
REVIEW Open Access

Epigenetics in cancer stem cells
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Abstract

Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed
“cancer stem cells” that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of
therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation
contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic
pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and
survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic
modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
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Background
Advances in genomic and epigenomic research has
shaped our understanding of cancer over the past two
decades. Rather than merely a perpetuating mass of dys-
regulated cells growing in an uncontrolled manner, can-
cer is also defined by the dynamic genetic and epigenetic
alterations that contribute to cancer initiation and pro-
gression. Since epigenetic changes such as DNA methy-
lation and histone modifications are crucial factors in
developmental programming of stem cells to specific lin-
eages of cellular and tissue differentiation, aberrant epi-
genetic alterations may transform normal stem cells to
cancer stem cells with the loss of differentiation capacity
and the acquisition of stem-like characteristics. More
importantly, epigenetic mechanisms have been shown to
be implicated in the observed variability of treatment
response. For instance, a small subset of cells has been
shown to be resistant to drug therapy in a variety of can-
cers such as melanoma, gastric, colon and lung cancers
as a result of aberrant expression of key epigenetic mod-
ifiers. In this review, we will focus our discussion on the
epigenetic regulation of CSCs and their impact on
tumor-initiation, progression and response to therapies.

We will also discuss recent advances in using epigenetic
therapy to target cancer stem cells.

Main text
Cancer stem cells (CSCs)
Cancer stem cells (CSCs) define a small, unique subset
of cells with self-renewal ability and the capacity to gen-
erate the different cell types that constitute the whole
tumor [1]. These cells are termed CSCs because of their
“stem-like” properties commonly shared with normal
tissue stem cells. Such properties include extensive self-
renewal ability (symmetrical and asymmetrical) and dif-
ferentiation capacity. It should be noted that a general
capacity to differentiate is not a mandatory feature of
CSCs and that the ability of CSCs to differentiate and
repopulate the cell types found in the original tumor is
of greater significance. More importantly, CSCs should
demonstrate potent tumor-initiation capacity. This prop-
erty is usually demonstrated by injecting limited number
of CSCs into an orthotopic in vivo environment to
generate the bulk tumor. Nevertheless, the concept of
CSC is of significant importance as it highlights the
need to eradicate the CSC populations to achieve an
effective cure.
The first clear evidence of CSCs being a key tumor-

initiating subset of cancer cells was demonstrated in
acute myeloid leukemia (AML) where prospective CSCs
were isolated using cell surface markers that identify
normal haematopoietic stem cells and evaluated for their
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tumor-initiating properties [2, 3]. Since then, similar
identifications of tumor-initiating populations have been
identified in multiple solid tumors that includes brain,
breast, liver, ovary, prostate, lung, melanoma and colon
cancers, by using different cell surface markers or
through side population (SP) analysis [4–11]. For
instance, in malignant glioma and medulloblastoma
tumors, a putative neural stem cell marker, CD133 has
been demonstrated to be adequate and essential to initi-
ate and recapitulate the tumor upon xenotransplantation
into immune-compromised mice [5]. However, this find-
ing has been disputed as tumors can also arise from
CD133-negative cells in a subset of glioma tumors [12].
In addition, CD133 surface marker expression has been
demonstrated to change according to disease state and
progression, further complicating its role as a bona fide
CSC marker in brain tumors [13, 14]. In liver cancers
such as hepatocellular carcinoma (HCC) and intrahepa-
tic cholangiocarcinoma (ICC), similar use of cell surface
markers such as epithelial cell adhesion molecule
(EpCAM), cytokeratin 19 (CK19), CD133, CD90, CD44,
CD24, and CD13 has been applied to define a subpopu-
lation of liver cancer cells as CSCs [15]. Importantly, it
has recently been shown that these CSC markers are not
specific to liver CSCs, and that distinct populations of
liver CSCs express different surface markers possibly
due to the strong intra- and inter-heterogeneity and var-
ied etiology of liver cancer [16]. As a result, CSC studies
have begun to move away from the reliance of cell sur-
face markers to identify tumor-initiating cells and have
begun to identify other complementary methods of
measuring the functional activities of CSCs that may
serve to identify CSCs as well as the molecular mecha-
nisms that regulate CSCs [17].
Currently, the central theme of the CSC model is the

ability of a subset of cells at the apex of the hierarchy to
propagate tumors and promote tumor progression as
compared to the non-tumorigenic cells within the bulk
tumor. One of the gold standards to functionally identify
CSCs is the capacity of these cells to regenerate a
phenotypic copy of the original tumor in an orthotopic
transplantation model. Non-CSCs, by definition, lack
this ability and fail to generate tumors in the transplant-
ation model. It is important to note that the CSC hier-
archy model may not be ubiquitous for all cancers and
that some tumorigenic cells are common in certain can-
cers. It is also important to note that such transplant-
ation assays measure the tumorigenic potential of the
cells to form tumors and not their actual fate. For ex-
ample, alterations in tumorigenic assays carried out by
Quintana and colleagues showed that CSC frequency
could be increased by changing several experimental pa-
rameters such as the use of extracellular matrix (ECM)
in the form of matrigel, prolonging the duration for

tumor formation, and varying the severity of immune-
compromised mice used [18]. This study highlighted
that the tumor-initiating capacity may be an artificial
consequence of the conditions employed in xenograft
mouse models.
While analyzing CSC surface marker expression in pri-

mary tumors has been often performed to study the clin-
ical impact of CSCs on tumor progression, more often
than not, this has resulted in ambiguous data possibly
due to the fact that CSC properties that sustain the pri-
mary tumor phenotype are defined by more than just
specific marker expression [19, 20]. Analysis of key sig-
nalling pathway activity that resembles those functioning
in stem-like cells, is more likely to accurately interrogate
the clinical contribution of CSCs. An example of such
studies was carried out by Lim et al. in BRCA1
mutation-associated breast tumors, where the authors
prospectively isolated distinct subpopulations of normal
and tumorigenic epithelial cells from BRCA1 mutation
heterozygous individuals and found that luminal progen-
itors were highly represented in BRCA1 mutation-
associated breast tumors, more than the stem cell
population [21]. This suggests that luminal progenitors
are more likely the cells-of-origin for BRCA1 mutation-
associated breast tumors, which was later confirmed in a
transgenic mouse model study carried out by Molyneux
and colleagues [22]. These studies highlight the predict-
ive capability of gene expression mapping of pathway
activation rather than specific marker identity. In a sep-
arate study, John Dick and colleagues demonstrated that
tumor-initiating AML stem cells contribute to disease
progression and patient survival outcome, underscoring
the importance of functionally defining the CSCs [23].
More importantly, the contribution of CSCs, with pref-
erential activation of core stem cell programs, to patient
survival outcome has been demonstrated. The study by
Shats et al. showed that a stemness gene signature
derived from embryonic stem cells (ESCs) could predict
a breast cancer patient cohort sensitive to drugs linked
to this signature using a Connectivity Map [24], demon-
strating the clinical contribution of CSCs to patient out-
come [25]. Collectively, these studies highlight that
CSCs that perpetuate tumors are not merely defined by
surface marker expression, but more importantly and
more accurately by their gene expression profiles and
consequent pathway activations.

Epigenetics: normal and cancer stem cells
Epigenetic regulation of the genome is one of the pri-
mary means by which genetic code is altered to control
cellular developmental hierarchies. Epigenetic mecha-
nisms such as histone modifications, DNA methylation,
chromatin remodelling and even changes in noncoding
RNAs including miRNAs together govern the epigenome
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landscape that dictate the outcome of cell fate specifica-
tion without changes to the DNA sequences. Such
changes in the genome is important during normal
mammalian development and ESCs differentiation [26].
Importantly, gene expression profiles change during
cellular differentiation according to not only a network
of transcription factors but also the “epigenomic land-
scape” of the cell. For the purpose of this review, we will
focus our discussions on two primary mechanisms of
epigenetic regulation: histone modifications and DNA
methylation.
Histone methylation occurs predominantly on lysine

(K) and arginine (R) residues and these methylation
marks serve as docking sites for histone readers [27].
Both lysine and arginine methylation can occur on both
histones and non-histone proteins. The highly conserved
histone lysine methylation occurs at three different
levels: mono-, di-, and tri-methylation. Such modifica-
tions are commonly associated with gene activation or
repression, depending on the target histone modifica-
tion. For instance, histone H3 lysine 4 (H3K4), histone
H3 lysine 36 (H3K36), and histone H3 lysine 79
(H3K79) are associated with gene activation whereas his-
tone H3 lysine 9 (H3K9), histone H3 lysine 27 (H3K27)
and histone H4 lysine 20 (H4K20) are associated with
gene repression. The N-terminal tails of histones fre-
quently undergo other post-translational modifications,
which play significant roles in various DNA-templated
processes, including transcription [28]. Hence, aberra-
tions in histone modifications can lead to deregulated
gene expression as seen in various human disease and
malignancies.
DNA methyltransferases (DNMTs) are a class of en-

zymes involved in transferring a methyl group from
S-adenosyl methionine (SAM) to cytosine bases of CpG
dinucleotides at gene promoters and regulatory regions
[29]. CpG dinucleotides are concentrated in short CpG-
rich regions known commonly as “CpG islands”. In
humans, CpG islands occupy about 60% of the gene pro-
moters. CpG promoter islands can be methylated during
development that results in long-term gene silencing.
One classic example of such naturally occurring CpG
methylation is the X-chromosome inactivation and the
imprinted genes. DNA hypermethylation has also been
associated with the silencing of tumor suppressor genes
as well as differentiation genes in various cancers [30].
The reduced expression of these genes may then con-
tribute to the formation of CSCs within tumor cell pop-
ulations [31, 32]. Indeed, the importance of DNA
methylation in maintaining CSC properties have been
reported in leukemic, lung and colon stem cells [33–35].
The accumulation of epigenetic abnormalities has been
suggested to be an early event that predisposes these
tumor cells to acquire further mutations and genomic

instability. This is supported by the fact that epigenetic
machinery is crucial for the maintenance of normal stem
and progenitor cells and that any epigenetic deregulation
can lead to accumulation of cells with increased stem-
ness properties and self-renewal ability, thus giving rise
to CSCs.

Key CSC pathways regulated by epigenetic mechanisms
Wnt/β-catenin signaling pathway
The canonical Wnt/β-catenin signaling pathway medi-
ates gene activation through the transcription factor
β-catenin. In the absence of Wnt signaling, cytoplasmic
β-catenin is inactivated by a degradation complex com-
prising Adenomatous polyposis coli (APC), Axin, glyco-
gen synthase kinase 3 beta (GSK-3β), and casein kinase
1 (CK1). Phosphorylation by GSK-3β targets β-catenin
for ubiquitination and subsequent proteasomal degrad-
ation. Upon Wnt ligand binding to Frizzled receptors,
the degradation complex is inactivated via low density
lipoprotein receptor-related protein 5/6 (LDR5/6) and
Dishevelled, allowing for stabilisation of β-catenin. Accu-
mulated β-catenin then translocates into the nucleus,
where it associates with T-cell factor/lymphoid enhancer
factor (TCF/LEF) transcription factors to induce tran-
scription of Wnt target genes such as CCND1 and MYC.
The Wnt/β-catenin pathway has important functions in
normal tissue development and maintenance, as well as
in self-renewal and differentiation of CSCs [36, 37].
In fact, the Wnt/β-catenin pathway has been found to
be aberrantly activated in a variety of cancers, either
via genetic alterations, such as mutations in CTNNB1,
APC and AXIN genes [38–40], or through epigenetic
modulation.
DNA methylation has been linked to aberrant Wnt/β-

catenin pathway activation through the enhanced pro-
moter methylation and subsequent silencing of various
Wnt inhibitors such as Wnt inhibitory factor 1 (WIF-1),
AXIN2, Secreted frizzled-related protein 1 (SFRP-1), and
Dickkopf-related protein 1 (DKK1) in breast and colo-
rectal cancers [41–43]. In gastric cancer, Yoda et al.
showed that aberrant methylation of Wnt negative
regulators, including DKK3, Naked cuticle homolog 1
(NKD1) and SFRP1, could lead to activation of Wnt/β-
catenin pathway [44]. Deregulation of Wnt/β-catenin
pathway in cancer is also mediated by aberrant histone
modifications. Decreased acetylation of H3K16 and in-
creased H3K27 trimethylation along with recruitment of
Sirtuin 1 (SirT1), enhancer of zeste homolog 2 (EZH2)
and suppressor of zeste 12 protein homolog (Suz12)
(components of polycomb repressor complex 2, PCR2)
to the promoter of DKK1 inhibited the expression of the
DKK1 Wnt antagonist (Fig. 1) [45]. In colorectal cancer,
Dishevelled-binding antagonist of beta-catenin 3 (DACT3),
an antagonist of Dishevelled, was found to be regulated by
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bivalent histone modifications—activating H3K4me3 and
repressive H3K27me3 histone marks—at its locus [46]. This
bivalent histone state was associated with decreased
DACT3 expression in colorectal cancer cell lines [46]. In
addition, methylation of H3K4 at the regulatory element of
DKK1 marks the site for binding by the transcription factor
Achaete-scute family BHLH transcription factor 1
(ASCL1), resulting in a repressed chromatin configur-
ation [47]. ASCL1-mediated inhibition of DKK1 con-
sequently leads to activation of Wnt signaling, and
ASCL1 was found to be crucial for glioblastoma CSC
maintenance and tumorigenicity [47–49].
Besides alterations in DNA and histones, non-

coding RNAs have also been found to act as epigen-
etic modulators of Wnt/β-catenin signaling. Wang et
al. demonstrated that long non-coding RNA of tran-
scription factor 7 (lncTCF7), which is highly
upregulated in liver CSCs, is able to induce TCF7
expression by recruiting the Switch/sucrose non-
fermentable (SWI/SNF) chromatin remodelling com-
plex to its promoter [50]. This subsequently activates

the Wnt pathway, leading to self-renewal of liver
CSCs and tumor propagation.

Hedgehog signaling pathway
The Hedgehog (Hh) signaling pathway plays important
roles in guiding cell fate during embryonic development
and in maintaining adult tissue homeostasis [51, 52]. It
also functions in regulating stem and progenitor cell
proliferation and maintenance in several tissues [53]. In
the absence of sonic hedgehog ligand (Shh), the Patched
receptor (PTCH1) prevents activation of Smoothened
(SMO), allowing Gli proteins to be sequestered by sup-
pressor of fused homolog (SUFU) and kinesin family
member 7 (Kif7). Upon Shh binding to PTCH1, SMO is
activated and mediates Hh signaling transduction via
release of Gli proteins, which then enter the nucleus
and act as transcription factors. Gli1 activates tran-
scription of Hh target genes, Gli2 can both activate
and repress transcription, while Gli3 functions as a
transcriptional repressor.

Fig. 1 Regulation of key cancer stem cell signaling pathways by epigenetic mechanisms. Wnt/β-catenin signaling can be enhanced by decreased
expression of the DKK1 inhibitor through promoter hypermethylation and increased H3K27me3 and decreased H3K16 acetylation marks. Notch
signaling target genes such as Hes1 and Hes5 can be activated by inhibition of H3K27 inhibitory methylation mark at their promoter region by
STRAP. Hedgehog signaling pathway can be activated in CSCs epigenetically by Shh promoter hypomethylation and increase HDAC1 expression.
Epigenetic deregulation of CSC-related signaling pathways allows cancer cells to acquire self-renewal ability and drug resistance properties
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The Hh signaling has been implicated in tumorigenesis
in various tissues [54]. In basal cell carcinoma (BCC),
upregulation of Hh signaling in stem cells in the interfol-
licular epidermis [55] or within the hair follicle [56] has
been reported to contribute to tumor formation. In me-
dulloblastomas, granule neuron progenitors/precursors
(GNPs) in the cerebellum that have constitutively active
Hh signaling have been identified as cells-of-origin of
the tumor [54, 57, 58].
The Hh pathway is activated by genetic mutations in

both BCC and medulloblastoma. However, epigenetic
mechanisms also play a role in modulating the expres-
sion and function of Hh pathway components in various
tumors. The chromatin remodelling protein SNF5 dir-
ectly interacts with Hh signaling effector Gli1 to down-
regulate expression of Hh target genes. SNF5 is a
member of the SWI-SNF complex and inhibits gene ex-
pression by altering chromatin structure at Gli1-
regulated promoters, which includes genes such as Ptch1
and Gli1 itself. Hence, inactivation of SNF5 would con-
tribute to aberrant Hh signaling activity as seen in
human malignant rhabdoid tumors [59–61].
In addition, histone deacetylases are also involved in

regulating Gli protein function. Gli1 and Gli2 proteins
require deacetylation by HDAC1 to be transcriptionally
active, and they, in turn, can induce HDAC1 expression
through a positive autoregulatory loop [62]. This mech-
anism is inhibited by E3-ubiquitin ligase complex (com-
prising Cullin3 and renin, REN)-mediated degradation of
HDAC1. However, REN is often deleted in human me-
dulloblastoma [63], resulting in increased levels of
HDAC1 and Gli1, and subsequent deregulation of Hh
signaling in neural progenitors and tumor cells [62].
Hh pathway can also be epigenetically regulated by

aberrant DNA methylation. Studies have found that
hypomethylation of Shh promoter leads to enhanced
expression of Shh ligand in breast and gastric cancers
(Fig. 1) [64, 65]. Indeed, Duan and colleagues re-
ported that promoter hypomethylation allowed nu-
clear factor kappa b (NF-κB) to bind and activate
transcription of Shh, resulting in overexpression of
the ligand [66]. Consequently, the upregulation of Hh
signaling was able to promote self-renewal and inva-
siveness in breast cancer cells [66].

Notch signaling pathway
Notch is a transmembrane receptor involved in cell
contact-dependent signaling [67]. Binding of ligands
Jagged1/2 or Delta1-4 triggers cleavage of Notch intra-
cellular domain (NICD) by γ-secretase and its release
into the cytoplasm [68]. NICD then translocates into the
nucleus, where it interacts with recombination signal
binding protein for immunoglobulin kappa J region
(RBPJ-κ) to transcriptionally induce expression of Notch

target genes, such as MYC and HES1 [69]. In the in-
active state, RBPJ-κ recruits co-repressor complexes to
suppress Notch target genes [70].
Notch signaling is an evolutionarily conserved pathway

that has important roles in development of various tis-
sues and organs [71]. It also regulates cell proliferation
and differentiation across a wide range of cell types and
during different stages of cell lineage progression [69].
Furthermore, Notch pathway modulates stem cell differ-
entiation and self-renewal. Importantly, Notch signaling
has been shown to be crucial for survival of neural stem
cells (NSCs) [72]. In murine intestinal stem cells, loss of
B-lymphoma Mo-MLV insertion region 1 homolog
(Bmi1), a target of Notch signaling, decreases prolifera-
tion and induces cellular differentiation into goblet cells
[73]. Deregulation of Notch pathway has been implicated
in various tumors such as prostate cancer, breast cancer,
lung cancer, colorectal cancer and haematological malig-
nancies [74–77]. Recent studies have also reported the
role of Notch signaling in breast, colon and oesophageal
CSCs [78–80].
Epigenetic modifications affecting various components

of the Notch pathway have been found to cause aberra-
tions in Notch signaling activity. Overexpression of
Notch ligand Jagged2 in multiple myeloma has been
associated with enhanced histone acetylation at the
JAGGED2 promoter region [81]. Nuclear co-repressors
such as nuclear receptor co-repressor 2 (SMRT) nor-
mally recruit HDACs to promoter regions to regulate
gene expression. However, in multiple myeloma, the de-
creased levels of nuclear co-repressor SMRT reduces
HDAC recruitment to JAGGED2 promoter, resulting in
increased transcription of the Notch ligand and subse-
quent activation of Notch signaling [81]. In addition, Jin
et al. reported that serine-threonine kinase receptor-
associated protein (STRAP) promotes stemness in colo-
rectal cancer-initiating cells via modulating the Notch
pathway [80]. They found that STRAP interacts with
EZH2 and SUZ12 of PRC2 complex, inhibiting histone
methylation of H3K27 on HES1 and HES5 promoters,
leading to gene activation (Fig. 1). This was concordant
with the finding that both genes had increased activating
(H3K4me3) and decreased repressive (H3K27me3)
histone marks in wild-type (WT) cells as compared to
STRAP knockdown (KD) cells. Moreover, ectopically
expressed HES1 or HES5 was able to rescue the stem-
ness phenotype in STRAP KD cells [80], further demon-
strating the significance of Notch signaling in regulating
stemness potential in CSCs.

Epigenetic regulation of metastasis and chemoresistance
pathways
During tumor progression, metastasis of tumor cells has
been linked to the induction of epithelial-to-mesenchymal
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transition (EMT). EMT is a multi-step process that results
in decreased cell-cell adhesion, loss of cell polarity, in-
creased cell motility, and gain of invasive mesenchymal
properties [82, 83]. There is evidence that activation of
EMTcan confer cells with CSC and tumor-initiating prop-
erties [84, 85]. It was reported that EMT induction in both
immortalised and transformed human mammary epithe-
lial cells resulted in increased expression of CSC markers
and mammosphere formation. Moreover, stem-like cells
of mammary carcinomas were also found to express
markers of EMT [85]. The relationship between EMT and
acquisition of stem-like properties in tumor cells suggests
that stemness properties may help increase the chances of
disseminated tumor cells to successfully metastasize to
distant sites [70].
Several signaling pathways involved in embryonic de-

velopment, such as Wnt, Hedgehog and Notch, have
been identified to regulate the EMT process [86, 87].
The transforming growth factor-β (TGF-β) family of cy-
tokines are also known inducers of EMT [88, 89]. Hence,
deregulation of these pathways and proteins could acti-
vate aberrant EMT induction, resulting in tumor metas-
tasis and contribute to poorer patient prognosis. A
hallmark of EMT is the loss of membrane protein E-cad-
herin, which functions in maintaining cell-cell adhesion
[90–92]. Loss of E-cadherin can arise from mutations in
its encoding gene CDH1, or via mechanisms that regu-
late its expression and function, including transcriptional
repressors Twist-related protein 1 (TWIST1), Snail fam-
ily zinc finger 1 (SNAIL), Zinc finger E-box-binding
homeobox 1 (ZEB1) and Zinc finger E-box-binding
homeobox 2 (ZEB2) [93]. Epigenetic mechanisms have
also been found to play a dynamic role in silencing E-
cadherin expression. For instance, DNA methylation of E-
cadherin promoter helps to recruit HDACs to the site,
leading to histone deacetylation and transcriptional silen-
cing [94, 95]. In addition, histone methylation of CDH1
promoter by EZH2 and PRC2 complex, which is recruited
by Snail1, also represses E-cadherin expression [96, 97].
Micro RNAs (miRNAs) that regulate the EMT path-

way are epigenetically regulated as well. MiR-200 family
members and miR-205 repress EMT and invasion by dir-
ectly inhibiting transcription factors ZEB1 and ZEB2
[98–100]. Hence, inhibition of these miRNAs would re-
sult in increased EMT and metastasis. This is observed
in high-grade breast cancers, whereby low levels of miR-
200c is correlated with upregulation of EMT and stem-
ness markers [101]. Silencing of miR-200c and miR-205
expression can also occur via enrichment of H3K27me3-
mediated chromatin remodelling and DNA methylation,
which leads to induction of EMT and CSC phenotype in
immortalised human bronchial epithelial cells [102].
Studies have shown that cells with both CSC proper-

ties and EMT-like phenotype tend to be more resistant

to chemotherapy drugs as compared to other cancer cell
populations [103–105]. Arumugam et al. demonstrated
that pancreatic cancer cell lines with EMT features were
resistant to common chemotherapy drugs such as gem-
citabine, 5-fluorouracil and cisplatin [106]. Moreover,
cells that were resistant to gemcitabine expressed high
ZEB1 and low E-cadherin, and acquired greater cell mi-
gration ability [106]. Indeed, these findings indicate that
epigenetic modulations involved in the gain of CSC and
EMT properties would most likely impact tumor cells’
response to therapy.
The increased drug resistance observed in CSCs is

commonly mediated by enhanced expression of drug
efflux transporters, such as ATP-binding cassette (ABC)
family of transporters, which includes ATP-binding
cassette sub-family G member 2 (ABCG2), multidrug
resistance protein 1 (MDR1) and multidrug resistance-
associated protein 1 (MRP1) [17, 107, 108]. These drug
transporters utilise ATP in moving drugs out of the cell
against its concentration gradient. The expression of
these transporters are regulated by various mechanisms
and pathways, and their deregulation would result in an
enrichment of these proteins and drug efflux capability.
Studies have shown that MRP1 expression can be upreg-
ulated by Notch signaling, and is responsible for drug re-
sistance in CSCs [109, 110]. Expression of ABCG2 is
upregulated upon enrichment of permissive histone
modifications such as greater histone H3 acetylation, in-
creased H3K4 tri-methylation and phosphorylation of
H3S10, as well as decreased HDAC1 levels [111].
These histone marks along with decreased H3K9 tri-
methylation allow RNA polymerase II and chromatin
remodelling protein Brahma-related gene 1 (Brg1) to
gain access to the promoter and activate transcription
of ABCG2 [111]. Collectively, a complex network of
signaling pathways that function in modulating the
activity of normal stem cells can be susceptible to de-
regulation as a result of aberrant epigenetic modifica-
tions during the course of tumor formation. These
abnormal alterations in key signaling pathways contribute
to CSC proliferation and maintenance, as well as tumor
progression and invasion. Hence, epigenetic regulation of
these signalling pathways may serve as potential mecha-
nisms for targeted therapy against CSCs.

Therapeutic intervention using epigenetic modifying drugs
As epigenetic mechanisms have important functions in
modulating stem cell properties in cancer cells, targeting
components of these epigenetic pathways would help in
eradicating both CSCs and the bulk tumor population.
Inhibitors of epigenetic modulatory enzymes such as
HDACs and DNMTs have been widely studied and many
are currently in clinical trials for treatment of a variety
of cancers. In addition, deregulation of chromatin
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remodelling has been associated with tumorigenesis and
tumor progression, thus making chromatin remodelling
proteins viable targets for small molecule inhibitors as
well. Indeed, many of these therapeutic strategies aim to
induce differentiation of CSCs and to sensitise these
cells to chemotherapy, with the ultimate goal of reducing
tumor relapse and improving patient survival. Here, we
review the development of various epigenetic therapies
designed to target different components of the epigen-
etic machinery. A summary of these epigenetic drugs
and their clinical status can be found in Table 1.

Targeting DNA methylation - DNA methyltransferase (DNMT)
inhibitors
Inhibitors of DNA methylation were among the first epi-
genetic drugs tested for use in treatment of cancer [112].
The most widely studied DNMT inhibitors include aza-
citidine (5-azacitidine) and decitabine (5-aza-2’-deoxycy-
tidine), which act as analogues of cytosine. These
molecules get incorporated into DNA and covalently
bond with DNA methyltransferase, thus preventing its
function [113, 114] and leading to its degradation [115].
These drugs were initially used as cytotoxic chemothera-
peutics in the late 1960s [116], but were found to be
highly toxic [117–120]. Subsequently, recent studies
have discovered that low doses of DNMT inhibitors had
greater efficacy in sustaining decreased DNA methyla-
tion and associated re-expression of silenced genes in
leukemic and epithelial tumor cells [121]. These lower
doses were also able to reduce tumorigenicity and target
CSC populations within the tumor. In lung cancer,
Liu et al. showed that inhibition of DNMT1 was able
to decrease proliferation and tumorigenic ability of
lung CSCs [34].
Multiple studies have also demonstrated the role of

DNMT inhibitors in differentiation therapy. Pinto et al.
showed that azacitidine could induce primary AML cells
from patients to differentiate into less or non-malignant
cells [122, 123]. Prostate cancer derived-CSCs that were
treated with decitabine showed decreased expression of
stemness genes Octamer-binding transcription factor 4
(OCT40029 and Nanog homeobox (NANOG), leading to
overall reduction in tumor growth [124]. In addition,
low doses of SGI-110, a newer DNMT inhibitor, was re-
cently reported to be capable of reprogramming ovarian
CSCs to a more differentiated state [125]. Treatment
with SGI-110 also decreased tumor-initiating ability and
re-sensitized these cells to platinum, suggesting a poten-
tial use of DNMT inhibitors in combination with other
chemotherapeutic agents in preventing recurrence of
ovarian cancer [125]. Both azacitidine and decitabine
have been approved by the FDA for treatment of myelo-
dysplastic syndrome (MDS) [126]. Clinical trials for
other indications such as AML and colorectal cancer are

still ongoing. SGI-110 is also in phases of clinical trials
for treatment of various cancers such as AML, MDS,
liver cancer and platinum-resistant ovarian cancer.

Targeting histone deacetylation - Histone deacetylase(HDAC)
inhibitors
An important histone tail modification is acetylation,
which is regulated by histone acetyltransferases (HATs)
and histone deacetylases (HDACs). HATs are responsible
for adding an acetyl group onto lysine residues of his-
tone tail, which neutralizes the positive charge, resulting
in a more “open” chromatin structure [127]. In contrast,
HDACs remove the additional acetyl group, leading to
increased binding affinity between DNA and histones,
which is generally associated with gene repression [128].
Very often, deregulated gene silencing in cancers has
been associated with aberrant histone deacetylation. For
instance, in leukemia, this can be mediated through ab-
errant recruitment of HDACs by fusion proteins such as
Acute myeloid leukemia protein 1 Eight twenty-one pro-
tein (AML1-ETO) and Promyelocytic leukemia protein
retinoic acid receptor alpha (PML-RARα), which leads
to abnormal gene silencing and subsequent leukemogenesis
[129, 130]. Besides, HDACs can also acetylate non-histone
proteins, including tumor suppressor p53 and oncogene
B-cell lymphoma 2 (BCL2), resulting in inhibition of p53-
dependent transcription [131] and upregulation of pro-sur-
vival protein, BCL2 [132]. Hence, the use of HDAC
inhibitors in returning histone acetylation patterns to
a normal state has been found to be effective in indu-
cing apoptosis and differentiation as well as inhibit
proliferation of tumor cells [129, 133]. These HDAC
inhibitors can be divided mainly into two classes—the
pan HDAC inhibitors and the class-specific inhibitors
[134], and they all function via chelating the zinc
atom in the active site of the enzyme [127].
Two HDAC inhibitors, vorinostat (subseroylanilide

hydroxamic acid) and romidepsin (depsipeptide), have
been approved for treatment of cutaneous T-cell lymph-
oma [135, 136]. Both drugs were found to produce
durable response and efficacy in patients with cutaneous
T-cell lymphoma in Phase 2 multi-center trials [135–
138]. However, besides cutaneous T-cell lymphoma,
monotherapy of vorinostat and romidepsin in treatment
of various solid tumors have had little success in clinical
trials [139–150]. Apart from these two compounds, many
other HDAC inhibitors have also been developed and
tested in clinical trials, the details of which have been
well-reviewed elsewhere [115, 151–153]. Monotherapies
of these compounds, including panobinostat [154, 155],
entinostat [156, 157], belinostat [158, 159] and pracinostat
(SB939) [160], are being tested against various haemato-
logical malignancies and solid tumors.
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Table 1 Epigenetic modulators in cancer

Drug Target Clinical status Indication References

DNMT inhibitors

Azacitidine Inhibit DNMT (act as nucleoside
analog)

FDA-approved MDS [277, 278]

Decitabine Inhibit DNMT (act as nucleoside
analog)

FDA-approved MDS [115, 277]

SGI-110 Inhibit DMNT by incorporating
into guanine nucleotide

Phase 3
(NCT02348489
Phase 1/2
(NCT01261312,
NCT02197676)
Phase 2
(NCT01752933)
Phase 1/2
(NCT01696032)

AML
MDS, AML
Advanced HCC
Platinum-resistant recurrent
ovarian cancer

[279–281]

HDAC inhibitors

Vorinostat Inhibitor of Class I and II HDACs FDA-approved Cutaneous T cell lymphoma [135]

Romidepsin Inhibitor of Class I HDACs FDA-approved Cutaneous T cell lymphoma [136]

Panobinostat Pan-HDAC inhibitor Phase 3
(NCT01034163)
Phase 2/3
(NCT00425555)

Hodgkin’s lymphoma
Cutaneous T cell lymphoma

[282, 283]

Entinostat Inhibitor of Class I HDACs Phase 2
(NCT00866333)
Phase 1/2
(NCT01038778)

Hodgkin’s lymphoma
Clear cell renal cell carcinoma,
metastatic renal cell cancer

[284]

Belinostat Inhibitor of Class I and II HDACs Phase 2
(NCT00357032)
Phase 2
(NCT00274651)
Phase 2
(NCT00301756)

Relapsed/refractory AML or older
patients with newly diagnosed AML
Recurrent/refractory cutaneous and
peripheral T cell lymphomas
Ovarian cancer

[285–287]

Pracinostat Inhibitor of Class I and II HDACs Phase 2
(NCT01112384,
NCT01075308)

Translocation-associated recurrent/
metastatic sarcomas, metastatic
prostate cancer

[288, 289]

Givinostat Inhibitor of Class I and II HDACs Phase 2
(NCT01761968)

Chronic myeloproliferative neoplasms [290]

Valproic acid Inhibitor of Class I and II HDACs Phase 2
(NCT01900730)

Breast cancer [163, 291]

HMT inhibitors

EPZ-5676 Inhibit DOT1L methyltransferase
(H3K79) activity by competing
with SAM

Phase 1
(NCT02141828,
NCT01684150)

MLL-fusion leukemia, AML, acute
lymphocytic/lymphoblastic leukemia,
MDS, myeloproliferative disorders

[182]

DZNep Inhibit HMT activity of EZH2 via
inhibiting S-adenosylhomocysteine
(SAH) hydrolase

Not in trial Breast cancer,
prostate cancer, glioblastoma
multiforme (GBM)

[193, 292, 293]

E7438
(EPZ-6438)

Inhibit HMT activity of EZH2 by
competing with co-factor
S-adenosyl-methionine (SAM)

Phase 2
(NCT02860286,
NCT02601950)

Malignant mesothelioma, rhabdoid
tumors, synovial sarcoma, epitheloid
sarcoma

[196]

GSK2816126
(GSK126)

Inhibit HMT activity of EZH2 by
competing with co-factor
S-adenosyl-methionine (SAM)

Phase 1
(NCT02082977)

Relapsed/refractory DLBCL,
transformed follicular lymphoma,
multiple myeloma, non-Hodgkin’s
lymphoma, solid tumors

[198, 199]

CPI-1205 Inhibit HMT activity of EZH2 by
competing with co-factor
S-adenosyl-methionine (SAM)

Phase 1
(NCT02395601)

B-cell lymphoma [294]
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Another mechanism of action of HDAC inhibitors for
cancer treatment is via differentiation or reprogramming of
cancer cells. As therapy resistance is a major hurdle in can-
cer treatment and is often associated with CSCs and epi-
genetic control [161], HDAC inhibitors possess the ability
to induce differentiation of CSCs from their quiescent state,
thereby re-sensitising them to other chemotherapy agents.
Valproic acid, an antiepileptic drug, has been found to be a
powerful HDAC inhibitor [162]. Gottlicher et al. demon-
strated that valproic acid could trigger differentiation of
transformed hematopoietic progenitor cells and leukemic
blasts from AML patients [162]. Furthermore, Travaglini et
al. found that valproic acid was able to epigenetically repro-
gram breast cancer cells into a more “physiologic” pheno-
type, thus improving sensitivity to other forms of breast
cancer therapy [163]. In addition, entinostat, a selective

inhibitor of class I HDACs, was recently reported to reverse
EMT phenotype and decrease the population of tumor-
initiating cells in triple-negative breast cancer (TNBC)
[164]. These tumor-initiating cells possessed CSC proper-
ties and were responsible for driving metastasis and drug
resistance in TNBC, thus contributing to poor patient
prognosis. Hence, this study demonstrated the utility of
HDAC inhibitors in preventing CSC invasiveness and
tumor metastasis. Overall, these studies demonstrate the
potential use of epigenetic modulators towards the differen-
tiation and therapeutic sensitization of CSCs.

Targeting histone methylation – Histone methyltransferase
(HMT) inhibitors
A class of enzymes called histone lysine methyltransfer-
ases (HKMTs) mediate the addition of a methyl group to

Table 1 Epigenetic modulators in cancer (Continued)

Chaetocin Inhibit SUV39H1 Not in trial HCC, multiple myeloma [216, 218]

BIX01294 Inhibit G9a (substrate-
competitive)

Not in trial Breast cancer, colon cancer [209, 212]

UNC0638 Inhibit G9a (substrate-
competitive)

Preclinical Breast cancer [213]

UNC0642 Inhibit G9a (substrate-
competitive)

Preclinical Pancreatic cancer [214]

HDM inhibitors

Tranylcypromine Irreversible inhibitor of LSD1 Phase 1
(NCT02273102,
NCT02717884)
Phase1/2
(NCT02261779)

AML, MDS
AML

[226]

ORY-1001 Irreversible inhibitor of LSD1 Phase 1 AML [227]

GSK2879552 Irreversible inhibition of LSD1
activity by modifying its
cofactor FAD

Phase 1
(NCT02034123,
NCT02177812)

Small cell lung cancer,
AML

[231]

GSK-J4 Inhibit UTX Not in trial T-cell acute lymphoblastic
leukemia (T-ALL)

[295]

BET inhibitors

I-BET762
(GSK525762A)

Interfere with binding of BET
proteins to acetylated histones

Phase 1
(NCT01587703,
NCT01943851)

Solid tumors, relapsed refractory
haematological malignancies

[243, 244]

JQ1 Interfere with binding of BET
proteins to acetylated histones
(greatest specificity for BRD3
and BRD4)

Not in trial NUT midline carcinoma (NMC),
multiple myeloma, AML, Burkitt’s
lymphoma, DLBCL

[239, 240, 296, 297]

I-BET151
(GSK1210151A)

Interfere with binding of BET
proteins to acetylated histones

Not in trial MLL fusion leukemia,
medulloblastoma

[298, 299]

OTX015 Interfere with binding of BET
proteins to acetylated histones

Phase 1
(NCT01713582)

Hematological malignancies [248, 297]

CPI-203 Interfere with binding of BET
proteins to acetylated histones

Not in trial Lymphoma [300]

CPI-0610 Interfere with binding of BET
proteins to acetylated histones

Phase 1
(NCT02157636,
NCT01949883,
NCT02158858)

Acute leukaemia, MDS,
myelodysplastic/myeloproliferative
neoplasms, lymphoma, multiple
myeloma

[301]
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the nitrogen atom of the lysine side chain [165]. Despite
catalysing a common chemical reaction, this family of
HKMTs demonstrate large structural diversity of its ac-
tive sites, allowing these enzymes to have high substrate
specificity [127]. For example, DOT1L (KMT4) is a
unique HKMT as it is currently the only known enzyme
that methylates lysine 79 of histone H3 (H3K79) [166].
Similarly, methylation of H3K27 is only mediated by the
catalytic subunit EZH2 (KMT6) of PRC2 [127]. In con-
trast, some methylation marks can be catalysed by
several proteins, such as H3K9 methylation. These post-
translational methylation of histones have important
roles in regulation of gene expression, differentiation,
DNA damage repair as well as in tumorigenesis
[167, 168]. Aberrant histone methylation can be due
to gene mutations, over-expression or deregulated
control of epigenetic modulatory enzymes involved.
Thus, HKMTs are potential therapeutic targets, and
the structural differences between members of the
family also enable greater selectivity in inhibition of
these proteins by small molecule compounds [169].
HKMT inhibitors have only recently gained more

attention as cancer therapeutics, resulting in a rapidly
increasing number of these small molecule inhibitors be-
ing developed [170–172]. In fact, several DOT1 like
histone H3K79 methyltransferase (DOT1L) and EZH2
inhibitors have progressed to being tested in clinical tri-
als as cancer interventions [173]. H3K79 methylation by
DOT1L is associated with transcriptional activation of
genes under its regulation [174, 175], and overexpression
or aberrant DOT1L activity has been found in cancer,
such as leukemia with mixed lineage leukemia (MLL)
gene translocation. The MLL fusion protein can recruit
DOT1L into a transcription complex, which subse-
quently methylates H3K79 [176–180]. This leads to dys-
regulation and overexpression of many MLL-target
genes, including Homeobox A9 (HoxA9) and Meis
homeobox 1 (Meis1), which are key regulators of
hematopoietic stem cell differentiation that contributes
to leukemogenesis [165]. Therefore, DOT1L is an at-
tractive target for therapy, resulting in the first selective
DOT1L inhibitor EPZ-4777 to be synthesised with anti-
tumor effects against murine models of MLL-rearranged
leukemia [181]. Further optimisation of the drug led to
the development of EPZ-5676, the first HKMT inhibitor
to enter clinical trials. This compound has been shown
to be highly potent and selective for DOT1L. Treatment
with EPZ-5676 in a MLL-rearranged leukemia xenograft
model showed durable and complete tumor regression
[182]. EPZ-5676 is currently under clinical studies
(Phase I) for MLL-fusion leukemia, AML, MDS and my-
eloproliferative disorders.
EZH2 is a member of PRC2, along with proteins embry-

onic ectoderm development protein (EED) and SUZ12,

and is responsible for catalysing H3K27 mono-, di- and
tri-methylation [183–185]. Overexpression of EZH2 has
been found in various cancers of the breast, lung, prostate
and haematological malignancies [186–191], and is associ-
ated with poor disease prognosis. Studies have also shown
the role of EZH2 deregulation in tumor progression, me-
tastasis [192, 193] and maintenance of CSC self-renewal
properties [194]. In glioblastoma multiforme (GBM), in-
hibition of EZH2 by S-adenosylhomocysteine hydrolase
(SAH) inhibitor 3-deazaneplanocin A (DZNep) was able
to reduce self-renewal and tumor-initiating capabilities of
GBM CSCs in vivo via affecting transcriptional regulation
of oncogene MYC [193]. However, DZNep affects methy-
lation of other histone residues [195], leading to the devel-
opment of more specific EZH2 inhibitors. The earliest
SAM-competitive and selective EZH2 inhibitor to advance
into clinical trials for treatment of rhabdoid tumors and
lymphomas is EPZ-6438 (E7438) [196, 197]. A more
recent drug, GSK2816126 (GSK126) has also entered clin-
ical studies for relapsed/refractory diffuse large B-cell
lymphoma (DLBCL), multiple myeloma and transformed
follicular lymphoma [198, 199]. Both drugs have shown
high potency and selectivity in inhibiting tumor growth in
preclinical studies [197, 198, 200].
H3K9 methyltransferases, such as euchromatic histone

lysine methyltransferase 2 (G9a/EHMT2) and euchro-
matic histone lysine methyltransferase 1 (GLP/EHMT1),
catalyse mono- and di-methylation of the lysine residue,
while tri-methylation of H3K9 is mediated by Suppressor
of variegation 3–9 homolog 1 (SUV39H1) and Suppres-
sor of variegation 3–9 homolog 2 (SUV39H2) [201].
Upregulation of G9a activity has been linked to several
types of cancer, including ovarian, lung, liver and bladder
cancers [202–208]. Hence, several substrate-competitive
inhibitors of these HKMTs have been developed. BIX-
01294 is the first specific inhibitor of G9a and GLP, and
studies have reported its ability to decrease H3K9me2
levels in mammalian cells [209–211]. Kim et al. reported
that BIX-01294 was able to induce cell death in colon
and breast cancer cells via EHMT dysfunction [212].
However, due to the increased toxicity levels of BIX-
01294 at higher concentrations, the use of this drug is
limited. This led to the recent development of a more
potent, specific and selective EHMT inhibitor, UNC0638
that was found to decrease local H3K9me2 and DNA
methylation levels [213]. Further development generated
UNC0642, which possessed better pharmacokinetic
properties and higher efficacy in inhibiting colony for-
mation ability of pancreatic adenocarcinoma cells [214].
Methylation of H3K9 by SUV39H1 is associated with

silencing of tumor suppressor genes, including E-
cadherin and p15INK4B, in AML [215]. Overexpression
of SUV39H1 has also been correlated with poor progno-
sis in multiple myeloma patients [216]. Treatment of
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multiple myeloma cells with chaetocin, a small molecule
inhibitor of SUV39H1 showed anti-tumor effects at low
doses of the drug [216]. Similarly, chaetocin was found
to decrease H3K9me3 levels and induce differentiation
of AML cells at non-toxic doses [217]. Furthermore,
chaetocin was able to repress cell proliferation and
induce apoptosis in hepatocellular carcinoma (HCC)
cultures and xenografts [218], implying a potential
tumorigenic role of EHMTs in HCC progression and
development.

Targeting histone demethylation - Histone demethylase (HDM)
inhibitors
Methylation of lysine on histones is also regulated by
histone lysine demethylases (KDMs). This group of epi-
genetic erasers function in removing the methyl groups
from lysine side chains on histones [219, 220]. As proper
functioning of both HKMTs and KDMs is required to
maintain stable histone methylation levels, small mol-
ecule inhibitors have also been developed to target
KDMs. KDMs can be grouped into two families - the
lysine-specific demethylase (LSD) family and Jumonji
domain-containing (JmjC) family [221]. The LSD family
are flavin adenine dinucleotide (FAD)-dependent amine
oxidase that demethylates mono- and di-methyl lysine
residues, while JmjC enzymes utilise 2-oxoglutarate and
iron to oxidatively release methyl groups from all three
methylation states at lysine residues [172, 222].
Upregulated expression of LSD1 (KDM1A) has been

found in various human cancers, including AML, ovar-
ian, lung, bladder and colorectal cancers [223–225].
Hence, small molecule inhibitors of LSD1 that target the
enzyme cofactor FAD have been developed, the first of
which is tranylcypromine [226]. Further studies have led
to the synthesis of more selective derivatives of tranylcy-
promine, such as ORY-1001 [227] and GSK2879552
[228]. They function by irreversibly changing FAD, lead-
ing to the formation of a tetracyclic adduct [229]. LSD1
is important for normal hematopoiesis; loss of LSD1 has
been found to inhibit differentiation and impair
hematopoiesis [230]. This suggests a potential role of ab-
errant LSD1 activity in affecting stemness properties in
tumor cells. The inhibitor ORY-1001 has been shown to
decrease the population of AML stem cells and improve
survival of mice with acute lymphoblastic leukemia
(ALL) in preclinical studies [227, 228]. GSK2879552 has
also been found to influence differentiation in small cell
lung cancer (SCLC) [231]. These compounds are cur-
rently in phase 1 studies for relapsed or refractory AML
(ORY-1001) and SCLC (GSK2879552).
Similarly, JmjC demethylases are amenable to pharma-

cological intervention as well. Ubiquitously transcribed
tetratricopeptide repeat X chromosome (UTX), also
known as KDM6A, is responsible for demethylating

H3K27 [232–234], and loss of UTX activity has been
found in multiple human malignancies, including mul-
tiple myeloma, esophageal squamous cell carcinoma and
renal carcinoma [166]. However, no inhibitors of JmjC
enzymes have advanced beyond biochemical studies
[127]. Nevertheless, as UTX is a component of the
mixed lineage leukemia protein 2 (MLL2) H3K4 methyl-
transferase complex, and interacts with SWI/SNF chro-
matin remodelling complex [235–237], it is still an
important epigenetic target and its role in epigenetic
modulation still warrants further study.

Targeting epigenetic readers – BET inhibitors
While epigenetic modulatory enzymes are obvious tar-
gets for therapy, epigenetic readers are also important
components of the epigenetic machinery as they directly
or indirectly regulate gene expression. One such group
of readers called bromodomain and extra-terminal
(BET) proteins modulate gene expression by recognising
acetylated histones. Increased BET activities have been
associated with NUT midline carcinoma (NMC), glio-
blastoma and various haematological malignancies,
through aberrant transcription of disease-associated
genes and oncogenes such as MYC [238]. Hence, BET
proteins appear to be attractive therapeutic targets for
controlling dysregulated gene expression.
JQ1 is a selective BET inhibitor of BRD family of

proteins, including Bromodomain-containing protein 4
(BRD4) [239]. In preclinical studies, JQ1 was able to
cause tumor regression in NMC mouse models, inhibit
proliferation, induce apoptosis and differentiation in
cancer cells [239–242]. Another BET inhibitor, I-
BET762 (GSK525762A), functions by binding to the
acetyl-binding pocket of BET proteins [243, 244]. Studies
have shown that I-BET762 treatment was able to induce
terminal differentiation of patient-derived malignant
cells [245] and activate apoptosis in neuroblastoma and
prostate cancer via inhibition of Myc-driven pathways
[246, 247]. This compound is currently in phase I trials
for solid tumors and relapsed or refractory haemato-
logical cancers.
OTX015 is another BET inhibitor that has progressed

into clinical trials for various haematological malignan-
cies. This compound has been found to possess anti-pro-
liferative effects via directly influencing MYC expression
and activity [248, 249]. Similarly, CPI-0610 has also en-
tered clinical testing for lymphoma, multiple myeloma
and myelodysplastic or myeloproliferative neoplasms. I-
BET151 is a pan-BET inhibitor, similar to JQ1, and has
been found to block proliferation and induce apoptosis
in myeloma cells via repressing Myc activity [250]. Anti-
tumor effects have also been observed in NMC, MLL,
ALL, lung cancer and brain cancer [238].
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Combination therapy with epigenetic modulators
While epigenetic drugs have been tested preclinically
and clinically as single agents, further studies have re-
vealed the increased efficacy of these drugs when used in
combination with other therapies. One common com-
bination of different epigenetic therapies is that of
DNMT and HDAC inhibitors. Pathania et al. reported
that combining azacitidine (DNMT inhibitor) and butyr-
ate (HDAC inhibitor) was capable of significantly
decreasing breast cancer CSC population [251]. In
addition, combination of azacitidine and HDAC inhibi-
tor entinostat at low doses in a phase I/II clinical trial
showed sustained and favourable responses in treatment-
resistant non-small cell lung cancer (NSCLC) patients
[252]. Azacitidine and valproic acid co-treatment was also
able to promote tumor regression in Patched mutant
mouse models of medulloblastoma [253]. Besides DNMT-
HDAC inhibitor combination therapy, studies have
demonstrated synergistic effects of other epigenetic drug
combinations. For example, inhibiting both EZH2 and
G9a histone methyltransferases showed greater efficacy in
blocking cell proliferation as compared to single drug
treatment [254]. Furthermore, the DOT1L inhibitor EPZ-
5676 could interact synergistically with DNA hypomethy-
lating agents, such as azacitidine and decitabine, in
MLL-rearranged leukemia cells [255].
In recent years, an increasing number of studies have

reported the use of epigenetic drugs in combination with
conventional chemotherapeutics, with underlying mech-
anisms of re-sensitising resistant CSCs to drug treat-
ment, or to prime cancer cells for subsequent therapies
[134, 256]. For example, low doses of SGI-110 (DNMT
inhibitor) was found to drive ovarian CSCs towards a
more differentiated phenotype and sensitise them to
platinum treatment [125]. DOT1L inhibitor EPZ-5676
was also able to establish a chromatin state that en-
hanced the anti-tumor effects of cytarabine or dauno-
rubicin in MLL-rearranged leukemia [255]. Moreover,
pre-treatment with azacitidine was demonstrated to
prime colon cancer cell lines to irinotecan therapy [257].
Indeed, various combinations have been tested in clinical
trials with promising results on drug response and anti-
tumor efficacy [258–261]. In addition to drug combin-
ation synergy, the method of delivery could also improve
response to therapy. A recent paper by Li et al. showed
that encapsulating decitabine and doxorubicin in nano-
particles was able to better target breast CSCs and
inhibit tumor growth [262].
The use of immunotherapy in cancer has made signifi-

cant progress over the past two decades, with several
immunotherapy drugs being approved by the FDA for
the treatment of cancer. These drugs function to over-
come the mechanisms of immune tolerance that are
employed by cancer cells to evade or limit the body’s

immune response. These mechanisms include changes
in antigen processing and presentation, creation of an
immunosuppressive microenvironment, induction of
T-cell death and activation of negative immune regula-
tory pathways [263]. One key receptor involved in the
immunoinhibitory pathways is the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), which is expressed on the
surface of immune cells and acts as an immune checkpoint.
Studies have shown that targeting CTLA-4 receptor in-
duced favourable responses in patients with advanced mel-
anoma [264], and the FDA-approved CTLA-4 inhibitor,
Ipilimumab, is now in clinical trials for prostate and lung
cancers. Another immune checkpoint involved in tumor
immune-resistance is the interaction between programmed
cell death-1 (PD-1) and programmed death-ligand 1
(PD-L1) [265]. Specific targeting of PD-1 and PD-L1 has
been clinically shown to be very effective in treatment of
metastatic cancers and melanomas [266, 267].
However, as most of these immunotherapy strategies

are mainly targeted at bulk tumors, which contain more
differentiated cells with “differentiation antigens” [268],
CSCs (which have a different set of tumor antigens)
would not be successfully eradicated. Hence, more ef-
fective targeting of the CSC population can be achieved
via CSC-specific immunologic approaches, or by com-
bining immunotherapy with epigenetic therapies that in-
duce CSC differentiation and alter surface protein
expression. The latter approach would likely improve
the overall antitumor efficacy as both CSC and bulk
tumor populations can be targeted simultaneously. For
instance, the use of DNA hypomethylating agent (5-aza-
2’-deoxycytidine) in combination with anti-CTLA-4
monoclonal antibody in syngeneic transplantable murine
models demonstrated significant reduction in tumor vol-
umes as compared to single agent treatment alone [269].
The improved efficacy of this combination was attrib-
uted to the increased CD3+ T-cell infiltration in the
combination cohort tumors and a sustained expression
of cancer antigens and MHC proteins due to promoter
demethylation. Furthermore, combinatorial drug treat-
ment with immune checkpoint inhibitors (anti-CTLA-4
and anti-PD-1) and epigenetic modulators (5-azacytidine
and Entinostat) showed remarkable eradication of CT26
colorectal tumors and 4 T1 mammary tumors in more
than 80% of the tumor-bearing mice [270]. Importantly,
4 T1 tumor-bearing mice that were given combinatorial
treatment did not develop metastases as compared to
mice given single agent treatment. These findings dem-
onstrate that epigenetic drugs in combination with im-
munotherapy can enhance the reversal of immune
tolerance in cancer cells, including CSCs.
Another way in which cancer cells evade cytotoxic

T-cells is by down-regulating human leukocyte antigen
(HLA) to avoid tumor antigen presentation [134].
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Hypermethylation of HLA promoters was frequently ob-
served in gastric cancer and esophageal squamous cell
cancers [271, 272]. Treatment with DNMT and HDAC
inhibitors were found to be capable of reversing this
hypermethylation and increasing HLA expression [272–
275], thus priming these cells for immunotherapy. In
addition, Li et al. showed that azacitidine treatment was
able to enhance immunomodulatory pathways, such as
antigen processing/presentation and interferon signaling,
in breast, colorectal and ovarian cancers [276]. These
preclinical data highlight the promising potential of
combining epigenetic and immunotherapies in improv-
ing cancer treatment efficacy, which will be verified in
several ongoing clinical trials.

Conclusion
Our understanding of cancer has changed over the last
decade with the advances in sequencing technologies
and the deciphering of the human genome. It is now
clear to us that the tumor genome is complex and het-
erogeneous and that tumors do not arise from a single
clone with a single tumor genome. We have discussed
several important aspects and examples of how epigen-
etic deregulation may drive or promote tumorigenesis
and metastasis by alteration of key transcriptomic pro-
grams and signaling pathways, especially in CSCs. More
importantly, we have provided several evidences that
these epigenetic modifiers are targetable and many of
these epigenetic modulating drugs have entered clinical
trials, and some including azacitidine, decitabine, vorino-
stat and romidepsin have been approved for various in-
dications by the FDA. We believe that the success of
these epigenetic therapeutic trials will provide a promis-
ing path to follow.
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NSCLC: non-small cell lung cancer; NSCs: Neural stem cells; OCT4: Octamer-
binding transcription factor 4; PML-RARα: Promyelocytic leukemia protein
retinoic acid receptor alpha; PTCH1: Patched receptor; RBPJ-κ: Recombination
signal binding protein for immunoglobulin kappa J region; SAH: S-
adenosylhomocysteine hydrolase; SAM: S-adenosyl methionine; SFRP-1: Secreted
frizzled-related protein 1; Shh: Sonic hedgehog ligand; SirT1: Sirtuin 1;
SMO: Smoothened; SMRT: Nuclear receptor co-repressor 2; SNAIL: Snail family zinc
finger 1; SP: Side population; STRAP: Serine-threonine kinase receptor-associated
protein; SUFU: Suppressor of fused homolog; SUV39H1: Suppressor of variegation
3–9 homolog 1; SUV39H2: Suppressor of variegation 3–9 homolog 2;
Suz12: Suppressor of zeste 12 protein homolog; TCF/LEF: T-cell factor/lymphoid
enhancer factor; TGF-β: Transforming growth factor-β; TNBC: Triple-negative breast
cancer; TWIST1: Twist-related protein 1; UTX: Ubiquitously transcribed
tetratricopeptide repeat, X chromosome (UTX); WIF-1: Wnt inhibitory factor 1;
ZEB1: Zinc finger E-box-binding homeobox 1; ZEB2: Zinc finger E-box-binding
homeobox 2
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