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Abstract

Calorie restriction (CR) increases healthy life span and is accompanied by slowing or reversal of aging-associated DNA methylation (DNAm) 
changes in animal models. In the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIETM) human trial, we 
evaluated associations of CR and changes in whole-blood DNAm. CALERIETM randomized 220 healthy, nonobese adults in a 2:1 allocation 
to 2 years of CR or ad libitum (AL) diet. The average CR in the treatment group through 24 months of follow-up was 12%. Whole blood 
(baseline, 12, and 24 months) DNAm profiles were measured. Epigenome-wide association study (EWAS) analysis tested CR-induced changes 
from baseline to 12 and 24 months in the n = 197 participants with available DNAm data. CR treatment was not associated with epigenome-
wide significant (false discovery rate [FDR] < 0.05) DNAm changes at the individual-CpG-site level. Secondary analysis of sets of CpG sites 
identified in published EWAS revealed that CR induced DNAm changes opposite to those associated with higher body mass index and cigarette 
smoking (p < .003 at 12- and 24-month follow-ups). In contrast, CR altered DNAm at chronological-age-associated CpG sites in the direction 
of older age (p < .003 at 12- and 24-month follow-ups). Although individual CpG site DNAm changes in response to CR were not identified, 
analyses of sets CpGs identified in prior EWAS revealed CR-induced changes to blood DNAm. Altered CpG sets were enriched for insulin 
production, glucose tolerance, inflammation, and DNA-binding and DNA-regulation pathways, several of which are known to be modified by 
CR. DNAm changes may contribute to CR effects on aging.
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The geroscience hypothesis proposes that interventions that slow or 
reverse biological processes of aging can simultaneously prevent mul-
tiple chronic diseases and extend healthy life span (1). Proof of con-
cept for geroscience is emerging from studies with animals, in which 
interventions that slow or reverse the accumulation of molecular 
“hallmarks” of aging delay the onset of disease and functional im-
pairment and extend healthy aging (2–4). One of the best-evidenced 
geroscience intervention in animals is calorie restriction (CR) (5). 
CR is defined as a reduction in caloric intake from a normal intake 
(“ad libitum” [AL]) diet while maintaining adequate nutrient intake 
(6). From worms to mice to monkeys, CR is associated with delayed 
onset of age-associated diseases, including diabetes, cancer, cardio-
vascular disease, osteoarthritis, and increased healthy life span (7–9).

The mechanisms by which CR slows aging and extends 
healthspan in animal models are several and include alterations at 
physiological, metabolic, and genomic levels (6,10). Studies in ani-
mals have identified slowing or reversal of epigenetic changes asso-
ciated with aging in response to CR, including alterations of whole 
blood DNA methylation (DNAm) (11,12). However, the effects of 
CR on whole blood DNAm in nonobese humans are unknown.

The Comprehensive Assessment of Long-term Effects of 
Reducing Intake of Energy (CALERIETM) study is the first long-term, 
randomized clinical trial of CR in healthy, nonobese humans (13). 
The goal of CALERIETM was to identify the effects of 2  years of 
CR on predictors of longevity, disease risk factors, and quality of 
life. The intervention yielded substantial and sustained weight loss 
and signs of improved cardiometabolic health, reduced inflamma-
tion, and slowed biological aging, as measured by physiology-based 
algorithms (14,15). In ancillary studies in subsets of CALERIETM 
participants, CR induced signs of metabolic slowing and reversal of 
markers of immune-system aging (16,17).

We conducted a genome-wide analysis of whole-blood DNAm 
changes over 12 and 24 months in CALERIETM. The primary ana-
lysis tested changes in methylation levels at each of 828,613 C-G 
dinucleotides (CpGs). Secondary analyses tested changes at sets of 
CpGs identified in published epigenome-wide association studies 
(EWAS) of the body mass index (BMI), cigarette smoking, and 
chronological age (18–21). BMI EWAS analysis was of interest be-
cause the CALERIETM intervention induced substantial weight loss. 
Smoking- and chronological-age EWAS analyses were of interest 
in CALERIETM because these are established risk factors for short-
ening healthy life span and have associations with DNAm differ-
ences at large numbers of CpG sites, which are not currently known 
to be directly affected by CR. We hypothesized that CR would 
offer a geroprotective effect which could be measured molecularly 
via DNAm, especially at regions associated with risk factors for a 
shorter life span.

Method

The CALERIETM trial randomized 220 healthy, nonobese (BMI 
22.0 ≤ BMI < 28.0 kg/m2), adults aged 21–50 years to either a 25% CR 
intervention condition or AL control at a 2:1 (CR:AL) ratio across 3 
sites (Pennington Biomedical Research Center, Washington University, 
and Tufts University; Figure 1A, Table 1) (13,22). Participants were 
excluded from the study if they had significant medical conditions, 
abnormal laboratory markers, present or potential psychiatric or be-
havioral problems, regular use of medications (except oral contra-
ceptives), currently smoked, were highly physically active, or were 
pregnant or breastfeeding. Randomization was stratified by study site, 
sex, and BMI. The trial duration was 24 months. As measured using 

doubly labeled water, the CR intervention group achieved an average 
of 11.7 ± 0.7% CR (19.5 ± 0.08% in the first 6 months, 9.1 ± 0.7% 
during the subsequent 18 months) (23).

DNA Methylation
DNAm profiling was conducted in the Kobor Lab from whole-blood 
DNA stored at −80°C. After quality controls and normalization, 
DNAm data sets were generated for n = 595 samples from 214 in-
dividuals (142 CR, 72 AL; Figure 1B, Table 1). Briefly, 750 ng of 
DNA was extracted from whole blood and bisulfite was converted 
using the EZ DNA Methylation kit (Zymo Research, Irvine, CA). 
Methylation was measured from 160 ng of bisulfite-converted DNA 
using the Illumina EPIC Beadchip (Illumina, Inc., San Diego, CA). 
Quality control (QC) and normalization were performed using 
methylumi (v. 2.32.0) (24) and the Bioconductor (v 2.46.0) (25) 
packages from the R statistical programming environment (v 3.6.3). 
Probes with detection p-values > .05 were coded as missing; probes 
missing in > 5% of samples were removed from the dataset (final 
probe n = 828,613 CpGs). Normalization to eliminate systematic 
dye bias in the 2-channel probes was carried out using the methylumi 
default method. We conducted a principal component analysis of 
EPIC-array control-probe beta values to compute controls for tech-
nical variability across the samples (26).

Statistical Analysis
The primary analysis was an epigenome-wide association study 
(EWAS) of CALERIETM treatment effects in which the treatment 

Figure 1. Study design. (A) CALERIETM trial design. Two hundred and twenty 
participants were randomly assigned to either 25% calorie restriction (CR) or 
ad libitum (AL) at a 2:1 ratio. Of the 220 participants assigned, 218 started 
and 188 completed the intervention. (B) Blood samples were collected from 
participants at baseline and 12- and 24-month follow-ups. DNA was isolated 
and stored. DNA methylation was assayed with Illumina methyl EPIC bead 
chip arrays. After quality control and normalization, epigenome-wide 
association study (EWAS) analysis tested CALERIETM intervention effects at 12- 
and 24-month follow-ups at each of 828,613 CpG sites. Finally, we conducted 
secondary analysis comparing results from CALERIETM EWAS with results 
from published EWAS of BMI, cigarette smoking, and chronological age.

Table 1. Study Participant Characteristics at Pre-treatment Baseline

Intervention CR (n = 142) AL (n = 72) 

Females 97 50
Males 45 22
Hispanic 2 4
Asian 12 3
African American 15 10
White 110 55
Other 3 0
BMI (mean ± SD) 25.17 (1.8) 25.14 (1.7)
Age (mean ± SD) 38.19 (7.3) 38.16 (7.1)

Note: AL = ad libitum; BMI = body mass index; CR = calorie restriction.
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group was the exposure and changes in probe beta value from base-
line to 12 months and baseline to 24 months were the outcome vari-
ables. Secondary analyses examined sets of CpG sites identified in 
published EWAS of obesity, cigarette smoking, and chronological 
age to test if CALERIETM treatment specifically affected DNAm at 
CpG sites known to be altered by these exposures.

Epigenome-wide association study of CALERIETM 
treatment effects
We tested associations of CALERIETM intervention with changes in 
DNAm at each QC’ed CpG site using a mixed model. The model 
took the form of:

βit ∼ ai|+ |Follow− up Time|+ |CR|+ |Follow− up Time

× CR|+ |Xit|+ |e

where “β” is the level of methylation for CpG site “i” at time “t”; “a” 
is the model intercept, including sample-wide and person-specific 
components, “Follow-up Time” is a pair of indicator variables 
encoding the 12- and 24-month follow-ups; “CR” is an indicator of 
treatment group; “Follow-up Time × CR” is a series of interaction 
terms between follow-up time and treatment group; “X” is a matrix 
of covariates; and “e” is the error term comprising both sample-wide 
and person-specific components. The effect of the intervention is 
tested by the coefficients for the interaction terms, which evaluate 
the treatment effect at 12 and 24 months as the difference in change 
from baseline between the treatment (CR) and control AL groups.

Time-invariant covariates were pre-intervention-baseline 
chronological age, sex, BMI stratum (22–24.9, 25–27.9), study 
site, and the first 3 principal components estimated from genome-
wide SNP data in order to correct for population stratification. 
Time-varying covariates were proportions of monocytes, neutro-
phils, and CD4T, CD8T, Natural Killer, and B-cell lymphocytes esti-
mated from the DNAm data using the Houseman Equation via the 
Minfi and FlowSorted.Blood.EPIC R packages and the first 7 prin-
cipal components were estimated from EPIC-array control probes 
(26–28). Benjamini–Hochberg correction was applied to account for 
nonindependence of tests. Statistical significance was established at 
a false discovery rate (FDR) < 0.05. EWAS analysis was conducted 
using the lmerTest R package (29).

Secondary analyses of EWAS summary statistics
We evaluated whether DNAm changes associated with CALERIETM 
intervention reflected changes expected based on published EWAS. 
We conducted analyses of EWAS results from studies of BMI, cigar-
ette smoking, and chronological age (18–21). Hypothesis testing was 
performed using a Wilcoxon Rank Sum Test to compare distribu-
tions of CALERIETM EWAS test statistics for phenotype-associated 
CpGs to the distribution of CALERIETM EWAS test statistics for all 
other CpGs. Independent tests were performed for CpG sites iden-
tified as hypermethylated and hypomethylated in association with 
the target phenotype. Because all target-phenotype EWAS used an 
earlier generation of Illumina array technology, we restricted these 
analyses to the 431,205 EPIC-array CpGs measured in CALERIETM 
that were also included on the Illumina 450k array.

Secondary analysis of BMI-associated CpGs
The CALERIETM intervention was associated with an average weight 
loss of 8 kg by 12 months of follow-up (23). We therefore evaluated 
whether DNAm changes associated with the CALERIETM interven-
tion overlapped with DNAm associations with BMI. We examined 
129 CpGs identified in a prior EWAS of BMI (18). Specifically, we 

tested if CpGs hypomethylated in individuals with higher BMI 
showed signs of increased DNAm in response to the CALERIETM 
intervention, and if CpGs hypermethylated in individuals with higher 
BMI showed signs of decreased DNAm in response to CALERIETM 
intervention, that is, we tested the hypothesis that DNAm changed 
induced by CALERIETM intervention would be opposite to the pat-
tern of association with higher BMI.

Secondary analysis of smoking-associated CpGs
We tested if DNAm changes associated with the CALERIETM 
intervention overlapped with DNAm associations with cigarette 
smoking, a potent risk factor for aging-related disease and mor-
tality known to have pervasive effects on blood DNAm. We exam-
ined 2 622 CpGs identified in a prior EWAS of smoking (21). We 
tested if CpGs hypomethylated in smokers showed signs of increased 
DNAm in response to the CALERIETM intervention and if CpGs 
hypermethylated in smokers showed signs of decreased DNAm in 
response to the CALERIETM intervention, that is, we tested the hy-
pothesis that DNAm changes induced by CALERIETM intervention 
would be opposite to the pattern of association with smoking.

Secondary analysis of chronological-age-associated CpGs
We tested if DNAm changes associated with the CALERIETM inter-
vention overlapped with DNAm associations with chronological 
age. We examined 1 000 CpGs identified in a prior EWAS of chrono-
logical age (19). We tested if CpGs hypomethylated in chronologic-
ally older individuals showed signs of increased DNAm in response 
to the CALERIETM intervention and if CpGs hypermethylated in 
chronologically older individuals showed signs of decreased DNAm 
in response to CALERIETM intervention, that is, we tested the hy-
pothesis that DNAm changes induced by CALERIETM intervention 
would be opposite to the pattern of association with older chrono-
logical age. We repeated the analysis using 875 CpGs identified in a 
prior EWAS of chronological age (20).

For all secondary analyses, we applied a Bonferoni-corrected 
threshold of p < .003 to establish statistical significance (16 tests; 
0.05/16 = 0.003).

Enrichment analyses
To inform the interpretation of secondary analyses, we performed 
an enrichment analysis of sets of CpGs identified in published EWAS 
(18–20). We annotated each CpG to the nearest transcription start 
site to conduct gene enrichment analysis. We used the Reactome 
Database to identify enriched biological processes, pathways, 
and functional relationships (30). We used the GM12878 chro-
matin immunoprecipitation sequencing (ChIP-seq) data from the 
ENCODE data portal (31) to identify whether certain transcription 
factor binding sites were enriched amongst phenotype-associated 
CpGs. Briefly, BEDtools were used to identify the intersection be-
tween the Methyl 450 annotation file and the ChIP-seq bed file (32). 
Enrichment of transcription factors bound within 500  bp of the 
phenotype-associated CpGs compared to non-phenotype-associated 
CpGs was tested with permutation analysis. We additionally tested 
ontological enrichment using the gene ontology enrichment analysis 
and visualization tool (Gorilla) (33).

Results

EWAS of CALERIETM Treatment Effects
We conducted an intent-to-treat analysis of CALERIETM treatment 
effects at 12- and 24-month follow-ups. Genome-wide comparison of 
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DNAm between CR and AL at 12 and 24 months did not identify any 
CpG-site-specific changes that were statistically different from zero 
at FDR < 0.05 (Figure 2; Supplementary Table 1). The top-ranked 
CpG site at 12 months was within the first exon of T-Cell Receptor 
T3 Delta Chain (CD3D) (cg07728874, p-value = 4.05 × 10−6). 
At 24 months, the top-ranking CR-associated site was located on 
chromosome 1 within Long intergenic Non-Protein Coding RNA 
1344 (LNC01334) (cg12040931, p-value = 2.5 × 10−6).

Secondary Analyses of CpG Sites Identified in 
Published EWAS of BMI, Cigarette Smoking, and 
Chronological Age
We conducted secondary analyses of summary statistics from the 
CALERIETM EWAS using published results from EWAS of BMI, cig-
arette smoking, and chronological age.

Because CR induced substantial weight loss (23), we first com-
pared CALERIETM EWAS results for DNAm at n = 129 CpG sites 
identified in a published EWAS of BMI (18) with results for all 
other CpG sites. For CpG sites identified as hypermethylated in in-
dividuals with higher BMI (n = 50), CR tended to reduce DNAm 
(12  months, p = 2.06E−07; 24  months, p = 3.96E−11). For CpG 
sites identified as hypomethylated in individuals with higher BMI 
(n = 79), CR tended to increase DNAm (12 months, p = 1.04E−06; 
24 months, p = 7.04E−04). Thus, for both sets of CpGs, CR reversed 
BMI-associated DNAm.

We next compared CALERIETM EWAS results for DNAm at 
n = 2  622 CpG sites identified in EWAS of cigarette smoking (34) 
with results for all other CpG sites. For CpG sites identified as 
hypermethylated in smokers (n = 1  555), compared with AL, CR 
tended to reduce DNAm (12  months, p = 1.03E−05; 24  months, 
p = 2.63E−30). For CpG sites identified as hypomethylated in smokers 
(n = 1 067), compared with AL, CR tended to increase DNAm, al-
though this finding was statistically different from the null only at 
24 months of follow-up (12 months, p = .08; 24 months, p = 4.3E−04). 
Overall, CR showed signs of reversing smoking-associated DNAm.

Finally, we compared CALERIETM EWAS results for DNAm 
at 1  000 CpG sites previously associated with chronological age 
(19) to results for all other CpG sites. For CpG sites identified as 
hypermethylated in older adults (n = 980), compared with AL, CR 
tended to increase DNAm (12 months, p = 3.79E−41; 24 months, 
p = 5.73E−06). For CpG sites identified as hypomethylated in older 
adults (n = 20), compared with AL, CR was not associated with 
changes in DNAm (12 months, p = .12; 24 months, p = .29). Results 
were similar in repeated analyses using results from a second EWAS 

of chronological age (20). Thus, for sites hypermethylated in older 
adults, CR induced DNAm changes consistent with older age. In 
contrast, CR had no detectable effect on sites hypomethylated in 
older as compared to younger adults.

Results for analyses of BMI-, cigarette smoking-, and 
chronological-age-associated CpG sites are reported in Table 
2. Distributions of CALERIETM EWAS test statistics for BMI-, 
cigarettesmoking-, and chronological-age-associated CpGs are 
shown in Figure 3. Enrichment results and gene ontological process 
analyses are reported in Supplementary Table 2. External EWAS 
CpGs and test statistics are included in Supplementary Table 3.

Discussion

The goal of the CALERIETM Trial was to identify the effects of CR 
on predictors of longevity, disease risk factors and quality of life. 
Published analyses of CALERIETM data establish that the inter-
vention improved cardiometabolic health and suggest it may have 
slowed or reversed aging-related biological changes (14–17,23,35). 
In this study, we tested whether the intervention altered whole-blood 
DNAm. After accounting for multiple testing, EWAS analysis re-
vealed no sites of altered CpG methylation by CR. However, sec-
ondary analyses of sets of CpG sites, identified in published EWAS 
of BMI, cigarette smoking, and chronological age, indicated that the 
CALERIETM intervention changed blood DNAm in a manner con-
sistent with a reversal of DNAm patterns linked with obesity and 
cigarette smoking, but in the direction of older chronological age. 
Further interrogation across BMI-, cigarette smoking-, and chrono-
logical aging-associated sites revealed enrichment of genes associ-
ated with insulin production, glucose tolerance, inflammation, and 
DNA binding and regulation (Supplementary Table 2).

CALERIETM-induced DNAm changes at BMI-associated CpG 
sites were enriched for genes involved in insulin production, glucose 
tolerance, and inflammatory processes, consistent with CR-induced 
epigenetic changes in animal models (7–9,31,36–40). The 26 genes 
enriched in CpG sites hypermethylated with higher BMI include 
P4HB, critical for lipoprotein metabolism, insulin production, and 
glucose intolerance (37–39). CR-induced hypomethylation at P4HB 
may mediate previously reported CR-derived metabolic improve-
ments in lipoproteins and insulin sensitivity (15). Another poten-
tial epigenetic benefit of CR on glucose tolerance may derive from 
hypermethylation at cg16246545 (Supplementary Table 4), located 
near PHGDH. Deletion of PHGDH in adipocytes of mice with diet-
induced obesity improves glucose tolerance. CR-induced methylation 
changes at both P4HB and PHGDH likely enhance glucose tolerance. 
Additional CR-induced epigenetic changes at BMI-associated sites 
included hypomethylation at cg19750657 (Supplementary Table 4), 
located near UFM1, which has been identified as a mediator of the 
inflammatory response in diabetic mice. Taken together, these re-
sults imply that CR, especially when maintained for 24 months, may 
produce anti-inflammatory benefits (31,40).

CALERIETM-induced DNAm changes at smoking-associated 
CpG sites were enriched for genes involved in the tumor necrosis 
factor receptor-2 (TNF2) noncanonical NF-kB signaling pathway 
(Supplementary Table 2), a key driver of systemic inflammation 
(41). In addition, changes at sites with less methylation in smokers 
versus nonsmokers included sites identified in published EWAS 
of C-reactive protein (CRP) (42), a well-studied biomarker of in-
flammation, which is elevated in smokers and was reduced with 
CR in CALERIETM (43–46). Taken together, CR appears to reverse 
smoking-associated DNAm patterns in inflammatory pathways.

Figure 2. Quantile-quantile (QQ) plots of p-value distributions from 
epigenome-wide association study (EWAS) analysis of CALERIETM treatment 
effects at 12- and 24-month follow-ups. The figure shows QQ plots for EWAS 
of blood DNA methylation changes in response to CR at 12 months (Genomic 
Inflation—0.97; Panel A) and 24 months (Genomic Inflation—0.99; Panel B).
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The overwhelming majority of CpG sites identified in EWAS 
of chronological age exhibited greater DNAm in older as com-
pared to younger individuals. These sites, at which we observed 
increased DNAm in response to CR, are enriched for multiple 
transcription factors and DNA binding proteins, including T-Box 
Transcription Factor 15 (TBX15), SRY-Box Transcription Factor 1 
(SOX1), Zic Family Member 4 (ZIC4), SIM BHLH Transcription 
Factor 1 (SIM1), and SRY-Box Transcription Factor 17 (SOX17). 
Therefore, CR may induce gain of methylation parallel to aging 
at genomic sites serving regulatory functions. An important next 
step is to better understand if such gain of methylation reflects 
processes of aging-related decline in system integrity or, instead, 
genomic changes that preserve health in aging. For example, the 
association of CpG methylation at these sites with chronological 
age could reflect survivor bias, in which relatively fewer individ-
uals with lower levels of DNAm at these sites survive to advanced 
ages. CR slows the accumulation of aging-related DNAm changes 
in mice and monkeys (11,47). Further investigation of the signifi-
cance of chronological-age-associated CpG sites for phenotypes 
of aging is needed to clarify the interpretation of our findings. 
Specifically, studies are needed that establish if DNAm correlates of 
older chronological age are predictive of morbidity and mortality 
and if changes in DNAm at these loci correspond to worsening 
health trajectories.

We acknowledge limitations. Foremeost, response to the CR 
intervention was heterogeneous, as is typical in lifestyle inter-
ventions (48). Over the 2-year intervention, the treatment group 
achieved on average 12% CR (23). The trial sample was relatively 
small for genome-wide analysis; EWAS analyses were powered to 
detect only medium-to-large effect-size changes in DNAm at indi-
vidual CpG sites. Identification of such changes is hampered by im-
perfect measurement precision for individual CpG-site DNAm (48), 
which will bias estimates of change toward the null. Nevertheless, 
aggregate analyses of sets of CpGs identified in prior EWAS suggest 
that the CALERIETM intervention altered the blood methylome. As 
EWAS consortia uncover new CpG sites associated with a broader 
array of aging-related diseases, this analysis can be expanded. As 
new methods are developed to improve the precision of DNAm 
measurement from Illumina array data, it may be possible to revisit 
analyses to identify specific regions in which DNAm may be al-
tered by the intervention (49). Future studies testing stronger doses 
of CR or including larger samples may also improve the detection 
of DNAm changes. In that light, sex-dependent effects of weight 
loss interventions, particularly in CR, have been identified in ro-
dents (50). Although this study was underpowered to identify sex-
dependent methylation changes in response to CR, future studies 
should incorporate a study population and size better suited to ad-
dress these phenomena. Additionally, the majority of participants 
enrolled in CALERIETM were White. A priority for future trials of 
lifestyle interventions, including CR, is increased representation of 
non-White race/ethnic groups. Last, because follow-up extended 
only to the end of the intervention period, we cannot know if 
DNAm changes associated with CR persisted after the intervention 
concluded.

In conclusion, while CR did not result in individual CpG-site 
DNAm changes that reached epigenome-wide significance, analyses 
of sets of CpGs identified in prior EWAS of BMI, cigarette smoking, 
and chronological age identified clear evidence of DNAm changes 
in response to CR. As expected, the BMI-associated changes were 
consistent with CR-induced reversal of BMI-associated patterns of 
DNAm. Likewise, CR reversed DNAm patterns associated with Ta
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cigarette smoking, a known correlate of premature aging. Last, and 
to our surprise, CR appeared to increase methylation at sites where 
hypermethylation is associated with older as compared to a younger 
age. That these sites were enriched for regulatory mechanisms sug-
gests a complex interplay of CR with genomic changes characteristic 
of older age. Whether they imply pro-aging effects of CR or reflect 
signatures of healthy aging remains to be determined.
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