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Implicit in the structure of the DNA dou-

ble helix proposed by Watson and Crick

was the heritable nature of the genome

during cell division, for one complemen-

tary strand served as a template to replicate

the other. Once the genetic code was re-

vealed as triplets of nucleotides transcribed

into messenger RNA and translated into

proteins, the central dogma of molecular

biology was complete. Thus, genetics,

which predated the discovery of DNA and

concerned itself with the abstract concepts

of heritability and phenotype, was explain-

able in more biochemical terms as genes

were assigned to blocks of DNA sequence

and alleles became variants of such se-

quences. Despite the remarkable progress

made in deciphering the meaning of the

genome, certain phenomena remained

outside the realm of classical genetics and

the DNA centric view of inheritance. These

epigenetic phenomena have received

much attention in recent years because

they have a direct impact on our under-

standing of genome regulation, the differ-

entiated state, and the stability of cellular

identity in many biologic systems.

WHAT IS EPIGENETICS?

The term epigenetics, most broadly de-

fined, refers to a type of inheritance that

is not encoded directly within the DNA

sequences of genes. Such heritability can

be through the germ line, as from parents

to offspring, or from a single mother cell

to its progeny during mitosis. In hu-

mans, classic examples of epigenetic phe-

nomena include maternal and paternal

imprinting, in which a disease phenotype

is differentially expressed depending on

whether the allele is inherited from the

mother or the father. For example, dele-

tions near chromosome 15q11 are asso-

ciated with Prader-Willi syndrome,

when inherited from the father, yet man-

ifest a very different spectrum of pheno-

types, Angelman syndrome, when inher-

ited through the mother. These types of

epigenetic imprinting effects likely arose

with the evolution of placental mam-

mals1 and underscore a fundamental dif-

ference between maternal and paternal

genomes. That haploid genomes are not

equivalent was also addressed in an ele-

gant series of nuclear transplant experi-

ments by Solter (for review see refer-

ence2). Mouse zygotes containing two

maternal genomes developed to midges-

tation but lacked extraembryonic tissues,

whereas zygotes with two paternal ge-

nomes generated mostly extraembryonic

tissues. These classic experiments dem-

onstrate the need for both maternal and

paternal genomes in mammalian devel-

opment. Furthermore, the early embryo

must be able to distinguish two different

haploid genomes through some epige-

netic mechanism and subsequently erase

or reprogram these epigenetic recogni-

tion marks once the genomes pass

through the new germline.

More recently, the study of epigenet-

ics has concerned itself with inheritance

not just through the germline but also in

somatic cells during embryonic develop-

ment. Development can be thought of as

a series of decisions that restrict the fate

of rapidly dividing cells in response to

positional information. Although em-

bryonic stem cells and cells of the epiblast

are truly pluripotent, once gastrulation

occurs, the three germ layers become re-

stricted in their eventual fates. Despite

that the cells are still proliferating rapidly

and do not express many differentiated

markers, such restriction is generally sta-

ble and inherited in all progeny cells. As

cells of the neural ectoderm, mesoderm,
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ABSTRACT
How cells partition the genome into active and inactive genes and how that informa-

tion is established and propagated during embryonic development are fundamental to

maintaining the normal differentiated state. The molecular mechanisms of epigenetic

action and cellular memory are increasingly amenable to study primarily as a result of

the rapid progress in the area of chromatin biology. Methylation of DNA and modi-

fication of histones are critical epigenetic marks that establish active and silent chro-

matin domains. During development of the kidney, DNA-binding factors such as

Pax2/8, which are essential for the intermediate mesoderm and the renal epithelial

lineage, could provide the locus and tissue specificity for histone methylation and

chromatin remodeling and thus establish a kidney-specific fate. The role of epigenetic

modifications in development and disease is under intense investigation and has

already affected our view of cancer and aging.
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and endoderm continue their differenti-

ation, cell fates become increasingly

more restricted. The stability of the ter-

minally differentiated genome is best il-

lustrated by the difficulty of cloning by

somatic cell nuclear transfer. When a nu-

cleus from a specialized adult cell type is

introduced into the denucleated zygote,

the epigenetic marks accumulated within

that differentiated nucleus are not easily

erased. Although Dolly the sheep3 first

proved that epigenetic marks can be

erased and the somatic genome repro-

grammed within the cytoplasmic envi-

ronment of a fertilized egg, it is a rare and

inefficient process.

The loss of pluripotency and the her-

itability of a differentiated state imply the

genome is modified to remember pat-

terns of gene expression in all progeny

cells. Dosage compensation by inactiva-

tion of the X chromosome in female cells

is a well-studied example of a mitotically

inherited epigenetic phenomenon that

controls gene expression patterns.4 Strik-

ingly, inactivation of the X chromosome

is coincident with the loss of pluripo-

tency as the mammalian epiblast under-

goes gastrulation. Although the initial

decision to inactivate the maternal or pa-

ternal X seems to be random, once the

decision is made, all daughter cells from

a single founder will have the same X

chromosome inactivated. The inactive X

chromosome is tightly packaged and eas-

ily identifiable as a Barr body, yet in sub-

sequent rounds of mitosis, it must be un-

packaged, replicated, and repackaged

once again, suggesting that the silent X is

marked through an epigenetic mecha-

nisms that distinguishes it from its active

counterpart.

Because the pattern of gene expres-

sion defines the differentiated state, the

heritability of such patterns must be well

regulated. On the autosomes, active and

inactive genes are present, sometimes in

close proximity, and must be recognized

by positive and negative transacting fac-

tors. Does the complement of regulatory

proteins define the differentiated state,

or are these active and inactive genes

somehow marked, like the X chromo-

somes? As a result of many recent break-

throughs in the fields of chromatin bio-

chemistry and structure, these questions

and more are now being addressed in a

variety of experimental systems.

BIOCHEMISTRY OF EPIGENETICS

The study of epigenetic phenomenon has

presupposed that genes can be marked

somehow by modifications that are inde-

pendent of the primary nucleotide cod-

ing sequence. Such marks include the co-

valent modification of DNA nucleotides

directly, specifically the methylation of

cysteine in CpG di-nucleotides. Modifi-

cations are also found in the proteins

tightly associated with DNA. Eukaryotic

chromatin consists of the double-

stranded DNA helix and associated pro-

teins. Histones are small, highly basic

proteins that are tightly bound to the

DNA. As a family, the histones are ex-

tremely well conserved from yeast to hu-

mans and are among the most common

proteins in the cell. The basic unit of

chromatin is the nucleosome, which

consists of approximately 147 bp of the

DNA helix wrapped around a histone oc-

tamer containing two copies of histone

H2A, H2B, H3, and H4 (Figure 1). Indi-

vidual nucleosomes are separated by a

spacer, or linker, region that are bound

by histone H1 or H5. The primary struc-

ture of chromatin is often referred to as

“beads on a string” because of the ap-

pearance of the nucleosome and spacer

sequences under the electron micro-

scope; however, this relatively unfolded

form of chromatin can assume higher or-

der structures to compact the genome

even further (Figure 1). The folding and

unfolding of chromatin is a dynamic and

regulated process that is necessary for

DNA replication but can also have a di-

rect impact on the accessibility of genes

to transcription machinery.

The methylation of DNA at CpG di-

nucleotides was among the first genome

modifications described and remains an

attractive mechanism for epigenetic in-

heritance of cell identity.5–7 During em-

bryogenesis, the genome undergoes dra-
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Figure 1. The dynamic structure of chromatin. The basic unit of chromatin is the
nucleosome, a histone octamer represented by the tan-colored balls on the 11-nm
string. The DNA helix is wrapped around the nucleosome, and a spacer region, bound
with histone H1 or H5, separates adjacent nucleosomes. The histone tails extend out of
the nucleosome and can be modified by methylation or acetylation. The beads-on-a-
string can condense into a solenoid, a theoretical structure thought to be approximately
30 nm in diameter. Increased condensation leads to a chromatin fiber that is several
hundred nm in diameter. The mitotic chromosomes is the most compact form of
chromatin in the cell. Chromatin remodeling refers to the sliding of nucleosomes along
the string, the compaction of nucleosomes into higher order structures, and the unfold-
ing of higher order structures into accessible chromatin.
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matic changes in CpG methylation and

requires the function of de novo DNA

methyltransferases Dnmt3a and Dnmt3b

for postimplantation development. Hy-

permethylation is found on the inactive

X chromosome and generally correlates

with inactive genes on the autosomes.

Many regulated promoters have CG-rich

sequences upstream of and around the

transcription start site. In general, these

so-called CpG islands show hypomethy-

lation when genes express yet can con-

vert to a hypermethylated state upon in-

activation. Because DNA replication is

semiconservative, the pattern of CpG

methylation can be inherited, whereby

maintenance DNA methyltransferases

modify the replicated strand on the basis

of the pattern of CpG methylation in the

template. DNA methylation as a gene-si-

lencing mechanism was further sup-

ported by identification of proteins with

methyl-CpG binding domains. Such

methyl-CpG binding domains can act as

adaptor proteins linking the methylated

CpG islands to nucleosome and chroma-

tin remodeling factors such as histone

deacetylases.8 –10

The complexity and types of modifi-

cations that can affect the histone oc-

tamer have been studied in great detail

and form the basis of the histone code

hypothesis.11 More recently, the dy-

namic nature of many histone modifica-

tions (Figure 2), whose mechanisms of

heritability are still unclear, has

prompted a more careful reexamination

of the significance and impact of individ-

ual histone marks with respect to gene

function.12 From an epigenetic view-

point, the most important modifications

are methylation and acetylation of the

histone tails, which extend out of the nu-

cleosome and are thus accessible to chro-

matin remodeling and/or transcription

regulatory proteins. Acetylation of his-

tones H2A, 2B, 3, and 4 strongly correlates

with transcription activation in almost all

experimental systems. Furthermore, his-

tone deacetylases mediate gene repres-

sion and compaction into heterochro-

matin.13,14 In contrast, methylation of

histones can correlate with gene activity

or gene silencing, depending on which

specific residues are modified. Within

the amino-terminal tails, lysine residues

available for methylation include K4, K9,

K27, and K36 of histone H3 and K20 of

histone H4. For example, methylation of

H3 K9 by the mammalian HMT

Suv39h15 correlates with silent chroma-

tin,16 whereas actively expressed genes

are enriched in di- and trimethylated

H3K4.17 The conserved SET domain,

first described in the yeast protein Set1,18

is the catalytic domain for methyltrans-

ferases and is found in more than 50 po-

tential mammalian proteins. Among

these are the mammalian ALL-1,19

ALR,20 and MLL21 genes, the homo-

logues of the Drosophila trithorax group

of epigenetic regulators.

How does methylation at specific res-

idues alter chromatin structure? One hy-

pothesis is these modified histone tails

interact with specific proteins. Indeed,

the highly conserved chromodomain,

found in some chromatin remodeling

factors, is able to recognize methylated

lysine residues to promote heterochro-

matin formation and suppression.22–24

Conversely, the WDR5 protein binds to

dimethyl-K4 of histone H3 and is re-

sponsible for promoting trimethylation

as a mark for active gene expression.25

Furthermore, histone H3 methylation at

K4 can provide docking sites for chroma-

tin remodeling proteins to establish and

maintain open chromatin configura-

tions and potential access for other tran-

scription factors and RNA polymerase.26

HISTONE MODIFICATION IN

DEVELOPMENT

The realm of biomedical research en-

compasses a multitude of disciplines and

organisms, spanning everything from

prokaryotic biochemistry to human ge-

netics and clinical practice. Thus, it is

particularly satisfying when seemingly

disparate fields converge to define new

paradigms that revolutionize how we

think about an old problem. That is pre-

cisely what happened when the fields of

chromatin biochemistry met develop-

mental genetics.

Development and differentiation re-

quire the partitioning of the genome into

active and inactive domains, or loci. This

genomic organization must be stably in-

herited through many rounds of cell di-

vision such that cellular memory is pre-

served during development. Genes that

control such epigenetic memory in a

complex metazoan were first discovered

in the fruit fly, Drosophila, as enhancers

or suppressors of homeotic gene expres-

sion during early pattern formation.27,28

Genes that prevent inappropriate activa-

tion or suppression of homeotic genes

fall into the polycomb group of epige-
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Figure 2. Summary of histone modifications. The amino acid sequences of the core
histone tails are shown. Amino acid residues that are subject to epigenetic modifications
are shown. Of particular significance are mono-, di-, or trimethylation (M) at arginine or
lysine residues; acetylation (A) at lysine residues; and phosphorylation (P) at serine
residues. Some amino acids, such as lysine 9 of histone H3, can be subject to either
acetylation or methylation, but not both.
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netic regulators, whereas the trithorax

group function to maintain homeotic

gene activity. Although many individual

genes were identified in screens for mod-

ifiers of homeotic gene activity, the bio-

chemical function of the respective pro-

teins and their effects on chromatin were

unknown. Meanwhile, investigators us-

ing such diverse model systems as tetera-

hymena and yeast discovered histone

methylation as an essential component

of gene silencing and heterochromatin

formation. Histone H3K9 methylation

correlated with the inactive chromatin in

yeast15,29 and was later found as an early

epigenetic mark on the mammalian X

chromosome.30 The importance of his-

tone methylation as a developmental

epigenetic mark became clear when a

polycomb protein complex was shown to

have H3K9 methyltransferase activity

and contain not only the SET domain en-

zymes but also numerous co-factors

whose activity had been described in

yeast. Enhancer of Zeste and Extra Sex

Combs are polycomb group proteins

that form a complex capable of methyl-

ating histone H3K9 and H3K27 to si-

lence expression.31,32 Theses studies

linked the genetics of polycomb group

genes to biochemical activity on silent

chromatin. Similarly, the trithorax

group proteins TRX and Ash1 contain

SET domains and histone methyltrans-

ferase activity able to mark H3K4, a mark

that correlates with gene expres-

sion.19,21,33 Epistasis experiments (one

gene inhibiting another) in the fly using

mutants in TRX and PcG suggested that

the trithorax group genes function not as

classical activators but rather as suppres-

sors of silencing by the polycomb

genes.34 Although many issues still need

to addressed, one interpretation of such

experiments is that repression is a default

state that will ultimately win out if active

epigenetic marks are not maintained.

If active or repressed chromatin re-

quires positive or negative histone meth-

ylation marks, then what is the status of

chromatin in undifferentiated, pluripo-

tent cells? This question is being ad-

dressed systematically in embryonic

stem cells. So far, the results have been

surprising. In undifferentiated mamma-

lian embryonic stem cells, many impor-

tant regulatory genes seem to possess

neither fully active nor fully inactive his-

tone modifications; rather, they contain

some elements of both. This so-called

bivalent epigenetic mark is thought to

provide plasticity in the stem cell, be-

cause these genes are poised to assume

either active or inactive chromatin states

depending on which direction the cells

differentiate.35,36 Thus, as stem cells dif-

ferentiate along lineage pathways, more

and more genes assume epigenetic marks

specific for a particular cell type. Such a

model would require interactions of epi-

genetic imprinting enzymes with DNA

binding proteins that recognize specific

genes at precise times and respond to po-

sitional information in the embryo. Un-

fortunately, few such factors have been

described. Thus, linking changes in cell

type–specific epigenetic patterning to the

essential regulatory proteins that deter-

mine cell lineages, as defined genetically

through mutant analysis, remains to be

fully realized.

Genetic studies of flies first pointed

to the stability and heritability of epi-

genetic modifications during develop-

ment. The principle of genome stabil-

ity in differentiated cells was further

underscored by the difficulty in clon-

ing mammalian embryos by somatic

cell nuclear transfer; however, recent

advances in histone biochemistry and

stem cell technology suggest that, given

the right circumstances, the genome

may ultimately be more amenable to

epigenetic reprogramming than previ-

ously thought. Several key break-

throughs have altered prevailing

dogma. First, the identification of his-

tone demethylases clearly suggests

that, like acetylation, specific nucleo-

some methylation marks can be

erased.37–39 Second, the ability to re-

program somatic cells into embryonic

stem cells by introducing a limited set

of genes that were known to maintain

pluripotency dramatically shifts both

the scientific and ethical boundaries in

the stem cell field.40,41 In fact, histone

demethylation of the repressive H3K9

epigenetic mark is a key event in stem

cell self-renewal,42 suggesting that gen-

eral inhibition of gene suppression

mechanisms is critical for maintaining

pluripotency.

KIDNEY DEVELOPMENT

During the past 40 yr, progress in under-

standing the genetic basis of kidney de-

velopment has been remarkable.43,44

What began as a model system for epi-

thelial-mesenchymal inductive interac-

tions, early kidney development has now

become a paradigm for organogenesis,

epithelial cell differentiation, branching

morphogenesis, and complex patterning

events. The adult kidney is composed of

many specialized epithelial, endothelial,

and stromal cell types; however, the

functional components of the kidney,

the renal epithelial cells, share a common

lineage that is specified quite early in de-

velopment. This lineage is first apparent

shortly after gastrulation, in a region of

mesoderm called intermediate, because

it lies between the axial, or somitic, me-

soderm, and the lateral plate mesoderm

along the mediolateral axis (Figure 3).

What defines the intermediate meso-

derm and how does it arise? This question

is fundamental to our understanding of re-

nal epithelial cell lineage determination,

because the fate decisions made in the me-

soderm as it becomes more specialized

may be irreversible. For example, by em-

bryonic day 10.5 in the mouse, the poste-

rior aspect of the intermediate mesoderm

consists of an aggregate of cells called meta-

nephric mesenchyme. This mesenchyme is

awaiting inductive WNT signals from the

ureteric bud,45 which will promote aggre-

gation and mesenchyme-to-epithelial con-

version; however, these inductive signals,

normally provided by the ureteric bud, can

come from many other tissues, such as spi-

nal cord, WNT1-expressing cells, or even

LiCl, an activator of the canonical WNT

signaling pathway. The idea that meta-

nephric mesenchyme is already pro-

grammed to make only renal epithelial

precursors prompted Saxen44 to propose

the concept of a permissive inductive sig-

nal, rather than instructive signal that re-

programs the fate of the mesenchyme. The

metanephric mesenchyme may be epige-
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netically programmed to respond to WNT

signals in a limited way, such that only a

certain type of epithelia and stromal deriv-

atives can arise. Thus, cell fate decisions for

making renal epithelia have already begun

and can likely be traced back to specializa-

tion of the intermediate mesoderm after

gastrulation.

Genetic mutations in the mouse and

tissue manipulation in the chick embryo

have helped to define some critical com-

ponents of intermediate mesoderm

identity and, by inference, metanephric

mesenchyme specification. The DNA-

binding proteins Pax2, Lim1, and Osr1

(odd skipped related) all are required

and in some cases sufficient to specify in-

termediate mesoderm from surrounding

lateral plate and paraxial mesoderm. The

epistatic interactions among these three

genes are still unclear. In the mouse,

Pax2 is still expressed in Lim146 or Osr147

mutants, although Lim1 is not expressed

in Pax2/8 double mutants.48 At the time

of mesodermal specialization, ectopic

expression of Pax2 can expand the do-

main of intermediate mesoderm in the

chick embryo.48 In the frog embryo, Pax2

together with Lim1 can also make pro-

nephric tissue,49 although Osr1 has a

similar activity all by itself.50 The activa-

tion of Pax2/8, Lim1, and Osr1 genes

must be position dependent and require

local environmental cues. James and

Schultheiss51,52 suggested that low con-

centrations of bone morphogenetic pro-

teins diffusing from the lateral plate me-

soderm promote Osr1 and Pax2

expression, hence intermediate meso-

derm formation, whereas axial signals

may inhibit bone morphogenetic pro-

teins to suppress the intermediate phe-

notype. Thus, the Pax2/8 expression do-

main could be initiated at the boundary

between axial and lateral plate mesoderm

by the actions of two opposing gradients.

The intermediate mesoderm is initially

defined by its position along the mediolat-

eral axis; however, as development pro-

ceeds, it is clear that anterior-posterior

(A-P) patterning is necessary for the deriv-

atives of the intermediate mesoderm to as-

sume their appropriate fates. For example,

more anterior intermediate mesoderm

generates the mesonephric tubules, whereas

the more posterior metanephric mesen-

chyme generates the definitive kidney.

Such A-P patterning is likely to involve the

homeotic or Hox genes, which are known

to specify segmented identity in the fly and

A-P position in the mouse. Indeed, loss of

the Hox11 group of genes results in com-

plete renal agenesis as a result of the sup-

pression of more posterior markers such as

GDNF and Six2.53 The intersection among

genes specifying the mediolateral axis and

the A-P axis may provide a unique molec-

ular address to position the metanephric

kidney. This idea is supported by recent

data on the regulation of Six2 by a complex

of proteins that includes Hox11, Pax2, and

Eya1 in the metanephric mesenchyme.54

Given that the metanephric mesen-

chyme is already programmed to gener-

ate renal epithelia, whether this restric-

tion in fate is in part determined by

epigenetic changes at specific loci that act

to limit the developmental potential of

these renal stem cells remains to be de-

termined. Recently, the Pax2 protein was

linked to a histone methyltransferase

complex containing the trithorax homo-

logues ALR/Mll2 and Mll3 through in-

teractions with the adaptor protein,

PTIP.55 Originally identified because of

its interaction with Pax proteins,56 PTIP

contains multiple BRCT domains, at

least one of which is a phospho-serine–

binding domain.57 Several laboratories

have independently shown that PTIP is

part of a histone H3K4 methyltransferase

complex.58,59 Because Pax2 can be serine/

threonine phosphorylated in response to

Wnt signals,60,61 the interaction with

PTIP promotes H3K4 methylation at

kidney-specific loci in response to induc-

tive signals. Although PTIP is not kidney

specific, it may serve as an adaptor pro-

tein linking Pax2 and other tissue-spe-

cific DNA-binding proteins to the epi-

genetic machinery as important cell

fate decisions are being made (Figure

4). Consistent with this idea, PTIP mu-

tants are postgastrulation lethal and

show a global reduction in H3K4 meth-

ylation.55,62 These data suggest that

Pax2/8 function to provide locus and

tissue specificity for epigenetic cues to

restrict the developmental potential of

the intermediate mesoderm to the re-

nal lineage.
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Figure 3. The kidney is specified from intermediate mesoderm. (A) A cross-section
through a mammalian embryo shortly after gastrulation. The mesoderm becomes spec-
ified into paraxial, intermediate, and lateral plate. The paraxial mesoderm makes somites,
whereas the intermediate mesoderm will make the nephric duct and metanephric mes-
enchyme. Bone morphogenetic protein (BMP) signals derived from the lateral plate are
thought to promote expression of intermediate mesodermal markers, such as Pax2/8 and
Osr1. Axial signals (AS) may counteract the BMP effect to suppress intermediate markers
in the paraxial mesoderm. (B) A longitudinal view of the intermediate mesoderm shortly
before kidney induction, anterior is top. The nephric duct is a bilateral epithelial tube
from which mesonephric tubules are induced more rostrally and the ureteric bud grows
out at the posterior aspect. Adjacent to the posterior nephric duct is the metanephric
mesenchyme, an aggregate of cells already programmed to generate renal epithelia. (C)
As the ureteric bud invades the mesenchyme and undergoes branching morphogenesis,
inductive WNT signals from the bud induce the mesenchyme to aggregate around the
tips, the cap mesenchyme, and become polarized to form a primitive epithelial renal
vesicle. Each renal vesicle will generate a single nephron and reconnect to the branching
ureteric bud, which generates the collecting duct system.
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EPIGENETICS AND RENAL

DISEASE

Although the study of epigenetic phe-

nomena in disease has been widely inves-

tigated, I believe there are two specific areas

in which chromatin modifications play a

particularly important role. In aging and

cancer, the stability of the differentiated

state must be determined, at least in part,

by the inherent memory of the genome

within the mature cell. The hypermethyl-

ation of promoter regions in cancer cells

can lead to the inactivation of tumor sup-

pressor genes.63 For counteracting this ef-

fect, inhibitors of DNA methylation have

been developed for treating leukemias and

other hematologic malignancies; however,

a longstanding issue in this field has always

been whether DNA methylation is the

cause of gene inactivation or is merely

the result of inactivation. At least in one

case, chromatin inactivation as mea-

sured by changes in histone methylation

patterns seems to precede DNA methyl-

ation at an important tumor suppressor

locus.64 There are many other indica-

tions that aberrant histone methylation

is oncogenic, including translocations of

the H3K4 methyltransferase ALL/MLL1

in acute lymphocytic leukemia65 and the

overexpression of the H3K27 methyl-

transferase EZH2 in prostate cancer.66

Furthermore, overexpression of the his-

tone demethylases LSD1, the Jumonji

domain– containing protein 2, and Ju-

monji interacting protein PLU-1 corre-

lates with prostate, esophageal, and

breast cancer.67 Thus, the balance be-

tween histone methylation and demeth-

ylation is likely to be critical for main-

taining the differentiated state in many

adult tissues.

Chronic renal disease is in part a func-

tion of age. In the glomerulus, aging

podocytes exhibit altered morphology

and patterns of gene expression.68,69 In

mammals, reduced levels of DNA meth-

ylation correlates with age,70 suggesting

that repression of gene expression may

be lost over time. Loss of epigenetic re-

pression has also been observed in aging

mice at X-linked and imprinted loci.71

The potential maintenance functions of

histone and DNA methyltransferases in

aging cells is an area of research that will

need to be explored further if the stability

of the epigenome in aging cells is to be

fully understood.

CONCLUSIONS

The study of epigenetics is proving to be

fertile ground. How the genome is pack-

aged and replicated in different cell types

is fundamental to maintaining cell lin-

eage restriction and differentiated phe-

notypes in developing and adult mam-

mals. The complex machinery that

methylates DNA, modifies histones, and

alters chromatin structure is being char-

acterized at the biochemical level. A ma-

jor challenge ahead is to link this ma-

chinery to locus- and tissue-specific

factors that drive development and dis-

ease in mammalian organ systems, in-

cluding the kidney.
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