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Abstract

Background: Interest in the potential of DNA methylation in peripheral blood as a biomarker of cancer risk is
increasing. We aimed to assess whether epigenome-wide DNA methylation measured in peripheral blood samples
obtained before onset of the disease is associated with increased risk of breast cancer. We report on three independent
prospective nested case-control studies from the European Prospective Investigation into Cancer and Nutrition
(EPIC-Italy; n = 162 matched case-control pairs), the Norwegian Women and Cancer study (NOWAC; n = 168
matched pairs), and the Breakthrough Generations Study (BGS; n = 548 matched pairs). We used the Illumina 450k
array to measure methylation in the EPIC and NOWAC cohorts. Whole-genome bisulphite sequencing (WGBS) was
performed on the BGS cohort using pooled DNA samples, combined to reach 50× coverage across ~16 million CpG
sites in the genome including 450k array CpG sites. Mean β values over all probes were calculated as a measurement
for epigenome-wide methylation.

Results: In EPIC, we found that high epigenome-wide methylation was associated with lower risk of breast cancer
(odds ratio (OR) per 1 SD = 0.61, 95 % confidence interval (CI) 0.47–0.80; −0.2 % average difference in epigenome-wide
methylation for cases and controls). Specifically, this was observed in gene bodies (OR = 0.51, 95 % CI 0.38–0.69) but
not in gene promoters (OR = 0.92, 95 % CI 0.64–1.32). The association was not replicated in NOWAC (OR = 1.03 95 % CI
0.81–1.30). The reasons for heterogeneity across studies are unclear. However, data from the BGS cohort was consistent
with epigenome-wide hypomethylation in breast cancer cases across the overlapping 450k probe sites (difference in
average epigenome-wide methylation in case and control DNA pools = −0.2 %).

Conclusions: We conclude that epigenome-wide hypomethylation of DNA from pre-diagnostic blood samples may
be predictive of breast cancer risk and may thus be useful as a clinical biomarker.
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Background
Differences in DNA methylation observed in human
tumour tissue compared to normal tissue were reported
30 years ago [1]. Early reports showed hypomethylation
of oncogenes in several carcinomas versus healthy tis-
sues [2, 3]. Numerous studies since have established that
hypermethylation, mainly of CpG islands (CGIs) on pro-
moters of tumour suppressor genes [4, 5], and global (or
genome-wide) hypomethylation in tumours relative to non-
tumorous tissues occur in a wide variety of cancers [6, 7].
Despite the fact that most studies have measured glo-

bal methylation in repetitive elements, other studies sug-
gest that hypomethylation in cancer is not just limited to
repeats but also occurs in gene regions [8–10]. In
tumour DNA, Irizarry et al. found hypomethylation of
CpG shores, but not of CpG islands, and Hansen et al.
reported hypomethylated blocks across the epigenome
[11, 12]. It was not the presence of repetitive sequences
but rather of these hypomethylated blocks across unique
sequences, which caused most of the overall hypomethyla-
tion in tumours [11, 12]. For this reason, we hypothesised
that it would be possible to use the Illumina Infinium
HumanMethylation450 (HM450) BeadChip array to assess
genome-wide methylation levels. This array measures
DNA methylation at approximately 485,000 CpG sites dis-
tributed across the entire genome, including CpGs on
islands, shores, and shelves, as well as gene promoters and
bodies, intergenic regions, and other areas [13]. This covers
~1.5 % of the 28 million CpG sites known in the genome.
In the last few years, there has been increasing interest

in using blood samples to measure DNA methylation in
cancer cases and controls [14, 15]. The most robust can-
didate gene studies have used pre-diagnostic blood sam-
ples to report associations between breast cancer risk
and methylation of ATM and BRCA1 genes [16–18].
However, most previously conducted studies—including
genome-wide studies—have been retrospective, cross-
sectional studies. A recent review and meta-analysis con-
cluded that there could be great potential for DNA
methylation in peripheral white blood cells (WBCs) as a
biomarker for cancer risk when total 5-methylcytosine
levels were measured; however, methylation measured
by surrogate assays for repetitive elements was not asso-
ciated with cancer risk, and factors such as study design
and data analysis methods were often suboptimal [19, 20].
In addition, two other reviews highlighted challenges such
as sample selection and population choice when planning
epigenome-wide association studies (EWAS) [21, 22].
In the current study, we describe the results of nested

case-control studies from three prospective cohorts in
which we measured genome-wide methylation in periph-
eral WBCs of subjects who later developed breast cancer
compared to subjects who remained cancer free during
follow-up. We also compare our results with a recent
report from the Melbourne Cancer Cohort Study (MCCS)
that has used the same Illumina 450k methodology as our
study and reported a significant association between
epigenome-wide methylation and breast cancer risk
(odds ratio (OR) per 1 SD = 0.69 (0.50–0.95, p = 0.02)
[23]. We estimated genome-wide methylation from the
450k methylation array and from overlapping CpG sites
in whole-genome bisulphite sequencing, positing that
genome-wide hypomethylation may be present before
diagnosis and could be useful as a biomarker for early
detection or risk of breast cancer.
Results
Epigenome-wide hypomethylation is associated with risk
of breast cancer
Using EPIC-Italy, the first data set we investigated, the
mean β value (all probes) between matched breast can-
cer cases (53.00 %) and controls (53.18 %) was 0.18 %
lower in cases (paired Wilcoxon test p = 1.82e−05). The
median methylation values in cases (65.15 %) and controls
(65.67 %) were also lower in cases (0.5 %, p = 1.33e−06).
Conditional logistic regression analysis using categorical
methylation in quartiles is reported in Table 1 and shows
a marked decrease of breast cancer risk with increasing
mean β values. The analyses of the per-quartile median
methylation provided an estimate of the OR for 1 SD in-
crease in methylation (OR = 0.61, 95 % confidence interval
(CI) 0.47–0.80, p = 0.0004) (Table 1). Using the more con-
servative robust logistic regression, we confirmed the ob-
servation of lower methylation in cases compared with
controls (OR per 1 SD = 0.71, 95 % CI 0.61–0.84, p =
0.00003). Adjusting for white blood cell composition or
removal of probes affected by cell type did not materially
change the results (Additional file 1: Table S1). Linear re-
gression models of epigenome-wide methylation versus
well-established breast cancer risk factors did not show
any association (Additional file 1: Table S2), supporting
the notion that epigenome-wide methylation is independ-
ent of these factors. We have performed the receiver oper-
ating curve (ROC) analysis to assess the classification
performance of average DNA methylation levels to predict
breast cancer case status, which showed an AUC of 62 %
(95 % CI 56–68 %). From the B-spline regression model of
continuous levels of genome-wide methylation in EPIC,
we estimated the distribution of individual risk in this
population (95 % range RR 0.38–2.34) (Fig. 1). In contrast
to EPIC, overall genomic hypomethylation was not associ-
ated with increased risk of breast cancer in the NOWAC
cohort (OR per 1 SD = 1.03 (95 % CI 0.82–1.30), p = 0.81)
using all available data (Table 1) or only the probes that
overlap both datasets (Additional file 1: Table S3). Simi-
larly, the mean methylation in cases (54.02 %) and con-
trols (54.02 %) and median methylation levels (68.67 % vs



Table 1 Association between average methylation and breast cancer risk in EPIC and NOWAC

Cases (n) Controls (n) OR (95 % CI) p value

EPIC

By quartile Q1 [0.529–0.546] 75 41 1.00

Q2 [0.546–0.549] 31 40 0.46 (0.25–0.84) 0.01

Q3 [0.549–0.551] 30 40 0.40 (0.21–0.76) 0.005

Q4 [0.551–0.560] 26 41 0.34 (0.18–0.66) 0.001

Per 1 SD 162 162 0.61 (0.46–0.80) 0.0003

Time to diagnosis <3.8 81 81 0.66 (0.46–0.94) 0.02

(years) >3.8 81 81 0.54 (0.35–0.83) 0.005

p het = 0.483

ER status Negative 18 18 0.49 (0.20–1.24) 0.13

Positive 56 56 0.59 (0.36–0.96) 0.03

p het = 0.725

NOWAC

By quartile Q1 [0.527–0.538] 45 42 1.00

Q2 [0.538–0.540] 32 42 0.74 (0.41–1.34) 0.32

Q3 [0.540–0.543] 46 42 1.04 (0.59–1.85) 0.88

Q4 [0.543–0.551] 45 42 0.99 (0.56–1.76) 0.98

Per 1 SD 168 168 1.03 (0.82–1.30) 0.81

Time to diagnosis <2.1 84 84 0.92 (0.66–1.29) 0.62

(years) >2.1 84 84 1.15 (0.83–1.60) 0.41

p het = 0.351

ER status Negative 28 28 0.80 (0.48–1.32) 0.38

Positive 130 130 1.10 (0.84–1.44) 0.50

p het = 0.276
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68.70 %) were not significantly different in NOWAC
(p = 0.79).
In Table 2, we combined the mean and standard devia-

tions from these two studies with a previously published
report from the MCCS study [23]. A meta-analysis of all
three breast cancer 450k studies (EPIC, NOWAC, and
MCCS) showed significant heterogeneity between stud-
ies (p het = 0.01) (Fig. 2). We also used whole-genome
bisulphite sequencing (WGBS) data from a fourth inde-
pendent cohort, the BGS, to validate the main findings
from the Illumina 450k analysis. Similar to the 450k
array in EPIC, we observed a 0.2 % mean hypomethyla-
tion in breast cancer cases compared with controls
across the same sites in the 450k array (Table 2).
We then conducted a more detailed analysis of the

EPIC dataset in which we observed the association with
breast cancer risk. We found that time from blood draw
to diagnosis (below or above the median) in EPIC did not
seem to influence the estimate of association between
genome-wide methylation and breast cancer risk (Table 1,
Additional file 2: Figure S1, Fig. 3) (test for heterogeneity
by time to diagnosis, p = 0.45). Furthermore, we have per-
formed the analysis separately for subjects with a time to
diagnosis in EPIC of <1 year (n = 20, OR = 0.23 (0.06–
0.86), p = 0.03) and subjects >1 year (n = 142, OR = 0.56
(0.40–0.80), p = 0.001) with both showing similar results.
To investigate which probe types contribute most to

the difference in methylation between cases and controls
in the EPIC population, we stratified the association be-
tween epigenome-wide methylation and breast cancer
risk for different groups of probes based on location or
function (Table 3). Excluding SNP probes and cross-
hybridising probes did not change the results. The mean
methylation level of probes located on gene promoters
was not associated with breast cancer risk (p = 0.66).
However, probes on gene bodies or at the 3′UTR were
both significantly hypomethylated in cases compared with
controls (p < 2 × 10−5). We also observed this difference in
the WGBS data which showed hypomethylation in cases
compared with controls in gene body CpG sites (66.1 % vs
66.5 %, −0.4 %) in contrast to CpG islands that were not
different (18.7 % vs 18.7 %, 0.0%). Corresponding results
for NOWAC are reported in Additional file 1: Table S4
and Table S5.
We performed a principal component analysis on the

samples (i.e., using the transpose matrix of the normalised



Fig. 1 Log relative risk distribution of individuals in EPIC using the
effect estimate of the logistic model of splined global methylation
as it relates to case-control status. The log (RR) is presented on the
x-axis, with density on the y-axis and with the median and 95 %
range marked with the dotted line
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M-value methylation profiles). In EPIC, we found that the
first component was associated mostly with age (p =
0.00012) and menopausal status (p = 0.002), the second
component (PC2) associated with case-control status (p =
0.0005) and dietary folate levels (p = 0.0006), while the
third component (PC3) associated mostly with BMI (p =
0.01) and weight (p = 0.01) (Table 4). In NOWAC, we ob-
served an association with menopausal status and compo-
nents of methylation variability (PC1 p = 0.08, PC2 p =
0.02) (Additional file 1: Table S6).

Comparison of study-specific probe signatures associated
with breast cancer risk
In the EPIC cohort using conditional logistic regression,
we identified 26 probes significantly associated with breast
cancer risk (p < 1.2 × 10−7) (Additional file 1: Table S7),
and in the NOWAC study, we identified 0 significant
probes (p < 1.2 × 10−7) and could not replicate the 26
Table 2 Average methylation and breast cancer risk in four studies

Study Method Cases

Mean (%) SD (%) IQR

EPIC 450k 53.00 0.39 [52.68–53

NOWAC 450k 54.02 0.45 [53.73–54

MCCSa 450k 51.86 1.00 nd

BGSb WGBS 48.12 – –

nd not done (not reported)
a[23]
bFlanagan and Garcia-Closas, unpublished data
probes identified in EPIC. Similarly to a previous study
[24], we found that the majority of probes were hypo-
methylated in cases compared with controls in the
EPIC cohort, consistent with the overall epigenome-
wide hypomethylation.

Discussion
In this study, we report genome-wide hypomethylation
among breast cancer cases compared with matched con-
trols in three out of four cohorts using the Illumina
450k array and WGBS. Specifically, in EPIC-Italy, hypo-
methylation was observed in gene body probes but not
in gene promoters. This association was not associated
with time to diagnosis indicating that it is unlikely to be
attributable to an early process of carcinogenesis. We
have further evaluated these findings using WGBS of
pooled DNA samples from cases and controls. Results
were consistent with overall genome-wide hypomethyla-
tion in cases compared to controls, specifically in gene
body sequences compared with CpG islands. Principal
component analysis in the EPIC cohort highlighted other
factors that may impact on genome-wide methylation,
such as age, menopausal status, and folate levels.
The significant heterogeneity between the three Illu-

mina 450k studies was primarily driven by results from
the Norwegian population (NOWAC) that differed from
those in the Italian (EPIC) or Australian (MCCS) popu-
lations. This could be explained by differences in the dis-
tribution of environmental, lifestyle, or other subject
characteristics. We observed differences in the distribu-
tion of several breast cancer risk factors between EPIC
and NOWAC, which might explain the heterogeneity of
results, including mean age, weight, height, smoking sta-
tus, and menopausal status (Additional file 1: Table S8).
There is also a significant difference in follow-up time in
EPIC (mean 8.9 years (range 0.04–15.7 years)) compared
to NOWAC (mean 4.8 years (range 3.1–6.6 years))
(Additional file 1: Table S8). However, further studies will
be needed to confirm the association between epigenome-
wide methylation and breast cancer risk and the possible
modification by menopausal status which was associated
with principle components of methylation variation in
both NOWAC and EPIC.
Controls Diff

Mean (%) SD (%) IQR (%)

.27] 53.18 0.35 [52.97–53.40] −0.18

.32] 54.02 0.41 [53.77–54.29] 0.00

51.95 1.01 nd −0.09

48.30 – – −0.18



Fig. 2 Forest plot meta-analysis of three independent breast cancer
case-control studies. The effect estimates are derived from the “per
1 SD odds ratio” and presented as a log of odds ratio. The p value
for heterogeneity is p = 0.01 indicating significant heterogeneity in
the populations. The number of subjects (cases and controls) in each
study is reported. Data from Severi et al. [23] have been reported
elsewhere

Fig. 3 Kernel density estimate for samples collected less than 3.7 years bef
p values refer to the significance level of the Kolmogorov-Smirnov test of e
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Previous studies assessing peripheral blood DNA
methylation and breast cancer risk have produced incon-
sistent results. Most studies assessing “global methyla-
tion” used a retrospective or cross-sectional design and
did not measure sequence-specific genome-wide methy-
lation, but rather methylation in various repetitive ele-
ments (such as LINE-1, ALU, and Sat2) as a surrogate
measure, using different types of assays and methods,
making it difficult to compare results across studies
[19, 20]. One of the few large prospective breast cancer
studies that assessed genome-wide levels of LINE-1
DNA methylation in three independent cohort studies
(each consisting of >200 cases and >200 controls) using
pre-diagnostic blood samples concluded that there was
no difference between cases and controls in LINE1
methylation, even after adjustment for confounding
[16]. In contrast to this, a recent report from the pro-
spective Sister Study (n = 294 cases) shows hypomethyla-
tion in LINE1 associated with breast cancer risk [25].
These conflicting results suggest that new standardised
methods are required to interpret and analyse epigenome-
wide methylation using repetitive element assays [26].
Overall, the mean genome-wide methylation level is

~0.2 % lower in cases compared to controls, which may
be interpreted as representing a larger difference in a
smaller proportion of probes. Several studies have previ-
ously reported genome-wide signatures of breast cancer
using the 450k array [27] or the predecessor 27k array
[24, 28]. Using the 27k array, one study reported 250
ore diagnosis and more than 3.7 years before diagnosis in EPIC. The
quality in distribution between cases and controls.



Table 3 Association between global methylation and breast cancer risk by CpG genomic feature per 1 SD in EPIC

# CpG loci OR (95 % CI) p value

All Including all probes 408,749 0.61 (0.47–0.80) 0.0004

Excluding SNP probes 360,342 0.62 (0.47–0.81) 0.0004

CpG island Island 124,962 0.76 (0.57–0.99) 0.04

Shores 98,890 0.72 (0.55–0.93) 0.01

Shelves 38,755 0.50 (0.37–0.68) 8.93 × 10−6

None 146,142 0.50 (0.38–0.68) 7.44 × 10−6

Gene region feature category TSS1500 59,494 0.70 (0.53–0.92) 0.01

TSS200 43,506 0.92 (0.69–1.24) 0.60

5′UTR 36,778 0.72 (0.54–0.95) 0.02

1st exon 19,024 0.85 (0.65–1.12) 0.25

Promoter 82,006 0.92 (0.64–1.32) 0.66

Gene body 138,499 0.51 (0.38–0.69) 1.58 × 10−5

UTR3 15,065 0.40 (0.29–0.57) 2.90 × 10−7

Intergenic 96,383 0.57 (0.43–0.75) 6.86 × 10−5
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CpG sites to be differentially methylated between 289
cases and 612 controls in pre-diagnostic blood samples,
of which the majority (75%) were hypomethylated in
cases compared with controls [24]. Another report iden-
tified a 92-probe signature (FDR q < 0.05) with a larger
signature of n = 1850 probes (raw p < 0.037) also re-
ported in the study [28]. Using our data from the 450k
array, we have attempted to replicate independently the
specific probes reported in these two 27k studies (with
the majority of 27k probes also present on the 450k
array) but have failed to find any overlap between the
two 27k studies [24, 28] and the two 450k studies (EPIC
and NOWAC), with the direction of changes not signifi-
cantly different to chance for these probes. These differ-
ences may be attributable to differences in the subject
populations and tumour pathologies but most likely due
to low power in each of these studies. These data indicate
that the study-specific signatures reported here and in
other reports do not yet converge on a robust and vali-
dated set of individual probes further supporting the need
to increase the study sizes to identify robustly individual
CpG sites associated with breast cancer risk before pro-
ceeding with extensive validation of these top hits.
While the majority of investigators have predomin-

antly used whole blood DNA for epigenetic epidemi-
ology studies, it is well known that the epigenetic state
for various subsets of CG sites in the genome are
dependent on blood cell type, age, and various exposures
[19]. While various methods can be used to account for
each of these possibilities, such as excluding the probes
affected or adjusting for the confounders, these are not
always perfect. Our results suggest that the association
with risk is unlikely to be explained by a different white
blood cell composition among cases and controls as
there was no change in the results with or without ac-
counting for blood cell type. However, these analyses do
not adjust for immune cell activation and clonal expan-
sion which might also contribute to epigenetic variation
in white blood cell DNA samples as reported recently
[29]. The most appropriate study design to address these
limitations would be to collect blood samples and sort
into different cell types prior to storage in a prospect-
ively collected cohort with many years of follow-up to
accumulate incident cancer cases.
We observed hypomethylation for CpGs located on

shores and shelves of CpG islands and in gene bodies
but not in promoters, supporting the lack of variability
in CpG island promoters [12]. Like many previous stud-
ies, we also observed hypomethylation of probes that
map to all categories of repetitive elements (data not
shown). However, our observation of increasing hypo-
methylation across the whole genome with increasing
breast cancer risk, measured both continuously and cat-
egorically, supports the hypothesis that hypomethylation
is not restricted to repetitive elements but includes all
areas of the genome [11, 30]. One hypothesis for a mech-
anism driving this hypomethylation is a general deficiency
in methylation enzymes or substrates due to the complex
interaction between folate, alcohol use, and one-carbon
metabolism genes in relation to breast cancer risk [31]
and methylation [32]. While we show an association be-
tween genome-wide methylation and folate levels in EPIC
(Additional file 1: Table S2, p = 0.04), further validation of
this finding is needed to support this hypothesis.

Conclusions
In conclusion, the results of this study indicate that
genome-wide hypomethylation, measured in pre-diagnostic



Table 4 Association between principal components and subject
variables in EPIC

First PC Second PC Third PC

% of variance explained 0.064 0.034 0.022

Minimum p value chips 0.327 0.124 0.516

Covariates

Case/control status 0.02 0.0005 0.23

Age 0.00012 0.63 0.16

Weight 0.84 0.10 0.01

Height 0.73 0.59 0.60

BMI (continuous) 0.74 0.14 0.01

BMI (categorical)

Underweight 0.50 0.11 0.44

Overweight 0.86 0.11 0.34

Obese 0.96 0.20 0.01

Physical activity (cat)

Moderately inactive 0.05 0.17 0.57

Moderately active 0.03 0.01 0.38

Active 0.43 0.73 0.76

Red meat 0.02 0.08 0.90

Alcohol 0.23 0.27 0.40

Folate 0.91 0.0006 0.72

Smoking

Former 0.77 0.72 0.72

Current 0.15 0.20 0.93

Age at menarche (cat)

12–14 0.53 0.03 0.16

≥15 0.20 0.41 0.88

Age at menopause 0.45 0.73 0.25

Menopausal state 0.002 0.25 0.78

Ever pill 0.21 0.62 0.18

Ever HRT 0.34 0.09 0.60

ER status 0.42 0.14 0.39

PR status 0.76 0.44 0.08

To demonstrate that there was no batch effect for the chip, we report the
smallest p value for the association between the PCs and all chips.
Italics = p-values <0.01
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blood samples using the Illumina HM450 array or by
WGBS, could predict breast cancer risk. However, add-
itional studies with larger sample sizes, WBC counts, as
well as additional breast cancer risk factor information in-
cluding genetic factors are needed to evaluate its potential
value as an independent risk biomarker.

Availability of supporting data
The EPIC data set supporting the results of this article is
available in the Gene Expression Omnibus (GEO) re-
pository, accession GSE51057.
Methods
Participants
For this study, we have used three independent cohorts
in which we have selected incident breast cancer cases
compared to matched cancer-free controls in a nested
case-control study design. These were the Italian cohort
of the European Prospective Investigation into Cancer
and Nutrition (EPIC) study (n = 166 pairs) [33], the Nor-
wegian Women and Cancer (NOWAC) study (n = 192
pairs) [34], and the Breakthrough Generations Study
(BGS) (n = 548 pairs) [35]. All study participants signed
informed consent forms, and each cohort was approved
by the national ethical review boards.

EPIC
Participants for this nested case-control study were se-
lected from the Italian cohort of the European Prospective
Investigation into Cancer and Nutrition (EPIC) study.
This sub-cohort consists of 46,857 volunteers (including
32,157 women), recruited from 5 different centres within
Italy (Varese, Turin, Florence, Naples, and Ragusa) [33].
Incident cases were identified through cancer registries
with <2 % losses to follow-up. We identified 166 incident
female breast cancer cases, for each of which we collected
166 healthy female controls (matched on date of birth
(±5 years), month of recruitment and study centre).
Average follow-up (cases and controls combined) was
106.8 months (range: 0.53–188.8 months) and average
time to diagnosis was 63.4 months (range 0.53–187.8).
Main features of the resulting study population are
summarised in Additional file 1: Table S1. For all study
participants, detailed baseline information about lifestyle
habits and personal and family history was collected
through questionnaires, along with blood samples and an-
thropometric measurements at enrolment between 1993
and 1998. All participants signed an informed consent
form, and the ethical review boards of the International
Agency for Research on Cancer (IARC) and of local par-
ticipating centres approved the study protocol.

NOWAC
Participants for this nested case-control study were selected
from the Norwegian Women and Cancer (NOWAC) study
[34]. This study recruited from 1991 to 2006 and collected
questionnaire information from 170,000 women with re-
peated collection of information after 4–6 years (2 or 3
times) and a biobank of more than 50,000 blood samples
from participants in 2003–2006. Incident breast cancer
cases were identified through the Norwegian Cancer Regis-
try. We selected 192 incident female breast cancer cases,
matched to 192 healthy female controls (matched on birth
year and month of recruitment). Average time to diagnosis
was 25.2 months (range 0–60). Main features of the
resulting study population (n = 336) are summarised in
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Additional file 1: Table S2, and differences between the
NOWAC and EPIC cohorts are described in Additional
file 1: Table S3. All participants signed an informed
consent form, and the NOWAC study was approved by
the Regional Committee for Medical and Health Research
Ethics in North Norway.
BGS
The Breakthrough Generations Study (BGS) is a large
general population cohort consisting of ~110,000 women
enrolled in the UK from 2003 to 2011 [3]. For the methy-
lation analyses, we have selected DNA samples from a
case-control study nested in the BGS cohort. The inclu-
sion criteria are as follows. We initially selected all con-
firmed incident cases and matched controls at the time
of selection that met the following criteria: white ethni-
city, subjects not related to another previously selected
enrolled participant (first family member recruited),
provided a blood sample received at the processing la-
boratory in post <2 days after collection, sample not
clotted, and with available DNA extracted from buffy
coats at concentration >40 ng/μL. Controls were indi-
vidually matched to cases on age, ethnicity, and date of
recruitment. This resulted in a total of 916 case-control
pairs from whom we selected a random sample of 548
case-control pairs to make four DNA pools of cases
and four DNA pools for their matched controls. We
stratified the DNA samples into four pathology sub-
groups (123 cases with in situ tumours, 66 cases with
invasive estrogen receptor (ER)-negative tumours, 179
cases with invasive ER-positive tumours with early on-
set (age at diagnosis <50 years), and 189 cases with
invasive ER-positive tumours with late onset (age at
diagnosis >50 years)). Although all cases had a date of
diagnosis after blood collection at the time of selection,
subsequent record updates identified one case in the in
situ pool diagnosed 2 years prior to blood collection,
two cases in the in situ and ER-negative pools diag-
nosed 22 days prior to blood collection, and one case in
the ER-positive late onset cancers with a previous diag-
nosis of in situ cancer 22 years prior to the diagnosis of
the invasive cancer. Due to the pooling nature of this
experiment, these few subjects cannot be excluded from
analyses; however, they are unlikely to change the over-
all results. Each pool included 200 ng of peripheral
blood DNA from each of the subjects to make a pooled
DNA sample that was subsequently processed for library
preparation and sequencing. Main features of the resulting
study population (n = 548 cases and 548 matched con-
trols) are summarised in Additional file 1: Table S4. All
BGS participants signed an informed consent form, and
the study was approved by the South East Research Ethics
Committee (NREC 03/1/014).
DNA methylation measurement, data pre-processing, and
quality control for 450k arrays
DNA extractions and methylation array processing were
conducted in the same laboratory (HuGeF, Torino, Italy)
for both the EPIC and NOWAC studies. DNA was ex-
tracted from buffy coats or blood cell fractions using the
QIAsymphony DNA Midi Kit (Qiagen, Crawley, UK).
Five hundred nanograms of DNA were bisulphite-
converted with the EZ-96 DNA Methylation-Gold™ Kit
(Zymo Research, Orange, CA, USA) according to the
manufacturer’s protocol. Next, the Illumina Infinium
HumanMethylation450 BeadChip was hybridised as per
the manufacturer’s protocol. This array measures DNA
methylation at 485,512 cytosine positions across the human
genome, of which 482,421 CpG sites and 3091 non-CpG
sites; hereafter, the term CpG will be used to refer to all of
these, unless otherwise specified. BeadChips were washed
and scanned using the Illumina HiScan SQ scanner,
and intensities were extracted from the images using
GenomeStudio (v.2011.1) and its Methylation module
(1.9.0). Bisulphite conversion efficiency was assessed
using control probes present on the chip, failing samples
outside 3 SD of the sample distribution; all samples passed
this initial quality control step. Additional pre-processing
included background subtraction and colour correction to
account for the dye bias seen in Infinium II probes. This
was done by equalising the intensities in the green and red
channels to the average intensity across the two colours
as measured by normalisation control probes present
on the BeadChip. The methylation level at each CpG
was expressed as a β value, which represents the frac-
tion of methylated cytosines at that specific location.
Probes that were not detected in >20 % of the samples

were excluded from the analyses. The analysis of other
quality control measures provided by GenomeStudio
suggested that the resulting filtered subset did not show
any major quality issues. Missing data were first imputed
using the k-nearest neighbours method as implemented
in the R package “impute” for the principle components
analysis only [36]. We then used the empirical Bayes
method of Johnson et al. [37] (commonly referred to as
“ComBat”) to minimise potential chip-specific batch effects.
Lastly, in order to adjust the distributions of β values across
probe type (Infinium I and II) and to enable joint analysis,
we performed peak-based correction using two methods as
described by Dedeurwaerder et al. [38] and Teschendorff
et al. [39]. Because the peaks of type I and type II probes are
well defined in our study samples, both methods performed
sufficiently well. We opted for the beta-mixture quantile
normalisation (BMIQ) method [39], for the main analyses.

Probe and sample exclusions following quality control
Probe and sample exclusions are described in Additional
file 3: Figure S2. In the EPIC cohort, the DNA methylation
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was measured at 485,577 loci on the genome in 166 cases
and 166 matched controls before quality control exclu-
sions. Sixty-five of these loci were SNPs, which were ex-
cluded from the analyses. Out of all 332 subjects, two
subjects had to be excluded because of a diagnosis with
another cancer prior to developing breast cancer and an-
other two subjects because their matched pair was not lo-
cated on the same chip. Following these initial sample
exclusions, pre-processing of the DNA methylation data
excluded 36,655 CpGs from the analyses because of miss-
ing values in >20 % of the samples and another three sam-
ples because of missing values for >5 % of the remaining
CpGs. Finally, one sample (which formed an incomplete
match pair) and 40,108 non-specific CpGs were excluded,
resulting in 324 samples in which DNA methylation was
measured at 408,749 CpGs. In the NOWAC cohort, DNA
methylation was measured at 485,577 loci on the genome
in all subjects: 192 cases and 192 matched controls. Sixty-
five of these loci were SNPs, which were excluded from
the analyses, as well as 224 CpGs after applying ComBat.
We excluded 9 samples due to missing covariate data.
Pre-processing of the DNA methylation data further ex-
cluded 28,459 CpGs from the analyses because of missing
values in >20 % of the samples and another 14 samples be-
cause of missing values for >5 % of the remaining CpGs.
Finally, 23 samples (which formed an incomplete match
pair) and 40,417 non-specific CpGs were excluded, result-
ing in 338 samples (169 case-control pairs) in which DNA
methylation was measured at 416,412 CpGs. Including
only probes overlapping across the two datasets resulted
in 407,455 probes.

White blood cell type adjustment
Previous studies have highlighted the importance of tak-
ing the type of different WBCs into account when ana-
lysing DNA methylation in whole blood [40, 41]. WBC
differentials were not available for our samples. To ad-
dress this, we used HM450 methylation data obtained
from purified CD4 T-cells, CD8 T-cells, CD19 B-cells,
monocytes, natural killer (NK) cells, neutrophils and eo-
sinophils, and whole PBMCs (n = 6 subjects) [41]. We
identified the probes that differed significantly between
each individual cell type and PBMC (linear regression
using β values, p < 1e−07 and delta-β > 0.05). This identi-
fied n = 10,082 unique probes, which were subsequently
removed from the statistical analyses, assuming as a first
approach that blood composition only marginally affected
methylation patterns at other sites (n = 444,054 remaining
probes). Genome-wide estimation of cell composition was
also used to infer cell proportions using the reference-
based method [42] which did not change the results, ra-
ther than the reference-free adjustment method [43].
Methylation array data from the EPIC cohort is available
at GEO with accession GSE51057.
DNA methylation measurement, data pre-processing, and
quality control for whole-genome bisulphite sequencing
DNA samples from the BGS cohort case-control study
were stratified into four pathology sub-groups (in situ
cases, ER-negative cases, ER-positive early onset <50 years,
and ER-positive late onset >50 years, see Additional file 1:
Table S4). Due to the high cost of whole genome sequen-
cing, we used a pooling approach where incident breast
cancer cases (n = 548) were pooled into 4 pools of DNA,
and the matched healthy controls (n = 548) were pooled
into matched pools. We pooled 200 ng of DNA from each
subject into the 8 DNA pools that were then processed for
WGBS using a published protocol for library preparation
[44]. Libraries were sequenced using PE100bp reads using
the HiSeq2500 with 2 lanes per library. Sequencing was
conducted by the Institute of Cancer Research Tumour
Profiling Unit. Data processing followed a standard pipe-
line: The quality of reads was analysed using SolexaQA
[45]. Mate pairs were trimmed to 80 bp, reflecting a bal-
ance between uniquely mappable, high-quality reads. Bis-
mark [46] was used to map trimmed read pairs to a
bisulphite-converted representation of the hg19 (GRCh37)
genome, using Bowtie 2. Bismark then calculated the pro-
portion of methylated reads at each CpG site, after remov-
ing duplicated reads. This provided single nucleotide level
resolution with approximately 50-fold coverage of ~14
million mappable CpG sites (13,903,531 CpGs). All subse-
quent analysis was performed in R, using “GRanges” pack-
age to generate coverage-weighted summary methylation
values for different genomic categories/regions. We ob-
served that the raw average methylation across CpG sites
was dependent on coverage and therefore calculated a
coverage-weighted mean methylation for each CpG site.
Coverage-weighted mean was calculated with the follow-
ing formula: Wmean = (M1*W1 +M2*W2 +M3*W3…)/
sum(weights), where the CpG site was weighted (w = 1) if
the coverage was greater than the median coverage in that
pool and scaled down (w = 0.9, 0.8, 0.7, etc.) with each
10 % decrease in coverage from the median. We selected
the 450k array CpG locations from the array annotation
file and calculated coverage-weighted averages across all
CpG sites that mapped to each genomic range and aver-
aged across the CpG sites. We present the data from the
CpG sites overlapping the 450k array for validation, with
analysis of the whole data set to be reported elsewhere
(Flanagan and Garcia-Closas, in preparation). We ob-
served strong correlation between methylation values as
measured by WGBS and Illumina 450k arrays for all
probes (R2 > 0.97) and for probes with methylation values
between 20 and 80 % methylated (R2 > 0.77).

Statistical analysis
For the 450k array data, the mean β value across all
probes was calculated for each sample as a measurement
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for epigenome-wide methylation, and a paired Wilcoxon
test was used to assess differences between cases and
controls. An age-adjusted estimate of the odds ratio of
breast cancer was obtained from a conditional logistic
regression model with case-control status as the outcome
and the epigenome-wide methylation measurement as
continuous predictor. We adjusted for age due to residual
age differences between the controls that were matched to
within 5 years in EPIC. The epigenome-wide methylation
levels were categorised into quartiles based on the distri-
butions in controls. As a quantitative measure of the over-
all methylation, each quartile was allocated its median
value (pseudo-continuous variable). To ease comparison
with the corresponding methylation distribution in con-
trols, medians were centred and standardised using the
observed mean and standard deviation over all probes in-
vestigated. Odds ratios for epigenome-wide methylation
were estimated overall and by time between blood collec-
tion and diagnosis. Robust logistic regression was also
used to confirm these results. We have performed the re-
ceiver operating curve (ROC) analysis to assess the classi-
fication performance of average DNA methylation levels
to predict breast cancer case status. We report the odds
ratios (ORs), 95 % confidence intervals (95 % CIs), and
corresponding p values. p values <0.05 were considered to
be statistically significant. B-spline logistic regression
models fitted in the “bs” R package were used to explore
the relationship between continuous measures of methyla-
tion levels and breast cancer risk and to estimate individ-
ual risk distribution. Meta-analysis was conducted using
the “rmeta” R package and a random effects model for the
summary estimate.
Probes were classified into different categories either

reflecting their physical location in relation to CpG
islands (island, shore, shelf ) or based on a functional cri-
terion (promoter, gene body, UTR, intergenic) according
to the Illumina manifest file. CpG islands were classified
as previously defined [47]. A CpG shore is defined as the
area 2 kb on either side of the CpG island, and a CpG
shelf is defined as the area 2 kb outside of the CpG
shore [48, 12]. As in the work of Sandoval et al., we
combined TSS200, TSS1500, 5′UTR, and 1st exon into a
single “promoter” region [13]. Mean methylation over all
probes within each category was calculated and ORs es-
timated, as described above.
Probe-wise analysis of 450k arrays was performed by

first adjusting for technical confounding effects; DNA
methylation levels at each CpG locus were adjusted using
a generalised linear model (GLM) with beta-distributed
response [49] including microarray and position on the
microarray as technical confounders. Subsequently, to
assess the association with case-control status, residuals
from these models were entered as independent variable
in a Poisson GLM with person-years of follow-up time as
offset term and additionally adjusted for age at blood
draw; this parameterisation yields results that are practic-
ally equivalent to those obtained using Cox proportional
hazards model [50]. Multiple comparisons were taken into
account by considering a Bonferroni-corrected significance
threshold α = 0.05/407,455 ≈ 1.2 × 10−7.

Additional files

Additional file 1: Supplementary Tables 1 to 11. Tables include
supporting information for analyses on EPIC and NOWAC cohorts,
significant individual probes in EPIC and subject characteristics in EPIC,
NOWAC and BGS cohorts used in this study.

Additional file 2: Supplementary Figure 1. Methylation difference
within case/control pairs by time to diagnosis in EPIC.

Additional file 3: Supplementary Figure 2. Probe and Sample
Filtering Steps in EPIC and NOWAC.
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