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Simple Summary: Epigenetic alterations contribute to the distinct biology of pancreatic ductal
adenocarcinoma (PDAC) and thus allow a better understanding of molecular mechanisms active in
progression, metastasis and therapeutic resistance. Exploiting such knowledge for the development
and instalment of clinically impactful biomarkers and epigenetically targeted therapies will open
novel and improved avenues for personalized patient care. In this review, we aim to summarize
the recent advances in PDAC biology, biomarker development and therapeutic options from an
epigenetic perspective.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with
high potential of metastases and therapeutic resistance. Although genetic mutations drive PDAC
initiation, they alone do not explain its aggressive nature. Epigenetic mechanisms, including aberrant
DNA methylation and histone modifications, significantly contribute to inter- and intratumoral
heterogeneity, disease progression and metastasis. Thus, increased understanding of the epigenetic
landscape in PDAC could offer new potential biomarkers and tailored therapeutic approaches. In this
review, we shed light on the role of epigenetic modifications in PDAC biology and on the potential
clinical applications of epigenetic biomarkers in liquid biopsy. In addition, we provide an overview
of clinical trials assessing epigenetically targeted treatments alone or in combination with other
anticancer therapies to improve outcomes of patients with PDAC.

Keywords: pancreatic ductal adenocarcinoma; epigenetics; cfDNA methylation; DNMT inhibitors;
HDAC inhibitors; retinoids; BET inhibitors; EZH2 inhibitors

1. Background

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid tumors
with a 5-year survival rate of 11% in the United States, making it one of the leading causes
of cancer-related mortality [1]. This dismal prognosis is due to several disease- and patient-
related factors, such as the diagnosis at advanced stages, tumor localization, age, patient
performance status and comorbidities [2,3]. More than 80–90% of patients are diagnosed
with irresectable or metastasized disease or develop relapse or metastases after resection,
thus require palliative treatment [4]. Depending on the performance status, combination
therapies of 5-fluoruracil, irinotecan and oxaliplatin (FOLFIRINOX) or of gemcitabine
and nab-paclitaxel or a monotherapy with gemcitabine are the current first-line standard
chemotherapy protocols for PDAC patients in the palliative setting [5,6]. However, despite
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advances, these treatments show modest improvement in overall survival (OS), and can
pose a high risk of toxicity.

Early studies have demonstrated the association of initial PDAC histological changes
with driver mutations involving, amongst others, the activation of oncogenic KRAS [7] or
inactivation of tumor suppressor TP53 [8], SMAD4 [9] or CDKN2A [10], while PDAC pro-
gression may rather be related to epigenetic changes [11,12]. In fact, genetic, environmental,
and tumor-intrinsic factors, such as the tumor microenvironment (TME), likely collaborate
to establish distinct epigenetic landscapes, which shape PDAC heterogeneity [11]. More-
over, uniformity in driver gene mutations between primary tumor and metastatic sites
in PDAC patients [13,14] highlight the fact that epigenetic reprogramming is probably a
major determinant of clonal fitness and tumor evolution required for PDAC expansion and
metastatic spread.

The term “epigenetics” was first proposed in the 1940s to describe the mechanism
by which a specific genotype could generate different phenotypic effects [15]. In other
words, epigenetics bring about divergent gene expression profiles, without altering DNA
sequence, but by modulating accessibility of transcription machinery to target genes, a
process which is essential to develop cellular identity [16]. Alterations in this mechanism
can contribute to tumor evolution by increased cancer cell proliferation and metastasis via
silencing tumor suppressor genes or activating oncogenes [17]. Aberrant DNA methylation
and post-translational histone modifications are among the main epigenetic alterations,
also contributing to PDAC heterogeneity and progression [17]. PDAC harboring mutations
in chromatin modifiers (e.g., ARID1A, KMT2C, KMT2D) are more likely to develop a more
aggressive squamoid/squamous morphology and metastasis [18]. Moreover, genome-wide
analysis of PDAC samples linked the evolution of malignant traits contributing to distant
metastasis to widespread epigenetic changes involving global reprogramming of histone
H3K9 and DNA methylation within large heterochromatin domains [19]. In that light,
ongoing efforts are aiming to develop diagnostic and therapeutic modalities for PDAC
based on the dysregulated epigenetic state of the tumor. This should ideally be deployed
through a two-way evidence exchange process between preclinical models of varying
complexities and data from clinical trials (Figure 1).
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Figure 1. Development of new biomarkers and therapeutic approaches for cancer treatment: A
bi-directional process. Bench to bedside; Experimental models used in cancer research can vary from
2D-cell culture to murine in vivo models to more complex 3D patient-derived cancer organoids. These
models can identify cancer-related genetic and epigenetic signatures using a plethora of sequencing
and targeted qPCR techniques, which can then be utilized to predict novel cancer biomarkers and
therapeutic targets to be eventually translated into clinical practice. Bedside to bench; the poor
performance of some biomarkers or the emergence of drug resistance to anticancer agents may
contribute to their failure to reach the clinic. This urges preclinical studies to test new biomarker
panels or to find new strategies to overcome drug resistance with the aim to improve therapeutic
outcomes of cancer patients.
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2. Epigenetic Modifications in the Pathophysiology of PDAC
2.1. DNA Methylation

DNA methylation describes the addition of a methyl group to the DNA. Changes in
global DNA methylation and of local patterns are among the earliest and most frequent
events in cancer development [20]. 5-Methylcytosine (5mC) is the most abundant and
best-studied nucleotide modification in eukaryotes. It is generated through the addition
of a methyl group to the 5′ carbon of the cytosine pyrimidine ring and predominantly
occurs at CpG dinucleotides. Of particular relevance is the cytosine methylation status in
the approximately 30,000 CpG islands of the human genome, which are clusters of CpGs
located in the gene promoter regions or gene bodies (frequently serving as alternative
promoters), the hypermethylation of which typically leads to transcriptional gene silenc-
ing [21,22]. Repression of gene expression is facilitated via inhibition of transcription factor
binding to the DNA and via chromatin remodeling through the binding of methyl-CpG-
binding domain proteins (MBDs) and subsequent recruitment of additional proteins [23,24].
DNA methylation is facilitated by DNA methyltransferases (DNMT) [25]. DNMT3A and
DNMT3B establish de novo methylation and DNMT1 maintains methylation in daughter
DNA strands. 5mC can be actively demethylated via oxidation to 5-hydroxymethylcytosine
(5hmC) by Ten-eleven translocation (TET) dioxygenases which requires α-ketoglutarate
(α-KG), which in turn is provided by isocitrate dehydrogenases (IDH) [26].

DNA methylation likely plays a key role in PDAC progression. DNA methylation
patterns (globally and at specific loci) differ between PDAC and normal tissue and among
PDAC subtypes [27–29]. For example, high promoter methylation of the putative tumor
suppressor ISL2 in PDAC correlates with poor patient survival and its depletion in human
PDAC cells leads to increased oxidative phosphorylation as source for cell energy [30].
Using bisulfite sequencing and methylation-specific PCR (MSP) in PDAC primary tumors
and cell lines, DNA hypomethylation and subsequent overexpression of genes altered
during tumorigenesis (such as PSCA and S100A4) have been shown to contribute to
tumor progression [31]. DNA methylation profiling can distinguish between distinct PDAC
subtypes [32]. The more aggressive squamous-/basal-like tumors features hypomethylation
of repetitive elements and execution of an intrinsic IFN signaling program that is associated
with worse overall survival, compared to the progenitor-like/classical subtype. Moreover,
5hmC has been linked with transcriptional programs defining PDAC subtypes [33]. Loss of
5hmC due to reduced TET2 expression can result in squamous-like PDAC, and enhancing
TET2 stability restores 5hmC and GATA6 levels and reverts the phenotype to the classical
subtype that features more favorable treatment responses.

Altered DNA methylation may also be a key player in regulating tumor-associated
macrophages (TAMs), a main component of the desmoplastic TME in PDAC [34–36].
Studies in macrophage cell lines have linked DNMT1-mediated suppression of SOCS1
expression or of KLF4 expression with macrophage M1 activation [34,35]. In PDAC-specific
models, PDAC cells were able to reprogram M1-like macrophages by inducing DNA
methylation which leads to a suppressed glucose metabolic status and a switch of M1-
like to M2-like macrophages [36]. In accordance, M1-like macrophages (but not M2-like
macrophages) required DNA methylation to promote metastasis in a PDAC mouse model.
Moreover, direct contact of PDAC cells with cancer-associated fibroblasts (CAF), another
essential component of the TME, induced SOCS1 methylation with downstream activation
of STAT3 and insulin-like growth factor (IGF)-1 expression [37]. These results are in line
with PDAC cells being in constant interaction with the TME to support their growth,
progression and metastasis formation.

Changes in DNA methylation patterns strongly correlate with aging [38,39], with
“epigenetic clocks”, i.e., the methylation status of a set of CpG sites, being able to reliably
predict an individual’s age. The methylation status is under the influence of extrinsic
factors (e.g., nutrition, microbiome) and of a process called “epigenetic drift” [38]. In this
process, errors occur in the transfer of epigenetic marks to the daughter DNA strands due
to the relatively low fidelity of DNMTs. PDAC is usually referred to as a disease of the
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elderly [40], with less than 10% of the patients being younger than 55 years [41]. This
raises the question whether DNA methylation patterns may be associated with PDAC
development in younger patients. However, a study by Raffenne and colleagues using
publicly available DNA methylation data found no difference in the DNA methylation
profiles between early- and late-onset PDAC [42]. In another study, DNA methylation
(as a sign of aging) in leukocytes were found to be associated with an increased risk for
PDAC [43]. Given for example the potential for identifying younger individuals at higher
risk for cancer development (including PDAC) through age-associated DNA methylation
and other epigenetic marks, extended research in this context appears warranted.

2.2. Histone Modifications

In eukaryotic cells, nucleosomes are the basic structural unit of DNA packaging, where
DNA is wrapped around histone octamers allowing its condensation to chromatin [44].
N-terminal histone tails protruding from nucleosomes are prone to posttranslational modi-
fications. Acetylation and deacetylation of lysine residues in these histone tails, mediated
by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are important
mechanisms to regulate chromatin accessibility and gene transcription [16]. Enhanced
acetylation is associated with a more relaxed chromatin accessible to the transcription
machinery, while the reverse reaction facilitates gene silencing. While the function of HATs
(e.g., p300) in PDAC could be either tumor suppressing or promoting depending on the
targeted genes [45,46], the role of HDACs seems to be more consistent. HDACs are able
to mediate tumorigenesis, and their activity is associated with poor outcomes in PDAC
patients [47,48], for example owing to the suppression of genes encoding proapoptotic
proteins such as BH3-only protein NOXA and Nur77 with subsequent enhancement of
cellular proliferation [48].

Acetylated lysine residues are recognized by proteins of the bromodomain and extra-
terminal (BET) family (including BRD2, BRD3, BRD4, BRDT) [49]. Binding to hyper-
acetylated chromatin regions leads to formation of a super enhancer protein complex and
interaction with the positive transcription elongation factor (P-TEFb) which promotes
gene transcription and elongation [50,51]. BET protein dysregulation can for example be
involved in tumor development and progression by promoting the expression of classical
oncogenes such as MYC [52].

Lysine residues in the histone tails can also serve as methylation targets for histone
methyltransferases (HMTs), while these marks can be removed by histone demethylases
(HDMs) [16]. The effect of histone methylation on gene expression is context-dependent
and relates to the lysine position [53]. For instance, trimethylation of lysine 4 in histone 3
(H3K4me3) is generally associated with gene activation, while the contrary occurs with
trimethylation of lysine 27 (H3K27me3). Aberrant histone methylation of cancer-related
genes has been involved in abnormal proliferation, cell cycle dysregulation, immune es-
cape and metabolic reprogramming of tumor cells [54]. ChIP-seq data demonstrated that
gain of H3K27me3 and loss of H3K4me3 at acinar cell fate genes enhanced acinar-to-
ductal metaplasia which is essential for PDAC development and progression [55]. Loss of
KDM6A, an HDM of H3K27me3, in a PDAC mouse model induced aggressive squamous-
like, metastatic disease related to the activation of H3K27ac-marked enhancers regulating
∆Np63, MYC and RUNX3 [56]. The HMT enhancer-of-zeste homolog 2 (EZH2), the cat-
alytic component of the polycomb repressive complex 2 (PRC2), mediates generation of
H3K27me3 [57]. EZH2 was found to be overexpressed in the nucleus in PDAC cell lines
and in 68% of PDAC cases, and depletion of EZH2 decreases PDAC cell proliferation [58]
and induces a less aggressive and more chemotherapy-susceptible, classical PDAC subtype
(likely via increased GATA6 expression) [59].

2.3. Epigenetic Characteristics of Metastatic PDAC

PDAC is characterized by high frequency of metastases [60] with common sites of
dissemination including liver, peritoneum and lungs [61]. Epithelial to mesenchymal
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transition (EMT) is considered a major regulator of tumor spread, where cancer cells lose
their epithelial markers such as E-cadherin, while gaining mesenchymal and fibroblast-like
properties [62]. Clinical and preclinical studies showed an inverse correlation between
EZH2 expression and E-cadherin in PDAC [63], where high EZH2 expression was associ-
ated with advanced disease stage and lymph node metastasis [64]. Moreover, expression
of CDH1, encoding E-cadherin, is downregulated in pancreatic cancer cells by binding of
repressor complexes comprised of HDACs and certain transcription factors such as ZEB1
or Snail [65,66].

FOXA1 and FOXA2 are transcription factors which induce the expression of E-cadherin [67].
Consequently, their downregulation was associated with EMT induction and cancer progression
in in vivo and in vitro PDAC models. It was also implicated, by results of ChIP-seq, RNA-seq
and ATAC-seq, that FOXA1 enhanced H3K27ac in certain genomic regions in PDAC cells, which
activated foregut developmental genes, thus promoting cellular growth in vitro and metastasis
in vivo [68]. Further studies are required to explain these observations.

Aberrant DNA methylation has also been implicated in PDAC metastasis [69–71].
TFPI-2, a proteinase inhibitor which prevents extracellular matrix degradation and thereby
tumor invasion and metastasis, is downregulated in PDAC tumors and cell lines owing to
its hypermethylated promoter as revealed by MSP and bisulfite sequencing [69]. Restora-
tion of its expression reduced the malignant behavior of PDAC in vitro. Similar effects were
observed for the promoter methylation of the RELN gene, which encodes an extracellular
matrix serine protease regulating neuronal migration and the low expression of which as-
sociated with worse survival in pancreatic cancer [70]. In addition, DNA hypomethylation
of MET (encoding c-Met) and ITGA2 (encoding Integrin α-2) correlated with high gene
expression and with poor patient outcomes [71].

Hence, epigenetic modifications (e.g., chromatin remodeling or altered DNA methyla-
tion) can initiate transcriptional changes in PDAC and thus promote the gain of aggressive
and metastatic disease characteristics.

3. Diagnostic Utility of Epigenetic Modifications in PDAC
3.1. DNA Methylation in Liquid Biopsies as Marker for the Diagnosis of PDAC

As discussed earlier, most PDAC cases are diagnosed at advanced stages which is
related to the absence of specific signs and symptoms during the early phases of PDAC
and the tendency to early spread [72]. Due to this delay in detection, less than 20% of
patients qualify for primary surgical resection [73]. The standard tumor biomarker at PDAC
diagnosis is carbohydrate antigen 19-9 (CA 19-9) [74]. However, owing to its low sensitivity
and specificity, its application for early PDAC screening is not recommended. Biomarkers
which provide a better performance for early diagnosis of PDAC are required.

Liquid biopsy refers to the detection of cancer cells or cell material in blood and other body
fluids [75]. Liquid biopsy approaches are currently usually based on the analysis of plasma cell
free DNA (cfDNA). Most of the (particularly initial) liquid biopsy studies in PDAC focused on
the detection of gene variants, especially KRAS mutations [76–80]. However, DNA methylation
marks in cfDNA of PDAC patients have also been studied, and they may add clinically relevant
information, in particular in combination with genetic analyses.

Melnikov et al. were among the first to study methylation changes of cfDNA in
PDAC [81]. They were able to determine a classifier based on the promoter methylation
of five genes that differentiated patients with PDAC from healthy controls, but sensitivity
(76%) and specificity (59%) were still modest. The ability of cfDNA methylation to identify
patients with PDAC has since then been investigated in numerous studies [82–90]. In
another early study comprising 104 patients with PDAC and assessing NPTX2 hyperme-
thylation in cfDNA, sensitivity and specificity were 80% and 76% to identify patients with
PDAC [83]. The hypermethylation of NPTX2, together with that of SPARC, in cfDNA also
correlated with PDAC diagnosis (vs. chronic pancreatitis) and with poor survival in another
study [84]. The promoter methylation of BNC1 and ADAMTS1 were also identified as
promising cfDNA markers for the detection of PDAC [86]. This was recently corroborated
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by the observation that the combined assessment of these markers achieved a sensitivity of
97.4% and specificity of 91.6% to distinguish patients with PDAC from controls [85]. Hen-
riksen and colleagues analyzed a 28-gene panel and defined a prediction model comprising
higher age and methylation status of 8 genes (BMP3, RASSF1A, BNC1, MESTv2, TFPI2,
APC, SFRP1, SFRP2) to differentiate between PDAC patients and those with pancreatitis or
no pancreatic disease with a sensitivity of 76% and specificity of 83% [87]. The concurrent
analyses of hundreds of methylation marks in cfDNA also allowed for the differentiation
among various gastrointestinal cancers, including PDAC [89]. In a recent study, a set of
10 cfDNA methylation markers (MIR129-2, LINC01158, CCDC181, PRKCB, TBR1, ZNF781,
MARCH11, VWC2, SLC9A3, HOXA7) demonstrated a very good performance with 100%
sensitivity at 95% specificity to distinguish between metastatic pancreatic cancer and benign
pancreatic cysts [91].

Adding another diagnostic modality (CA19-9 levels, KRAS mutation status etc.) to
the assessment of cfDNA methylation can improve accuracy [90,92,93]. Evaluating CA
19-9 levels together with the methylation status of RUNX3 in cfDNA was able to increase
sensitivity to detect PDAC from 50.9% (RUNX3 DNA methylation alone) to 85.5% [92]. In
another study, cfDNA analyses of 13 methylation markers among 120 advanced-stage and
50 early-stage PDAC patients and 170 controls showed that the combined analyses of the
DNA methylation markers and CA19-9 levels compared significantly better with either
assays alone, with an overall sensitivity and specificity of 92% at the pre-set specificity of
97.5% [90].

DNA methylation markers have also been investigated in body fluids other than
plasma or serum [94–96]. In one study, 14 markers were studied in pancreatic juice samples
from 38 patients with PDAC or intraductal papillary mucinous neoplasms (IPMN) with
high grade dysplasia and were compared with controls (N = 73) [94]. A group of 3 markers
(C13orf18, FER1L4, BMP3) was sufficient to distinguish patients with pancreatic cancer
from controls with 83% sensitivity at a pre-set specificity of 86%. The same group analyzed
a set of 13 methylation markers in 134 pancreatic cyst fluid samples, including 21 cases
with PDAC or high grade dysplasia and 113 controls [95]. Two markers (TBX15, BMP3)
achieved a sensitivity and specificity of > 90%. The group had previously also assessed
DNA testing (methylation markers and KRAS mutations) from stool for the detection of
PDAC [96]. At 90% specificity, the combination of methylated BMP3 and mutant KRAS
detected 67% of PDAC patients.

3.2. DNA Methylation in Liquid Biopsies as Marker for Prognostication and Treatment Monitoring
of PDAC

The importance of analyzing cfDNA methylation cannot only be limited to PDAC
diagnosis, it may become of clinical significance for prognostication of the disease and
treatment monitoring [91,97–100].

In one study, the mean number of hypermethylated genes in cfDNA was significantly
higher in metastatic (that means prognostically unfavorable) disease than in earlier stages
of PDAC [97]. The same group showed that patients with more than 10 hypermethylated
genes of a 28 gene panel had worse survival outcomes than those with fewer [98].

In addition to the mere number of hypermethylated genes, the specific set of aberrantly
methylated genes in cfDNA can have prognostic potential [97–100]. For example, hypermethy-
lation of ALX4, BNC1, HIC1, SEPT9v2, SST, TFPI2, and TAC1 differed between stage IV and
stage I-III disease in the aforementioned study [97]. Based on the gene methylation status, there
have been attempts to establish prognostic models but they require further validation [98,99].
Of interest is a post hoc analyses of the Prodige 35 and Prodige 37 trials, in which cfDNA
was assessed for two methylation markers (HOXD8, POU4F1) in 354 patients [100]. Median
progression-free survival (PFS) and OS were 5.3 and 8.2 months in cfDNA-positive and 6.2 and
12.6 months in cfDNA-negative patients, respectively. In multivariable analyses, the cfDNA
methylation status remained an independent prognosticator for PFS (hazard ratio (HR) 1.5) and
OS (HR 1.62).
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Owing to its non-invasive nature, plasma cfDNA allows serial monitoring of tumor
burden and evolution under treatment, which cannot be realized by tissue biopsy [101].
Although data on cfDNA methylation under treatment are scarce, a decrease in cfDNA
methylation levels has been reported in patients undergoing chemotherapy [91].

In summary, assessment of cfDNA methylation has promising diagnostic and prog-
nostic value in PDAC. Further validation studies in larger patient cohorts are required
to determine the most suitable DNA methylation biomarker panel for early detection,
prognostication and monitoring of PDAC patients.

3.3. Histone Modifications in Liquid Biopsies as Biomarker in PDAC

As mentioned earlier, nucleosomes are complexes of DNA and histone proteins which
constitute chromatin [44]. In several conditions, including cancer, mono- and oligonucleo-
somal fragments are released during cellular apoptosis into the blood circulation, where
they can potentially be used for diagnostic purposes [102]. One study showed that markers
of epigenetic modifications (e.g., histone modifications, of circulating nucleosomes were
able to distinguish between PDAC patients and control cases with good performance (72%
sensitivity at pre-set 90% specificity) [103]. In the same study, consideration of CA 19-9
in addition to a panel of 4 epigenetic markers enhanced the sensitivity to 92%. However,
further research is needed to confirm these findings.

3.4. Liquid Biopsy to Select Epigenetically Active Treatment in PDAC

As mentioned, the analyses of certain gene mutations in cfDNA may add to the
diagnostic and prognostic value of epigenetic biomarkers in PDAC. In that light, KRAS
mutation status in PDAC patients may inform on the sensitivity of decitabine, a DNMT
inhibitor, which exerted its anti-tumor effects in KRAS-mutated PDAC [104]. In fact, a
current phase II study is aiming to provide a proof-of-concept that KRAS-dependent PDACs
are responsive to decitabine treatment [105]. Similarly, mutations or loss of components of
the SWI/SNF (SWItch/Sucrose Non-Fermentable) complex, which is involved in the spatial
organization of chromatin, might become of relevance in PDAC [106]. In a phase I study,
solid tumors bearing loss of SWI/SNF subunit expression showed increased sensitivity
to the EZH2 inhibitor tazemetostat [107], which was consistent with previous preclinical
findings showing oncogenic dependency of SWI/SNF mutated cells on EZH2 activity [108].
Thus, SWI/SNF status-guided treatment with EZH2 inhibitors may become a promising
approach in PDAC treatment.

Table 1 summarizes the hitherto mentioned studies assessing the diagnostic and
prognostic value of liquid biopsy testing of epigenetic biomarkers in PDAC.

Table 1. Studies assessing the diagnostic utility of potential epigenetic liquid biopsy markers in PDAC.

Test Type Sample Arms Results Reference

Methylation of a
5-gene panel Diagnostic Blood PDAC

Healthy controls

Differentiated PDAC from
controls; sensitivity 76%,

specificity 59%
[81]

Methylation of a
6-gene panel Diagnostic Blood

PDAC
Chronic pancreatitis

Healthy controls

Differentiated PDAC from
healthy controls but not chronic

pancreatitis
[82]

Hypermethylation
of NPTX2 Diagnostic Blood

PDAC
Chronic pancreatitis

Biliary stone diseases

Differentiated PDAC from
chronic pancreatitis; sensitivity

80%, specificity 76%
[83]

Hypermethylation of
NPTX2 and SPARC

Diagnostic
Prognostic Blood PDAC

Chronic pancreatitis

Differentiated PDAC from
chronic pancreatitis

Associated with poor survival
[84]

Methylation of BNC1
and ADAMTS1 Diagnostic Blood PDAC

No PDAC

Differentiated PDAC from
controls without PDAC;

sensitivity 97.4%, specificity 91.6%
[85]
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Table 1. Cont.

Test Type Sample Arms Results Reference

Methylation of BNC1 and
ADAMTS1 Diagnostic Blood PDAC

Healthy controls

Differentiated PDAC from
controls; sensitivity 81%,

specificity 85%
[86]

Methylation of an
8-gene panel Diagnostic Blood

PDAC
Chronic/acute

pancreatitis
No pancreatic disease

Differentiated PDAC from
controls; sensitivity 76%,

specificity 83%
[87]

Tissue-specific DNA
methylation markers Diagnostic Blood

PDAC
Chronic pancreatitis

Healthy controls

Differentiated PDAC and
pancreatitis from controls [88]

Panel of differentially
methylated regions

(DMR)
Diagnostic Blood

PDAC
Other

gastrointestinal cancers

Differentiated PDAC from
other cancers [89]

Methylation of a 13- gene
panel + CA19-9 level Diagnostic Blood PDAC

Healthy controls

Detected PDAC across all stages
compared to controls; at pre-set

specificity 97.5%: sensitivity 92%,
specificity 92%

[90]

Methylation of a 10- gene
panel

Diagnostic
Monitoring Blood PDAC

Benign pancreatic cysts

Distinguished between metastatic
PDAC and benign cysts;

sensitivity 100%, Specificity 95%
Decrease in methylation levels

upon treatment

[91]

Methylation of RUNX3 +
CA19-9 level Diagnostic Blood

PDAC
Benign pancreatic disease

Healthy controls

Detected PDAC compared to
other arms; sensitivity 85.5%,

specificity 93.5%
[92]

Methylation of C13orf18,
FER1L4 and BMP3 Diagnostic Pancreatic

juice

PDAC
IPMN with high grade

dysplasia
Benign disease

Healthy controls

Distinguished between any stage
of PDAC and controls; at pre-set
specificity 86%: sensitivity 83%

Identified patients with stage I or
II PDAC or IPMN; at pre-set

specificity 86%: sensitivity 80%

[94]

Methylation of TBX15,
BMP3 Diagnostic Pancreatic

cyst fluid

PDAC
High grade dysplasia
Low or no dysplasia

Distinguished between PDAC
and high grade dysplasia from

other conditions; sensitivity and
specificity above 90%

[95]

Methylation of BMP3 and
mutant KRAS Diagnostic Stool PDAC

Healthy controls

Distinguished between PDAC
and controls; at pre-set specificity

90%: sensitivity 67%
[96]

Number and specific set
of hypermethylated

genes
Prognostic Blood PDAC Differentiated between metastatic

disease and earlier stages [97]

Number of
hypermethylated genes Prognostic Blood PDAC

Patients with more than 10
hypermethylated genes (of 28

analyzed) had worse
survival outcomes

[98]

Methylation of a
predefined gene panel Prognostic Blood PDAC

Overall and disease stage-specific
risk models based on the
methylation status of the

genes analyzed

[98]

Methylation of HOXD8
and POU4F1 Prognostic Blood PDAC Independent prognostic marker

for PFS and OS [100]

A panel of nucleosomal
biomarkers with or

without CA19-9
Diagnostic Blood

PDAC
Benign pancreatic disease

Healthy controls

Two models distinguished PDAC
from other arms at pre-set

specificity (90%); model 1 (5
nucleosomal biomarkers):
sensitivity 72%; model 2 (4
nucleosomal biomarkers +
CA19-9): sensitivity 92%

[103]

IPMN, intraductal papillary mucinous neoplasm; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma;
PFS, progression free survival.
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4. Epigenetic-Based Therapeutic Approaches

As summarized above, epigenetic modifications play a key role in PDAC development
and in tumor-to-metastasis transition. It is hence not surprising to find that treatment
strategies based on targeting epigenetic regulators recently became a subject of research
interest in PDAC, as outlined in the following section. The clinical trials discussed in this
part are summarized in Table 2.

4.1. DNMT Inhibitors (DNMTi)

While DNA hyper- and hypomethylation are both implicated in cancer development,
hypermethylation of tumor suppressor genes and DNMT overexpression are established
as major players in carcinogenesis [109]. The DNMTi azacitidine (5-azacytidine) and
its deoxy-derivative decitabine (5-aza-2′-deoxycytidine) are cytidine analogues that are
incorporated into DNA upon replication [109]. This leads to irreversible binding of DNMT1
resulting in its degradation and decreased DNA methylation. Azacitidine, in contrast to
decitabine, is additionally and mostly incorporated into RNA which inhibits polyribosome
assembly and protein generation. As single agents, DNMTi are currently approved for
treatment of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) [109]; in
AML, also in combination with the BCL2 inhibitor venetoclax [110]. DNMTi demonstrated
particular clinical benefit in patients with MDS or AML with adverse genetics, such as TP53
aberrations [111].

When treated with azacitidine, the PDAC cell line PANC-1 showed less tumorigenicity,
which was associated with re-expression of antiproliferative somatostatin (SST) and its
receptor 2 (SSTR2) [112]. Growth inhibition was further increased after the addition of
gemcitabine. In line with these findings, a phase Ib clinical trial has been conducted to test
the safety and efficacy of decitabine plus gemcitabine in patients with advanced PDAC and
sarcoma [113].

Additionally, in PDAC cells isolated from a stroma-rich mouse model (KPC-Brca1 mice)
IFN-inducible genes (including STAT1 and STAT2) were overexpressed upon decitabine
treatment, and combination of IFN-γ with decitabine demonstrated an additive antipro-
liferative effect on PDAC cells [114]. Azacitidine was shown to enhance tumor T-cell
infiltration and expression of transcripts for antigen presentation machinery such as MHC
class I in mouse and human PDAC cell lines, which was associated with tumor regres-
sion in azacitidine treated mice [115,116]. Therefore, sensitization to immune checkpoint
therapy by DNMTi has been subject to several phase I/II trials in patients with advanced
PDAC [117–119] (Table 2).

Systemic elevation of cytidine deaminase (CDA) levels, which rapidly metabolizes cyti-
dine analogues into inactive uridine, is a potential resistance mechanism to decitabine [120].
Accordingly, combining DNMTi with high doses of CDA inhibitors is considered a promis-
ing treatment strategy to overcome resistance in patients with advanced PDAC, although
currently available clinical data have been unsatisfactory [121,122]. Further ongoing and
completed phase I/II studies of DNMTi in different PDAC patients are illustrated in
Table 2 [123,124].

4.2. HDAC Inhibitors (HDACi)

HDACi can modulate expression of genes involved in apoptosis, differentiation and
angiogenesis and inhibit PDAC tumor growth by restoring the histone acetylation bal-
ance [125].

In pancreatic cell lines, HDACi have shown promising antitumor effects as monother-
apy [126,127] as well as in combination with other therapeutic agents such as gemc-
itabine [128] and proteasome inhibitors [129]. Several phase I and II clinical trials in-
vestigated safety, and to some extent, efficacy of HDACi monotherapy or in combination
with chemotherapeutic agents or proteasome inhibitors in PDAC treatment [130–142]
(Table 2). Nevertheless, the clinical efficacy of the additional HDACi application remained
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unsatisfactory in most studies, while being associated with hematologic and gastrointesti-
nal toxicities.

Similar to DNMTi, the immunomodulating effects of HDACi have increasingly moved
into the focus [143–145]. HDACi restores MHC I surface expression in tumor cells deficient
of TAP, a component of the antigen processing machinery, and enhances immunogenicity
and T-cell infiltration [143]. In a metastatic PDAC mouse model, HDACi application re-
duced the immunosuppressive ability of granulocytic myeloid-derived suppressor cells
(G-MDSCs) in the TME, leading to sensitization to immune checkpoint inhibitor treat-
ment [144]. To that end, a current phase II trial is aiming to determine the efficacy of
the HDACi entinostat with the PD1 inhibitor nivolumab in patients with unresectable
PDAC [145].

Moreover, combining HDACi with other targeted therapies, for example tyrosine
kinase inhibitors (TKIs), may be an approach to modify HDACi effects in PDAC, as it
has been investigated in a phase II trial, which tested the combination of the HDACi
vorinostat and the TKI sorafenib with gemcitabine and radiation therapy [146] (Table 2).
This might extend the findings of a recent study in hepatocellular carcinoma, where the
HDACi resminostat in combination with sorafenib inhibited platelet-mediated cancer
promoting effects, possibly via reduction of platelet-induced CD44 expression, suppression
of EMT and MEK/ERK signaling [147]. In fact, combining HDACi with inhibitors of MEK
and PI3K, the downstream effectors of KRAS signaling, enhanced apoptosis and reduced
metastasis, therapeutic resistance and self-renewal of PDAC cells [148,149], underscoring
the potential of KRAS targeting as a promising treatment in combination with HDACi in
PDAC patients.

4.3. Retinoids

Retinoids are derivatives of vitamin A. The first generation retinoid all-trans retinoic acid
ATRA (Tretinoin) is approved for treatment of acute promyelocytic leukemia (APL) [150].
ATRA also increases the efficacy of decitabine, without added toxicity, in frail patients
with AML other than APL [151]. ATRA treatment induces changes in chromatin confor-
mation/accessibility [152,153] and acts synergistically with decitabine [152] and HDACi [154].
It also has demonstrated (although mostly moderate) single-agent efficacy in various solid
tumors [155].

Retinoid signaling is fundamental in normal pancreas and PDAC development [156].
ATRA by itself exerts antineoplastic effects and increases cytotoxic effects of gemcitabine
in PDAC [157,158]. ATRA can restore quiescence of fibroblasts (through PIN1 inhibition),
which reduces desmoplastic features in the TME of PDACs and thus decreases chemother-
apy resistance [159–161]. ATRA has been investigated in combination with gemcitabine
and nab-paclitaxel in a phase I trial and showed an expectedly excellent toxicity profile
and encouraging response rates and duration, which led to a planned randomized phase II
trial [162–164] (Table 2).

Recently, the combination of the HDACi belinostat with 13-cis-retinoic acid (isotretinoin,
prodrug of ATRA) was well tolerated in patients with advanced solid tumors, including
three with PDAC [165], which might prompt more studies to further assess its efficacy in
PDAC. Moreover, retinoids enhanced the response to immune checkpoint inhibition, by
inducing interferon mediated inflammation in TME, which was characterized by increased
CD8+ T cell and decreased T-reg infiltration in cancer models [166]. On that basis, a phase I
study is currently underway to test the efficacy of ATRA and nivolumab combination in
patients with advanced or metastatic PDAC [167] (Table 2).

4.4. BET Inhibitors (BETi)

BETi, which competitively bind the acetyl-lysine recognition motif at the bromodomain
of BET proteins, can repress expression of oncogenes including those of known relevance
in PDAC, such as c-MYC [168,169]. BETi displayed significant in vitro and in vivo anti-
tumorigenic activity individually and increased the therapeutic effects of other treatment



Cancers 2022, 14, 5926 12 of 26

modalities in PDAC [170–174]. The potential benefits of BETi concluded from preclinical
studies remain to be confirmed in patients [175,176]. The BETi mivebresib displayed modest
efficacy, with 26 of 61 patients with solid tumors (including PDAC) achieving stable disease,
while the remaining patients had disease progression [175]. While BETi monotherapy
may not be an optimal therapeutic option, its role in combination with other systemic
therapies or with radiotherapy requires further assessment. In line with this, the BETi JQ1
and vorinostat synergistically suppressed tumor growth in a mouse model for advanced
PDAC [177]. Similar results were obtained in PDAC cell lines and xenograft models with
a dual BET/HDAC inhibitor [178]. In another study, JQ1 attenuated DNA double-strand
repair and consequently sensitized the tumor cells to PARP inhibitors (PARPi), both of
which exerted synergistic cytotoxic activity in vitro and in patient derived xenograft (PDX)
models of PDAC [179]. To test the applicability of these approaches in PDAC and other solid
tumors, phase I/II studies are currently testing the combination of the HDACi entinostat
with the BETi ZEN-3694 [180] and of the BETi NUV-868 with the PARPi olaparib and the
antiandrogen enzalutamide [181].

Reprogramming immune response by epigenetic modifications comes into play, when
a dual BET/HAT inhibitor enhanced antigen presentation of PANC-1 cells and T cell recruit-
ment to the tumor stroma, and sensitized PDAC cells to immune checkpoint inhibition and
extended survival in the KPC mouse model of advanced PDAC [182]. In a study involving
PDAC PDX models and patient biopsies, recruitment of TNF-α+ macrophages, mediated by
BRD4-mediated cJUN/AP1 expression, shifted tumor cells from the classical to the aggres-
sive basal subtype, which was reversed upon treatment with the BETi JQ1 [183]. Current
phase I/II trials are examining this treatment approach in advanced solid tumors [184,185].

4.5. EZH2 Inhibitors (EZH2i)

The methyl group added by the HMT EZH2 is provided by S-adenosylmethionine
(SAM) which is demethylated to S-adenosylhomocysteine (SAH) [186]. The majority of
EZH2i (e.g., tazemetostat) competitively occupy the site for SAM in the binding pocket
of EZH2. Different from that, 3-deazaneplanocin A (DZNep) inhibits SAH degradation
which causes methyl accumulation, which in turn inhibits EZH2 enzyme activity. EZH2i
lead to deprivation of the enzymatic activity of EZH2, which for example contributes to
low H3K27me3 levels and subsequent anti-tumor effects [186].

Preclinical studies demonstrated the synergistic cytotoxic effects of EZH2i in combi-
nation with other treatment modalities in several models of solid tumors [187–190]. In a
panel of PDAC cells, DZNep enhanced the anti-proliferative effects of gemcitabine and
reduced cellular migration potentially via augmenting expression of E-cadherin [191]. Dual
EZH2 and BET inhibition reduced colony formation, induced cell cycle arrest and caused
apoptosis in PDAC cell lines, better than each individual inhibitor alone, and suppressed
tumor growth in xenograft mice models [192]. Such data on EZH2i combination therapies
need to be considered when seeing the minor efficacy of EZH2i monotherapy, as indicated
by GSK2816126 treatment of patients with advanced hematologic or solid malignancies
(including PDAC) despite its relative safety [193].

Several ongoing and completed phase I/II studies have been dedicated to further
explore the safety and efficacy of EZH2i mono- and combination therapies in hematologic
and solid cancers [194–199]. Of these, two studies aim to assess the potential benefits of
combining tazemetostat with immune checkpoint inhibition [198,199]. This concept is
supported by the finding that EZH2i treatment enhanced antigen presentation in head
and neck squamous cell carcinoma cells and cytotoxicity of CD4+ and CD8+ T cells, and
improved response of anti-CTLA-4 and anti-PD-1 immune checkpoint inhibitors in solid
tumor models [200,201].

Most studies exploring the synergism of epigenetically active drugs with other treat-
ment modalities studied combinations with chemo- and/or radiotherapy, targeted thera-
pies, or immunotherapies. Two ongoing trials assess the safety and efficacy of combining
epigenetically active drugs, i.e., HDACi with retinoids or with BETi, in patients with solid
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tumors including PDAC [165,180]. DNMTi/HDACi combinations have not demonstrated
convincing added efficacy in several phase I/II trials in hematologic malignancies or solid
tumors [151,202]. Considering preclinical studies in PDAC, the anti-tumoral effect of the
DNMTi zebularine was augmented, when combined with the HDACi SAHA in PDAC cell
lines, which was, however, not reproducible in xenograft models [203]. On the other hand,
enhanced tumor suppression was observed when a BETi was combined with HDACi, HATi
or EZH2i in PDAC cell lines and mouse models, as discussed earlier in this section, which
may provide a promising strategy [177,178,182,192].

Table 2. Clinical trials evaluating epigenetic therapy in pancreatic cancer. The list may not be
exhaustive, particularly since not yet published data of trials in solid tumors do not allow conclusions
on the number of patients enrolled with pancreatic cancer.

Type Drug/Route of
Administration Combination Comparison Phase

(Status) Condition Pt number and
Results Reference

DNMTi

Decitabine iv - - II (r)
PDAC

(unresectable or
metastatic)

No results reported NCT05360264
[105]

Decitabine sc Gemcitabine - I (a)
PDAC

(metastatic)
Sarcoma

No results for
PDAC reported

NCT02959164
[113]

Decitabine po Tetrahydrouridine - I (c) PDAC
(metastatic)

13 pts; 8 evaluable
pts: SD n = 1, PD

n = 7,
median OS 3.1 mo

NCT02847000
[121,122]

Azacitidine sc Pembrolizumab - II (a)
PDAC

(unresectable or
metastatic)

36 pts; 34 evaluable
pts: PR n = 3, SD

n = 8,
median OS 4.67 mo

21% ≥ G3 AE

NCT03264404
[117]

Azacitidine sc

Romidepsin
nab-Paclitaxel
Gemcitabine
Durvalumab

Lenalidomide

- I/II (r) PDAC
(metastatic) No results reported NCT04257448

[118]

Azacitidine po - Observation
(OBS) (1:1) II (c)

PDAC (after
adjuvant

chemotherapy)

48 evaluable pts: PFS
HR 1.01, OS HR 1.01,
median PFS 7.8 mo
(AZA) vs. 8.9 mo
(OBS), median OS
21.9 mo (AZA) vs.

25.6 mo (OBS)

NCT01845805
[123]

Azacitidine po Carboplatin
nab-Paclitaxel - I (c) Solid tumors

PDAC (part 2): 24
evaluable pts:

DCR 46%

NCT01478685
[124]

Guadecitabine iv Durvalumab - I (a)
PDAC
HCC
BTC

PDAC: 24 evaluable
pts: PR n = 1, SD

n = 7,
median PFS 2.1 mo,
median OS 4.4 mo

NCT03257761
[119]

HDACi

Belinostat iv Carboplatin
Paclitaxel - I (c) Solid tumors PDAC: 3 pts: PR n = 1 [130]

Tacedinaline po Gemcitabine Gemcitabine
(1:1) II (c)

PDAC
(unresectable or

metastatic)

174 evaluable pts:
ORR 12% vs. 14%, OS
HR 0.98, median OS

6.5 mo vs. 7.1 mo

NCT00004861
[133]

Vorinostat po Capecitabine
Radiotherapy - I (c)

PDAC
(resectable,
borderline
resectable,

unresectable)

21 pts: median OS
13.2 mo

NCT00983268
[139]

Vorinostat po Marizomib - I (c)
PDAC

NSCLC
Melanoma

PDAC: 2 pts NCT00667082
[131,140]

Panobinostat po Bortezomib - II (c) PDAC
(metastatic)

7 evaluable pts: PD
n = 7, median PFS

0.86 mo,
median OS 4.01 mo

NCT01056601
[134]
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Table 2. Cont.

Type Drug/Route of
Administration Combination Comparison Phase

(Status) Condition Pt number and
Results Reference

Vorinostat po Bortezomib - I (c) Solid tumors PDAC: 6 pts NCT00227513
[135]

Valproic acid po S-1 - I/II (c)

PDAC
(unresectable or

metastatic)
BTC

PDAC: 7 pts [136]

Mocetinostat po Gemcitabine - I/II (c) Solid tumors

PDAC: 13 evaluable
pts (ph II): SD n = 9,
median PFS 5.3 mo,
median OS 7.4 mo

NCT00372437
[137]

Resminostat po S-1 - I (c)

PDAC
(unresectable or

metastatic)
BTC

PDAC: 7 pts; 3
evaluable pts

(regimen 3): SD n = 2,
median PFS 2.3 mo,
median OS 4.7 mo

[138]

Vorinostat po
Gemcitabine

Sorafenib
Radiotherapy

- I (a)

PDAC
(resectable,
borderline
resectable,

unresectable)

22 pts NCT02349867
[146]

Romidepsin iv Gemcitabine - I (c)

PDAC
(unresectable or

metastatic)
Other solid

tumors

27 evaluable pts; SD n
= 14, PD n = 11;
67% ≥G3 AE

NCT00379639
[132,141]

Romidepsin iv - - I (a) Solid tumors
Lymphoma PDAC/BTC: 5 pts NCT01638533

[142]

Entinostat po Nivolumab II (c)

PDAC
(unresectable or

metastatic)
BTC

PDAC:
18 evaluable pts:

CR/PR n = 3, median
OS 3.9 mo;

63% ≥G3 AE

NCT03250273
[145]

Retinoids

ATRA po Gemcitabine
nab-paclitaxel - I (c)

PDAC
(unresectable or

metastatic)

28 pts; 15 evaluable
pts: PR n = 7, SD

n = 7, median OS 11.7
mo; 63% ≥G3 AE

NCT03307148
[162,163]

ATRA po Gemcitabine
nab-paclitaxel

Gemcitabine
nab-paclitaxel

II (not yet
recruiting)

PDAC
(unresectable) No results reported NCT04241276

[164]

Isotretinoin po Belinostat - I (c) Solid tumors PDAC: 3 pts:
CR/PR/SD n = 0

NCT00334789
[165]

ATRA po Nivolumab - I (a)
PDAC

(unresectable or
metastatic)

No results reported NCT05482451
[167]

BETi

Mivebresib po - - I (c) Solid tumors PDAC: 6 evaluable
pts; 56% ≥G3 AE

NCT02391480
[175]

Birabresib po - - I (c) Solid tumors No results for
PDAC reported

NCT02259114
[176]

ZEN-3694 po Entinostat - I/II (r) Solid tumors
Lymphomas No results reported NCT05053971

[180]

NUV-868 po Olaparib
Enzalutamide - I/II (r) Solid tumors No results reported NCT05252390

[181]

EZH2i

Tazemetostat po - - I (c) Solid tumors
Lymphomas

No results for
PDAC reported

NCT01897571
[107]

GSK2816126 iv - - I (c) Solid tumors
Lymphomas PDAC: 2 pts NCT02082977

[193]

Tazemetostat po Durvalumab - II (r) Solid tumors No results reported NCT04705818
[199]

a, active not recruiting, AE, adverse events; AZA, azacitidine; BETi, bromodomain and extra-terminal proteins in-
hibitors; BTC, biliary tract cancer; c, completed; CR, complete remission; DCR, disease control rate (CR + PR + SD);
DNMTi, DNA methyl transferase inhibitors, EZH2i, enhancer-of-zeste homolog 2 inhibitors; G3, grade 3; GI,
gastrointestinal; HCC, hepatocellular carcinoma; HDACi, histone deacetylase inhibitors; iv, intravenous; mo,
months; NSCLC, non-small cell lung cancer; OBS, observation; ORR, overall response rate (CR + PR); OS, overall
survival; PD, progressive disease; PDAC, pancreatic ductal adenocarcinoma; PFS, progression-free survival; po,
per os (oral administration); PR, partial remission; pts, patients; r, recruiting; SD, stable disease.



Cancers 2022, 14, 5926 15 of 26

5. Conclusions and Perspective

In addition to genetic aberrations, dysregulation of epigenetic mechanisms including
DNA methylation and histone modifications are main contributors to PDAC biology and
heterogeneity, and hence, disease progression, metastasis and chemoresistance. Future
expansion of recent single-cell RNA sequencing data by integrative single-cell sequencing
analyses of genetic and epigenetic aberrations will help to even better define the spa-
tial and intercellular heterogeneity and its changes during tumor evolution and under
treatment [204–206].

The uniformity in driver gene mutations between primary tumors and metastatic
sites but potential differences in biology and treatment response indicate that epigenetic
alterations contribute to PDAC metastasis and tumor migration [13,14]. Aberrant DNA
methylation and chromatin remodeling are involved in the loss of epithelial cell adherence
and gain of mesenchymal-like features, while enhancing extracellular matrix degradation,
which promotes PDAC migration, invasiveness and resistance to therapy [63–66,68–71].

Utilizing epigenetic information for the development of reliable biomarkers and successful
therapeutic strategies is of essence. Liquid biopsy is emerging as a reliable and non-invasive
biomarker approach for diagnosis, prognostication and/or treatment monitoring in PDAC.
cfDNA methylation patterns are able to differentiate between PDAC and benign pancreatic
conditions with already relatively high accuracy [81–86,90–92,94–96]. Moreover, cfDNA methy-
lation markers have demonstrated promising results for identifying metastatic stage and es-
timating the prognosis of PDAC patients [84,97–100]. In light of the heterogeneous nature
of PDAC, future studies should be dedicated in developing biomarker panels, that combine
epigenetic data with other modalities (e.g., CA 19-9 levels or gene mutation status) to improve
the prediction performance and aid in developing tailored therapy [90,92,103,105,107]. As
illustrated in Figure 1, the development of biomarkers has to be performed hand-in-hand with
novel treatment modalities to allow for an optimum of prognostic and predictive information.
Only a few studies have described the predictive value of molecular markers in the context
of epigenetically active treatment in PDAC, e.g., KRAS mutation status for DNMTi [104,105],
SWI/SNF status for EZH2i [107,108] or expression status of FABP5 for retinoids [207].

Combining epigenetically targeted therapies with each other or with other chemother-
apeutic agents or targeted therapies showed promising anti-tumor and disease-modifying
effects due to their synergistic or additive mechanisms. Moreover, combination therapy
may be able to reduce or delay emergence of resistance by concurrent targeting of molecular
pathways essential for cellular viability or by inhibiting compensatory escape routes.

Since epigenetic therapies have repeatedly demonstrated intrinsic immune-modulatory
properties in preclinical studies, combining epigenetic therapy with immunotherapy in
general and immune checkpoint inhibition in particular is a promising approach in PDAC
management, and is being validated in several phase I/II trials [117–119,145,167,199].

Like most anti-cancer agents, epigenetic therapies may not always solely target the
gene, biological process or cell of interest. Such off-target effects may particularly cause ex-
cess of side effects. However, decrease of dose can reduce frequency and severity of side ef-
fects, and, as shown for DNMTi in the past, can also increase the epigenetic/reprogramming
potential of epigenetic agents (while reducing its cytotoxic impact) [208]. In addition, effects
that are currently considered to be off-target may eventually be desirable. For example,
beside their ability to re-activate tumor suppressor genes, DNMTi can also activate the ex-
pression of other genes silenced in normal cells and encoding for endogenous retroviruses
(ERVs), latent cancer testis antigens (CTAs), Alu elements and long interspersed elements
(LINEs) all of which can modulate tumor cell visibility to the host immune system [209].
Recently, the hydroxamate class of HDACi showed an off-target inhibition of MBLAC2 lead-
ing to accumulation of extracellular vesicles, thus unravelling a new HDAC-independent
therapeutic mechanism [210].

Nevertheless, the large-scale changes in gene expressions induced by epigenetic
therapy can pose risk to normal cells, which also rely on epigenetic plasticity in their
differentiation and development. In line with that, epigenetic inhibitors frequently cause
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hematopoietic side effects, such as thrombocytopenia, neutropenia and anemia or non-
hematologic toxicities including fatigue, diarrhea, nausea and vomiting which can reach
grade 3/4 severity [211–213]. It remains to be established to what extent more selective
agents such as the DNMT1i GSK3685032 [214], the HDAC9i nanatinostat [215] or the
HDAC6i ricolinostat [216] exhibit decreased toxicity by comparable or improved efficacy.

In summary, increased understanding of the role of epigenetic alterations in PDAC
progression and metastasis has paved the way for several studies to discover epigenetic
biomarker panels, prediction algorithms and therapeutic strategies aiming to improve the
outcomes of PDAC patients. This demonstrates that we are on the verge of implementing
epigenetics in the clinical management of our patients. Relevant next steps will be to
establish epigenetic biomarkers for treatment stratification and monitoring in prospec-
tive studies and to identify the most promising treatment combinations for further phase
III development (under special consideration of those combinations implementing im-
munotherapies and/or having an optimal therapeutic index). The further investigation
of epigenetic biomarkers and treatments has to be performed jointly in order to allow the
identification of those patients, who may most likely benefit from the respective treatment.
The optimal utilization of epigenetics in diagnostics and treatment holds the promise to
significantly improve the dismal prognosis of patients with PDAC.
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