
(83). Exogenous siRNAs have become a popular tool for gene
knockdown, as researchers can design siRNAs for specific and
effective knockdown of target genes (84,85). In mammals,
long dsRNAs induce a strong interferon response, which
usually leads to cell-death, but exogenous siRNAs can be
introduced as 21 nt duplexes that mimic the Dicer product or as
short (�30 nt) Dicer substrates (86–88). Exogenous siRNAs will
usually only induce transient knockdown, but to create stable
knockdown, one can instead express siRNAs as miRNA-
mimicking hairpins (89–91).

Current literature describes few endogenous siRNAs, with
some notable exceptions. Repeat-associated siRNAs (rasiRNAs)

Figure 1. Two types of miRNA target sites. (a) Near perfect complementa-
rity between miRNA and mRNA gives mRNA cleavage, whereas (b) less
complementarity gives mRNA degradation and translational suppression.

Table 1. Known functions of small regulatory RNAs

Regulatory function Small RNAs

mRNA cleavage Animal miRNA (minority)
Plant miRNA (majority)
Exogenous siRNA
tasiRNA
nat-siRNA

mRNA degradation/translational
suppression

Animal miRNA (majority)
Plant miRNA (minority)
Exogenous siRNA (off-target effects)

Chromatin structure rasiRNA
Transcriptional silencing/

methylation
Plant miRNA
Exogenous siRNA
rasiRNA
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presumably arise from overlapping sense and antisense repeat-
associated transcripts, regulate transposable elements pre and
post transcription, and are involved in establishing and maintain-
ing heterochromatin structure (92). Repeat-associated siRNAs
may be crucial for protecting the germ line from transposable
elements (93–95). Trans-acting siRNAs (tasiRNAs) arise from
plant miRNAs that cleave nonprotein coding transcripts. The
plant RdRp then uses the cleavage product as template for
dsRNA generation, which leads to subsequent Dicer cleavage
and siRNA generation (96). Small interfering RNAs can also
arise from natural antisense transcripts (nat-siRNAs) (97).

Recently, a new class of small RNAs were identified in
murine testes (95,98–101). These RNAs, which are located in
strand-specific, nonoverlapping clusters throughout the ge-
nome, interact with the Piwi-subclass of Argonaute proteins—
hence the name PIWI-interacting RNAs (piRNAs). The func-
tion of piRNAs is not clear, but as Piwi-family proteins
associate with heterochromatic proteins and piRNA clusters
are conserved in location and structure but not sequence, one
could speculate that the piRNAs regulate or silence their own
genomic regions.

MICRORNAS’ RELATION TO EPIGENETICS

In the past few years, miRNAs have been established as
enormously important mediators of gene regulation. Endoge-
nous miRNAs are important in developmental processes, in-
cluding differentiation, proliferation, and apoptosis (102).
While classical epigenetic mechanisms, such as histone mod-
ification and DNA methylation, regulate expression at the
transcriptional level, miRNAs putatively function mainly at
the posttranscriptional level.

Link to classical mechanisms. We have described the
classical epigenetic mechanisms, namely DNA methylation
and histone modification, as distinct mechanisms, but there is
overwhelming evidence that this is not the case. Epigenetics
mechanisms appear to be interconnected on multiple levels,
and reports have shown three possible models [evidence sum-
marized and models depicted in (7)]. The models propose that
DNA methylation may direct histone methylation or vice
versa—alternatively that chromatin remodeling drives DNA
methylation. Of course, since the mechanisms appear to be
interconnected, both models may be correct.

Whether miRNA regulation is an epigenetic mechanism in
its own right is unclear, but several papers have described how
miRNA expression is tissue-specific during development,
which may implicate that miRNAs are crucial to establish and
maintain cell type and tissue identity (60,103). Over-
expression of tissue-specific miRNAs has also confirmed a
single miRNA’s potential to change the gene expression pro-
file of a cell (71). Even though there have been speculations
that animal miRNAs may be involved in the classical epige-
netic mechanisms, as some plant miRNAs can direct methyl-
ation, the literature currently does not contain any evidence for
direct endogenous miRNA involvement in transcriptional
gene silencing. It has, however, been shown that RNA inter-
ference seems to be capable of inducing transcriptional gene
silencing in cultured cells. In plants, small interfering RNAs

(siRNA) are able to induce DNA methylation, which in turn
gives transcriptional gene silencing (104,105). Whether this
translates to animals has been and still is debated, and while
early reports indicated that DNA methylation was involved in
transcriptional gene silencing in mammalian cells (106), more
recent evidence suggest that siRNA-induced transcriptional
gene silencing is independent of DNA methylation (107).

A link between siRNA-induced transcriptional gene silenc-
ing and histone modifications has, however, been established.
For example, Kim et al. (108) showed that Ago1 is required
for histone H3 Lys9 dimethylation and transcriptional gene
silencing. Furthermore, Janowsky et al. (109) found that Ago2
is also involved in addition to Ago1 (Fig. 2). The details on
how the RNAi apparatus is involved in transcriptional gene
silencing and the differences between organisms remain to be
seen. Also, it will be interesting to see whether endogenous
miRNAs or other RNAs are involved in transcriptional silenc-
ing in vivo or if the examples shown so far pertains strictly to
artificial situations in vitro.

Differences between organisms. As mentioned previously,
there are important differences in how miRNAs function in
various species. In C. elegans, the effect of a miRNA can be
maintained for a long time after the original stimuli for its
expression has vanished. Single-stranded RNA that is com-
plementary to the mRNA can serve as a primer for an RNA-
directed RNA polymerase that can make long double-stranded
RNA that can give rise to a wide range of siRNA species
(110). Thus, silencing can be maintained, amplified, and even
carried over to other genes without de novo expression of
additional RNAs. Plants are also able to maintain silencing
much the same way as worms do (111). Mammals, however,
seem to lack an RNA-dependent RNA polymerase and are
therefore unable to amplify and maintain RNA-mediated si-
lencing without continuous expression of the RNA that me-
diates the effect. Consequently, siRNA-mediated RNAi is
transient and the effect will usually last only through a few cell
cycles without continuous expression of the RNA that medi-
ates the effect (112).

In addition to the ability to maintain silencing, worms also
inherit the effect from parent to offspring (113). Females that
receive double-stranded RNA can transfer the effect to their
offspring, and males can also transfer it to the subsequent

Figure 2. Proposed mechanism for small RNA triggered transcriptional gene
silencing in mammals. SiRNAs complex with one or more of the Argonaute
proteins, which direct the siRNA to a promoter region. There is evidence that
promoter region transcripts may be required for this targeting, allowing
sequence specific triggering of histone methylation and polycomb protein
based remodeling of the chromatin, ultimately resulting in a heterochromatic
status. The possible recruitment of DNA methyl transferases may follow the
histone modifications.
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generation. Note that this can happen even in the absence of
the endogenous gene that is targeted, which means that RNAi
can be inherited epigenetically in worms. Again, this has not
been demonstrated to happen in mammals, which perhaps
reflects the differences between RNA-mediated silencing in
the various organisms.

CLINICAL RELEVANCE OF MIRNA

Like epigenetic mechanisms, which have been shown to
play a role in disorders ranging from various forms of cancer
to syndromes involving behavioral disabilities, chromosome
instability, organ overgrowth, and anemia (114), miRNAs
appear to be important in the onset and development of several
diseases. In humans, miRNAs’ involvement in cancer has
spurred a lot of interest (115). Curiously, many miRNAs are
located at or close to genomic sites that are commonly deleted
or amplified in various cancers (116). Also, expression of
miRNAs is frequently decreased or increased in cancerous
tissues. For example, miR-15 and miR-16 are often deleted or
otherwise down-regulated in chronic lymphocytic leukemia
(117), whereas miR-155 expression levels are elevated in
human B-cell lymphomas (118). The interactions are likely
context specific, and to illustrate the difficulties involved when
assigning a cancer-related function to a miRNA, the mir-17-92
polycistron can function both as an oncogene and as a tumor
suppressor (119,120). In addition to various cancers, miRNAs
have also been implicated in genetic disorders, such as Di-
George syndrome, and likely play a role in virus infection and
defense.

Short hairpin RNA (shRNA) and small interfering RNA
(siRNA)—the molecules that trigger stable and transient
RNAi—are similar to the intermediates of miRNA biogenesis
before and after Dicer processing. Consequently, an under-
standing of miRNA transcription, biogenesis, and function is
important for therapeutic RNAi initiatives (121). Several side
effects are known for RNAi. First, immunostimulatory effects,
such as the interferon response, may be triggered by both
shRNAs and siRNAs (122–124). Second, down-regulation of
genes other than the intended target, so called off-target
effects, are probably due to miRNA-like targeting and may
cause widespread phenotypic effects (125–129). Third, since
RNAi uses the same cellular factors as miRNAs, shRNAs and
siRNAs may compete for and saturate critical enzymes and
protein complexes needed for biogenesis and targeting. As
previously mentioned, Exportin-5 may be rate limiting for
miRNA biogenesis (40,41), which may explain why siRNAs
appear not to saturate the pathway in vivo (130,131). Note that
all of these problems can be mitigated by working at the
lowest possible concentration, which means that more re-
search into the miRNA pathway is needed to understand the
consequences of therapeutic intervention using miRNA-like
molecules; see (1,132) for reviews.

In addition to the therapeutic potential, miRNAs contain a
lot of information about the regulatory state of the cells. In
attempts to classify various forms of cancer with microarray
expression profiles, miRNAs have been shown to harbor more
information about disease states than do mRNA profiles (133).

MicroRNA expression profiles therefore have the potential to
become important diagnostic tools.

OUTLOOK

An impressive number of papers have been published on
miRNAs since the discovery of these regulatory RNAs in
2001. But as the importance of miRNAs has grown, the
number of scientific challenges has increased. Perhaps the
most important task is to establish reliable models for how
miRNAs target endogenous mRNAs. While a perfect model is
unlikely due to the complexity of the problem, even signifi-
cantly improved models will have a daunting effect on miRNA
research. Coupled with data on miRNA expression in various
tissues, reliable target prediction may allow simulations that
may reveal important regulatory networks. Studies of how
cells would react to aberrant miRNA expression may even
become feasible if the target prediction methods improve
sufficiently.

RNAi appears to be interconnected with DNA methylation
and histone modifications. In some species, the link between
miRNAs and epigenetics is strong. While the potential may be
there, as shown in vitro by transfection of synthetic siRNAs,
it remains to be seen whether these effects take place naturally.
It will be interesting to see whether endogenous miRNAs or
other types of nonprotein coding RNAs can be linked to
epigenetic mechanisms in vivo. Also, an important question
going forward is how miRNAs are involved in the establish-
ment and maintenance of tissue-specific expression profiles.
When the details on this become clearer, it is likely to reveal
additional links to epigenetic mechanisms if they exist.

Finally, it is necessary to continue to research other non-
protein coding RNAs. The recent discovery of piRNAs—an
abundant class of RNAs that were discovered in murine
testes—shows that although miRNAs constitute an important
part of the puzzle, we should be open to the possibility that
additional classes of regulatory RNA may exist. Insight into
the function of these additional classes of regulatory RNA and
how they may involve all or some of the proteins in the
miRNA pathway will be important to unravel all aspects of
gene regulation. Naturally, all classes of regulatory RNA may
be important players in what constitutes the epigenome.
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