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Background: Epigenetic mechanisms, including methylation,

can contribute to childhood asthma. Identifying DNA

methylation profiles in asthmatic patients can inform disease

pathogenesis.

Objective: We sought to identify differential DNA methylation

in newborns and children related to childhood asthma.

Methods: Within the Pregnancy And Childhood Epigenetics

consortium, we performed epigenome-wide meta-analyses of

school-age asthma in relation to CpG methylation

(Illumina450K) in blood measured either in newborns, in

prospective analyses, or cross-sectionally in school-aged

children. We also identified differentially methylated regions.

Results: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35

regions) were differentially methylated (epigenome-wide

significance, false discovery rate < 0.05) in relation to asthma

development. In a cross-sectional meta-analysis of asthma and

methylation in children (9 cohorts, 631 cases), we identified 179

CpGs (false discovery rate < 0.05) and 36 differentially

methylated regions. In replication studies of methylation in

other tissues, most of the 179 CpGs discovered in blood

replicated, despite smaller sample sizes, in studies of nasal

respiratory epithelium or eosinophils. Pathway analyses

highlighted enrichment for asthma-relevant immune processes

and overlap in pathways enriched both in newborns and

children. Gene expression correlated with methylation at most

loci. Functional annotation supports a regulatory effect on gene

expression at many asthma-associated CpGs. Several implicated

genes are targets for approved or experimental drugs, including

IL5RA and KCNH2.

Conclusion: Novel loci differentially methylated in newborns

represent potential biomarkers of risk of asthma by school age.

Cross-sectional associations in children can reflect both risk for

and effects of disease. Asthma-related differential methylation

in blood in children was substantially replicated in eosinophils

and respiratory epithelium. (J Allergy Clin Immunol

2019;143:2062-74.)

Key words: Epigenetics, methylation, asthma, childhood, newborn,

drug development

Asthma is the most common chronic disease of childhood,1 but

the underlying mechanisms remain poorly understood. Genome-

wide association study (GWAS) meta-analyses have identified

many loci related to asthma,2 but these explain only a modest pro-

portion of variation in asthma risk.3 Increasing evidence suggests

that epigenetic variation can play a role in asthma pathogenesis.4

DNA methylation is the most studied epigenetic modification in

human subjects. Prospective examination of methylation patterns

in newborns in relation to asthma development might identify

genes and mechanisms involved in the developmental origins of

asthma.5

Epigenome-wide association studies (EWASs) of DNAmethyl-

ation in blood in relation to asthma (numbers of cases range from
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16-149)6-12 have identified differential methylation at some spe-

cific gene regions. The only meta-analysis of epigenome-wide

methylation in childhood asthma included 392 cases but did not

examine newborn methylation.13 A larger meta-analysis,

including both methylation in newborns and at later ages, would

increase the power for identification of novel loci.

Using the Illumina HumanMethylation450K BeadChip

(Illumina450K; Illumina, San Diego, Calif), we performed a

large-scale meta-analysis of childhood asthma in relation to

whole-blood DNA methylation in newborns to evaluate whether

methylation patterns at birth relate to disease development. We

separately examined cross-sectional associations between whole-

blood DNAmethylation and the presence of asthma in children of

at least school age. We investigated the association of DNA

methylation in blood and asthma at both individual sites and over

genomic regions and evaluated the potential functional effect of

findings by integrating gene expression, pathway analyses,

detailed functional annotation, and the search for druggable

targets of differentially methylated loci. We also followed up our

findings using methylation data in eosinophils and from nasal

respiratory epithelium.

METHODS
The Methods section in this article’s Online Repository at www.jacionline.

org provides additional details on the methods used in this study.

Study population
The Pregnancy and Childhood Epigenetics (PACE) consortium is an

international consortium of cohorts with Illumina450KDNAmethylation data

at birth (newborns) or in childhood.14 In prospective analyses we evaluated

childhood asthma at school age in relation to blood DNA methylation data

from newborns (8 cohorts: Avon Longitudinal Study of Parents and Children

[ALSPAC], Children’s Health Study [CHS], Etude des D�eterminants pr�e et

post natals du d�eveloppement et de la sant�e de l9Enfant [EDEN] birth cohort,

Generation R, Genetics of Overweight Young Adults [GOYA], Norwegian

Mother and Child [MoBa] cohort 1, MoBa2, and Newborn Epigenetics STudy

[NEST]). We also conducted cross-sectional analyses of methylation

measured in children in relation to asthma status at that same time point (9 co-

horts: Children, Allergy, Milieu, Stockholm, Epidemiology [BAMSE] Epi-

Gene; BAMSE MeDALL; European Childhood Obesity Project [CHOP];

Genes-environments & Admixture in Latino Americans [GALA II]; Inner

City Asthma Consortium [ICAC]; Northern Finland Birth Cohort [NFBC]

1986; Prevention and Incidence of Asthma and Mite Allergy [PIAMA]; the

Raine study; and Swedish Twin studyOn Prediction and Prevention of Asthma

[STOPPA]). To avoid problems from small numbers, we set a minimum of 15

cases for participating cohorts to perform analyses.

Harmonization of childhood asthma variables
We developed a harmonized definition of asthma based on the question-

naire data available in each cohort. Asthma was assessed at school age, which

was defined as 5 years or older, and varied by cohort. Asthmawas defined by a

doctor’s diagnosis of asthma and the report of at least 1 of the following: (1)

current asthma, (2) asthma in the past year, or (3) asthmamedication use in the

last year. Noncases were children who had never had asthma.

Methylation data measurement and quality control
DNA methylation was measured with the Illumina450K platform. Cohorts

performed their own quality control, normalization, and analysis of untrans-

formed b values. Previously, we found that the use of different preprocessing

or normalization methods did not influence meta-analysis results.15,16 Probes

on the X and Y chromosomes were removed, as were those in which a single

nucleotide polymorphism (SNP) was present in the last 5 bp of the probe,

which could interfere with binding. Rather than remove probes a priori that

have appeared on various published lists of potentially cross-reactive probes

or probes near SNPs, we examined post hoc those that appear in statistically

significant results.17,18

Annotation of CpGs
This article’s tables include theUniversity ofCalifornia, SantaCruz (UCSC)

RefGene name from Illumina’s annotation file and enhanced annotation to the

UCSC KnownGene. UCSC KnownGene annotations include the nearest gene

within 10Mbof eachCpGandfill inmanymissing gene names.All annotations

use the human February 2009 (GRCh37/hg19) assembly.

Cohort-specific statistical analyses
The association of methylation and asthma was assessed by using logistic

regression. Covariates included in adjusted models were maternal age,

sustained maternal smoking during pregnancy,15 maternal asthma, socioeco-

nomic status, and child’s sex. Cohorts adjusted for batch effects by using Com-

Bat19 or SVA20 or by including a batch covariate in their models. We also

adjusted for potential cell-type confounding by including estimated propor-

tions calculated by using the Housemanmethod,21with a cord blood reference

panel22 for newborn cohorts or an adult blood reference panel23 for child co-

horts. The primary models presented include adjustment for covariates and

cell type; reduced models are presented for comparison.

Meta-analyses
As in other consortium genomic analyses,24,25wemeta-analyzed the study-

specific results using inverse variance weighting, which is also referred to as

fixed-effects meta-analysis, with METAL.26 We accounted for multiple

testing by controlling for the false discovery rate (FDR) at 0.05.27 To enable

readers to assess whether the results across studies are consistent, we provide

forest plots of the study-specific effect estimates and 95%CIs. As another way

to visualize meaningful heterogeneity or influential results, we also provide

plots for all significant CpGs of regression coefficients and 95% CIs where

we leave out 1 cohort at a time. Although inverse variance–weighted meta-

analysis does not require the assumption of homogeneity,25 where there is

even nominal evidence for heterogeneity (Pheterogeneity <.05without correction

for multiple testing) for any CpG we report as genome-wide significant, we

also provide meta-analysis P values from standard random-effects meta-anal-

ysis by using METASOFT.28

Analyses of differentially methylated regions
Differentially methylated regions (DMRs) were identified by using 2

methods: comb-p29 and DMRcate.30 To correct for multiple comparisons,

comb-p uses a 1-step �Sid�ak correction,29 and DMRcate uses an FDR correc-

tion.30 Each method requires the input of parameters to be used in selecting

the regions. DMRcate30 has default values for the minimum number of CpGs

in a region (ie, 2) and a minimum length of 1000 nucleotides; we used these

values in comb-p tomaximize comparability. To be conservative,we set the sig-

nificance threshold at .01 rather than .05 and only considered a DMR to be sta-

tistically significant if it met this threshold in both packages (�Sid�ak-corrected

P < .01 from comb-p and FDR < 0.01 from DMRcate). DMRcate annotates

DMRs to UCSC RefGene from the Illumina annotation file.

Functional follow-up of significant DNA

methylation findings
Correlation of differentially methylated sites with

expression of nearby genes. To examine whether differentially

methylated sites affect gene expression, we analyzed paired methylation and

gene expression data, both of whichweremeasured in blood, from several data

sets (see this article’s Online Repository at www.jacionline.org)31-37: 2 with

methylation and gene expression in newborns (Gene Expression Omnibus
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[GSE62924 and GSE48354], n5 38; and Isle of Wight 3rd Generation Study

[IoW], n5 157),32-34 1 with newborn methylation and gene expression at age

4 years (Infancia y Medio Ambiente [INMA], n 5 113),35 another with gene

expression and methylation both measured at age 4 years (INMA, n5 112),35

1 with both measured at age 16 years (BAMSE; n 5 248),38 and the largest

with both measured in adults (BIOS consortium, n 5 3096).36,37 For each

of our significant CpGs, we examined the association with expression of tran-

scripts within a 500-kb window (6250 kb from the CpG). For DMRs, we used

a window 250 kb upstream and downstream of the end and start site of each

region. A given CpG or region might have more than 1 gene transcript in

this window. In the smaller data sets of paired gene expression andmethylation

in newborns or children, we report nominal evidence for significance

(P < .05); for the much larger adult data set, we report associations based

on FDRs of less than 0.05.

Functional annotation. To identify tissue- or cell type–specific

signals in significant EWAS results, we used eFORGE.39 Pathway and

network analyses were conducted by using Ingenuity Pathway Analysis

(Qiagen, Venlo, The Netherlands; https://www.qiagenbioinformatics.com/

products/ingenuity-pathway-analysis).40 Because of possible uncertainty

regarding genome annotation of probes flagged in the literature as potentially

cross-reactive,41 we excluded those from pathway analyses. We also

compared our methylation findings with those from published studies of

methylation in relation to asthma and evaluated whether the implicated genes

overlap with loci identified in GWASs.42,43 Additionally, we matched the

genes to which our asthma-associated CpGs and DMRs annotated against

the ChEMBL database (version 22.1) to identify whether any are targets of

approved drugs or drugs in development.44

Look-up replication of significant DNA methylation

findings in nasal respiratory epithelium and

eosinophils
We examined the cell-type specificity of significant findings in whole blood

in childhood by doing a look-up in 2 data sets, withmethylationmeasuredwith

the Illumina450K in respiratory epithelium collected by means of nasal

brushing (455 sixteen-year-old Dutch children [37 with asthma] from the

PIAMA study13 and 72 African-American children [36 asthmatic patients and

38 nonasthmatic subjects],45 as well as a study with methylation measured

with the Illumina450K in eosinophils isolated from blood [16 asthmatic

patients and 8 nonasthmatic subjects aged 2-56 years from the Saguenay-

Lac-Saint-Jean [SLSJ] region in Canada).13,46,47

RESULTS
Prospective analysis of newborn methylation in relation to

asthma development included 8 cohorts; the cross-sectional

analysis of methylation in children in relation to asthma included

9 cohorts, with mean ages at assessment of both asthma status and

methylation ranging from 7 to 17 years (Table I contains counts

by cohort and Table E1 in this article’s Online Repository at

www.jacionline.org contains descriptive statistics). Because

newborn DNA methylation is measured at birth, age at asthma

assessment is the time between assessment of methylation and

asthma status in prospective analyses. All models included cova-

riates and cell type, unless otherwise noted. Some studies over-

sampled asthmatic patients within their population-based

cohorts using a nested case-control or case-cohort design for

methylation measurement, and therefore the case/control ratio

varies across studies.

Asthma in relation to newborn DNA methylation
Meta-analysis of asthma and newborn methylation (668 cases

and 2904 noncases; 8 cohorts: ALSPAC, CHS, EDEN, Genera-

tion R, GOYA, MoBA1, MoBa2, and NEST) identified 9 statis-

tically significant (FDR < 0.05) individual CpGs (Manhattan and

volcano plots in Fig 1). The 9 CpGs include 2 that have appeared

on a list of poorly hybridizing probes41 and thus must be regarded

with caution (ch.11.109687686R and ch.6.1218502R). The other

7 CpGs annotated to the following genes: CLNS1A, MAML2/

Mir_548, GPATCH2/SPATA17, SCOC/LOC100129858,

AK091866, SUB1, andWDR20 (Table II).We identified 35 signif-

icant DMRs (Table III and see Table E2 in this article’s Online Re-

pository at www.jacionline.org for individual CpGs within

DMRs); DMRs did not overlap the significant CpGs. Seven of

the 9 significant CpGs showed greater methylation in children

with asthma than in noncases. All 9 CpGs had P values of

3.55 3 1023 or less in a crude model and P values of

4.16 3 1024 or less in the covariate-adjusted models that did

not include cell type (see Table E3 in this article’s Online Repos-

itory at www.jacionline.org). None of the 9 CpGs had been previ-

ously reported in the literature (see Table E4 in this article’s

Online Repository at www.jacionline.org).

Forest plots showing cohort-specific odds ratios and 95% CIs

for the 9 CpGs are shown in Fig E1 in this article’s Online Repos-

itory at www.jacionline.org. Two cohorts in the newborn analysis

include subjects of non-European ancestry (NESTand CHS), and

therefore we evaluated whether these were influential. The forest

plots (Fig E1) suggest that for just 1 of the 9 CpGs (cg07156990),

the size of the effect estimate was larger in NEST than in other

studies, but the P value for heterogeneity was not close to statis-

tically significant (Pheterogeneity 5 .26), and after removing NEST,

the meta-analysis P value was attenuated only slightly to

2.8 3 1026 from 9.5 3 1027. When we repeated the meta-

analysis removing both NESTand CHS, results were very consis-

tent with those from all cohorts (correlation of regression

coefficients 5 0.996). With respect to tests of heterogeneity,

only 1 of the 9 CpGs, cg13289553, produced a P value for hetero-

geneity that was even nominally significant (Pheterogeneity 5 .04,

Table E3 includes Pheterogeneity values for all 9 CpGs and the

TABLE I. Sample sizes by cohort for epigenome-wide

association analyses of asthma in relation to DNAmethylation

in newborns or children

Age group Cohort No. No. of cases

Newborns ALSPAC 688 88

CHS 229 39

EDEN 150 34

Generation R 661 37

GOYA 507 37

MoBa1 666 149

MoBa2 458 239

NEST 213 45

Meta-analysis 3572 668

Children BAMSE EpiGene 307 93

BAMSE MeDALL 214 47

CHOP 382 19

GALA II 193 106

ICAC 187 92

NFBC 1986 413 17

PIAMA 197 15

Raine study 509 105

STOPPA 460 137

Meta-analysis 2862 631

Cohort-specific information on covariates is provided in Table E1.
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random-effects meta-analysis results for this CpG); GOYA had

the largest magnitude of association, but effect estimates were

in the same positive direction across studies (see Fig E1). Ana-

lyses leaving out 1 cohort at a time do not suggest that any of

the results are driven by a single cohort (plots of untransformed

effect estimates and 95% CIs are shown in Fig E2 in this article’s

Online Repository at www.jacionline.org).

Asthma in relation to childhood DNA methylation
In a meta-analysis of asthma in relation to DNA methylation

measured in childhood (631 cases and 2231 noncases; 9 cohorts:

BAMSE EpiGene, BAMSE MeDALL, CHOP, GALA II, ICAC,

NFBC, PIAMA, Raine study, and STOPPA), we identified 179

CpGs at genome-wide significance (FDR < 0.05, Manhattan and

volcano plots in Fig 2; results for all 179 CpGs are shown in Table

E5 in this article’s Online Repository at www.jacionline.org).

Nearly all (173/179) showed decreased methylation in asthma

cases versus noncases; similar predominant directionality was

seen in a recent study.13

As in the newborn analysis, results were consistent across

studies for the 179 significant CpGs (forest plots are shown in Fig

E3 in this article’s Online Repository at www.jacionline.org, and

plots of regression coefficients and 95% CIs from analyses leav-

ing one cohort out at a time are shown in Fig E4 in this article’s

Online Repository at www.jacionline.org). Two of the cohorts

were adolescents (NFBC: mean age, 16.0 years; SD, 0.4 years;

Raine study: mean age, 17.0 years; SD, 0.2 years); repeating

the meta-analysis without these 2 cohorts provided high correla-

tions with values for our FDR-significant findings from all cohorts

FIG 1. Meta-analysis of asthma in relation to newborn methylation: A,Manhattan plot; B, volcano plot. The

model is adjusted for covariates and cell types.

TABLE II. Nine significant CpGs (FDR < 0.05) from the meta-analysis of asthma in relation to newborn methylation

CpG* chromosome:position

UCSC

RefGene name

UCSC

Known Geney

Average

methylation ORz (CI) P value Direction§

cg21486411 Chr 11:77348243 CLNS1A CLNS1A 0.089 1.13 (1.08-1.18) 3.43E-07 1?111111

cg16792002 Chr 11:95788886 MAML2 Mir_548 0.840 0.95 (0.93-0.97) 5.59E-07 22222221

ch.11.109687686R Chr 11:110182476 0.085 1.08 (1.05-1.11) 7.06E-07 1??11111

cg13427149 Chr 1:217804379 GPATCH2;

SPATA17

GPATCH2 0.063 1.19 (1.11-1.27) 8.04E-07 11111111

cg17333211 Chr 4:141294016 SCOC LOC100129858 0.074 1.13 (1.08-1.19) 8.25E-07 21211111

cg02331902 Chr 5:90610303 AK091866 0.089 1.12 (1.07-1.18) 8.37E-07 22111111

cg13289553 Chr 5:32585524 SUB1 SUB1 0.085 1.14 (1.08-1.20) 8.68E-07 11111112

ch.6.1218502R Chr 6:51250028 0.054 1.27 (1.15-1.39) 9.32E-07 1??11111

cg07156990 Chr 14:102685678 WDR20 WDR20 0.930 0.87 (0.83-0.92) 9.54E-07 21122222

OR, Odds ratio.

*ch probes (ch.11.109687686R and ch.6.1218502R) have been reported to be cross-hybridizing, and thus UCSC Known Gene is intentionally left blank.

�Annotation based on UCSC Known Gene also fills in the nearest gene within 10 MB.

�Odds ratio of having asthma for a 1% absolute increase in methylation. Adjusted for covariates and cell type.

§For each cohort participating in the analysis, 1 indicates a positive direction of effect, 2 indicates a negative direction of effect, and ? indicates missing information for that CpG

in a given cohort. Cohort order is as follows: ALSPAC, CHS, EDEN, Generation R, GOYA, MoBa1, MoBa2, and NEST.
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(correlation of coefficients5 0.96). Because 2 studies (ICAC and

GALA) included subjects who were not of European ancestry,

we compared significant results with and without including these

2 studies and found them to be very similar (correlation

of coefficients5 0.99). Table E5 providesP values for heterogeneity

and, where those are even nominally significant (Pheterogeneity < .05),

random-effects meta-analysis results.

Of the 179 FDR-significant CpGs, 34 CpGswere not singletons

(ie, >1 significant CpG annotated to a given gene). These 34

nonsingleton CpGs correspond to 13 genes: ACOT7,

LOC100189589, IL5RA, SLC25A26/LRIG1, RPS6KA2, KCNH2,

ZNF862/BC045757, AK096249, PRG2, EVL/AX747103,

KIAA0182, ZFPM1, and EPX (Table IV). We identified 36 signif-

icant DMRs by using both calling methods (Table V). Of the 179

FDR-significant CpGs, 31 fell within one of these 36 DMRs, and

21 of the 36 DMRs contained at least 1 FDR-significant CpG.

Three studies in our meta-analysis of asthma in relation to

childhood methylation (PIAMA, BAMSE MeDALL, and

BAMSE Epigene) also contributed to a recent meta-analysis of

both preschool and school-aged asthma outcomes13; these studies

contributed only a quarter (n5 155) of the 636 cases in our meta-

analysis. That EWAS meta-analysis of asthma at preschool and

school age13 identified 14 CpGs at genome-wide significance; 7

were among our 179 genome-wide significant findings for child-

hood methylation (cg13835688, cg14011077, cg03131767,

cg13628444, cg10142874, cg01901579, and cg01445399), and

6 others represented in our data set (cg15344640, cg11456013,

cg01770400, cg19764973, cg08085199, and cg16592897) were

nominally statistically significant (P <.05) and direction matched

for all 13. When repeating the meta-analysis excluding those 3

studies, 13 of the 14 CpGs had P values of less than .05 and direc-

tions of association matched; only cg06483820 produced no evi-

dence for association (P5 .74). In additional comparison with the

literature, differential methylation in ACOT7 and ZFPM1 was

previously identified in an EWAS of blood in relation to IgE48

and in 2 of our contributing studies, ICAC and ALSPAC, to

asthma,10,12 as well as in an EWAS of nasal epithelium to

asthma.45

Comparing newborn and childhood methylation models, none

of the 9 FDR-significant CpGs for newborn methylation were

nominally significant (P <.05) in the childhood methylation anal-

ysis. Only 6 of the 179 CpGs significant for asthma in relation to

TABLE III. DMRs (n 5 35) for asthma in relation to newborn methylation identified by using both comb-p (P < .01) and DMRcate

(FDR < 0.01) methods

chromosome:position Gene name* No. of CpGs in region P value from comb-py FDR from DMRcatez

Chr 1: 59280290-59280842 LINC01135 5 1.23E-03 1.01E-03

Chr 1: 220263017-220263699 BPNT1; RNU5F-1 11 4.49E-04 7.74E-05

Chr 1: 1296093-1296489 MXRA8 2 9.83E-03 3.86E-04

Chr 2: 202097062-202097608 CASP8 5 1.14E-03 1.64E-05

Chr 2: 235004843-235005012 SPP2 2 6.22E-03 1.15E-03

Chr 3: 194188646-194189444 ATP13A3 3 1.06E-03 7.14E-04

Chr 4: 113218385-113218525 ALPK1 3 2.00E-03 3.69E-04

Chr 5: 158526108-158526694 EBF1 6 9.56E-04 2.16E-05

Chr 5: 81573780-81574461 RPS23 11 3.75E-03 1.47E-04

Chr 5: 64777678-64778186 ADAMTS6 10 7.09E-03 9.97E-05

Chr 6: 291687-292824 DUSP22 9 6.69E-06 1.18E-05

Chr 6: 32799997-32801050 TAP2 13 1.27E-03 6.66E-05

Chr 6: 26234819-26235610 HIST1H1D 9 6.12E-03 7.67E-05

Chr 6: 29648161-29649085 ZFP57 22 1.82E-08 3.13E-11

Chr 6: 31055396-31055503 C6orf15 5 3.61E-04 7.05E-05

Chr 7: 106694832-106695007 PRKAR2B 2 6.86E-03 7.92E-04

Chr 7: 87974722-87975316 STEAP4 4 2.32E-03 7.44E-05

Chr 7: 158045980-158046359 PTPRN2 6 1.98E-03 5.94E-04

Chr 8: 127889010-127889296 PCAT1 4 2.68E-05 1.44E-05

Chr 8: 33370172-33371226 TTI2 9 1.08E-04 6.40E-06

Chr 10: 71871364-71871634 H2AFY2 4 8.06E-03 6.19E-04

Chr 10: 65028929-65029169 JMJD1C 5 8.56E-03 6.12E-04

Chr 11: 268923-269469 NLRP6 5 3.71E-03 1.42E-03

Chr 11: 107328442-107328915 CWF19L2 10 5.10E-03 2.13E-05

Chr 12: 74931289-74932008 ATXN7L3B 10 1.03E-03 2.81E-06

Chr 12: 58329764-58330116 LOC100506844 5 1.58E-03 5.22E-04

Chr 13: 108953659-108954055 TNFSF13B 2 5.19E-03 2.37E-03

Chr 13: 31618695-31618744 TEX26 2 4.63E-03 2.09E-04

Chr 14: 69341139-69341739 ACTN1 4 1.36E-03 9.96E-04

Chr 16: 20774873-20775353 ACSM3 5 3.47E-03 1.58E-03

Chr 17: 74667833-74668253 LOC105274304 6 2.13E-03 8.34E-07

Chr 17: 21029189-21029296 DHRS7B 2 7.18E-03 5.11E-05

Chr 18: 47813745-47815431 CXXC1 10 2.58E-05 1.68E-03

Chr 21: 36421467-36421956 RUNX1 6 2.23E-03 1.67E-04

Chr 22: 24372913-24374013 LOC391322 12 3.21E-04 1.35E-07

*DMRcate annotates to UCSC RefGene from the Illumina annotation file.

�Comb-p uses a 1-step Sidak multiple-testing correction on the regional P value assigned by using the Stouffer-Liptak method.

�DMRcate takes the minimum Benjamini-Hochberg FDR-corrected P value in the region as representative after recalculating P values by using Gaussian kernel smoothing.
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childhood methylation were at least nominally significant for

newborn methylation; 2 of these had consistent directions of ef-

fect (cg16409452 [EVL] and cg09423651 [NCK1]).

Replication of findings for asthma in relation to

childhood methylation in nasal epithelium
We assessed whether the 179 CpGs differentially methylated in

blood in relation to asthma in childhood were also differentially

methylated in relation to current asthma in nasal epithelium from

2 studies (see Table E6 in this article’s Online Repository at www.

jacionline.org). Among 455 Dutch children (37 with asthma)

studied at age 16 years,13 we found evidence for replication for

20 CpGs, matching direction-of-effect estimates and nominal sig-

nificance (P <.05). Among African American children aged 10 to

12 years with persistent asthma plus atopy (36 cases) compared

with 36 nonasthmatic nonatopic children, 128 of the 179 CpGs

produced effect estimates for asthma in the same direction and

also had P values of less than .05 for association.

Replication of findings for asthma in relation to

childhood methylation in eosinophils
We looked up the 179 CpGs differentially methylated in

childhood in relation to asthma in EWASs of 16 asthma cases

and 8 noncases inwhommethylation had beenmeasured in purified

eosinophils. Of the 177CpGs included in this data set, all directions

of association with asthma were the same as in the PACE

consortium and 148 produced P values of less than .05 (see

Table E7 in this article’s OnlineRepository atwww.jacionline.org).

Functional annotation
For the newborn analysis, among the 7 significant CpGs (after

removing the 2 ‘‘ch’’-probes), all 7 were near a transcription

factor binding site, and 6 were in a DNase hypersensitivity site

identified in at least 1 ENCODE cell line, supporting a potential

functional relevance to transcriptional activity (see Fig E5 in this

article’s Online Repository at www.jacionline.org).

Among the 179 CpGs significantly differentially methylated in

childhood in relation to asthma, there was significant depletion of

localization to CpG islands (17 CpGs, 9.5%, P 5 1.09 3 10211)

and promoters (34 CpGs, 19.0%, P 5 1.10 3 1024). Functional

annotation plots are shown in Fig E6 in this article’s Online Re-

pository at www.jacionline.org for the 13 gene regions to which

the 34 nonsingleton CpGs annotate. Among the 179 CpGs, 113

were in DNAse hypersensitivity sites. Using eFORGE39 to

examine enrichment of all 179 significant CpGs for histonemarks

(H3K27me3, H3K36me3, H3K4me3, H3K9me3, and

H3K4me1), we found significant enrichment for H3K4me1 in

blood and lung tissue and H3K36me3 in blood (see Fig E7 in

this article’s Online Repository at www.jacionline.org).

Association of methylation and gene expression
For the CpGs and regions we identified as differentially

methylated in either newborns or children in relation to asthma,

we assessed association between paired levels of blood DNA

methylation and whole-blood gene expression for nearby tran-

scripts defined as within a 500-kb window of the significant CpG

or DMR in newborns (Gene Expression Omnibus, n5 38; INMA,

n5 113; IoW, n5 157), children (4-year-olds in INMA, n5 112;

16-year-olds in BAMSE, n5 248), and adults (BIOS consortium,

n 5 3096).

Among 9 CpGs differentially methylated in newborns in

relation to asthma, 3 were associated with expression of a nearby

transcript in 3 data sets (cg17333211 in newborns, 4-year-olds,

and adults and cg02331902 and cg07156990 in 2 newborn data

sets and 4-year-olds), and an additional 3 CpGs were associated

with expression in 2 data sets (cg13427149 in 16-year-olds and

FIG 2. Meta-analysis of asthma in relation to childhoodmethylation: A,Manhattan plot; B, volcano plot. The

model is adjusted for covariates and cell types. CpGs corresponding to more than 1 gene with significant

CpGs (FDR < 0.05) are highlighted in red.
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adults and cg13289553 and cg21486411 in newborns and

4-year-olds; see Table E8, A, in this article’s Online Repository

at www.jacionline.org). All regions differentially methylated in

newborns in relation to asthma were related to expression in at

least 1 data set (see Table E8, B).

For methylation in childhood, nearly all (176/179) CpGs

related to asthma also associated with expression in at least 1

data set (Table E8, C). CpGs annotated to IL5RA were

significantly associated with expression in 4 cohorts (BIOS con-

sortium, INMA, IoW, and BAMSE). All 36 regions differentially

methylated in childhood were associated with expression of a

nearby transcript in at least 1 data set (see Table E8, D).

Pathway analysis
Using Ingenuity Pathway Analysis, we identified pathways, as

well as disease processes and biological functions, significantly

enriched (P < .05) for the genes to which significant individual

CpGs or DMRs annotated in the meta-analysis of asthma in rela-

tion to newborn or childhood methylation (see Tables E9 and E10

in this article’s Online Repository at www.jacionline.org). Genes

towhich the 7 significant CpGs (after removing ‘‘ch’’-probes) and

35 significant DMRs in newborn methylation analysis were anno-

tated were significantly enriched (P <.05) for canonical pathways

relevant to immune function in asthmatic patients, including

endothelial nitric oxide synthase (eNOS) signaling, the inflamma-

some, and nuclear factor kB (NF-kB) signaling (see Table E9).

Enriched disease processes and biologic functions included

several involving immune function and others involving immune

and organ development (see Table E9). Given the larger number

of implicated genes for childhood methylation, many more path-

ways, disease processes, and biological functions were enriched

(see Table E10). There was substantial overlap in newborns and

children in the significantly enriched pathways and diseases and

biological function relevant to immune function, immunologic

disease, and development (see Fig E8 in this article’s Online

TABLE IV. Thirty-four CpGs annotated to 13 genes with more than 1 significant CpG (FDR < 0.05) from the meta-analysis of

asthma in relation to childhood methylation

CpG chromosome:position

UCSC

RefGene name

UCSC

Known gene* P value

Average

methylation ORy (CI) Directionz

cg13066938 Chr 1: 6341140 ACOT7 ACOT7 1.67E-05 0.682 0.91 (0.88-0.95) 221?22122

cg21220721 Chr 1: 6341230 ACOT7 ACOT7 1.02E-08 0.763 0.94 (0.92-0.96) 221222222

cg09249800 Chr 1: 6341287 ACOT7 ACOT7 1.19E-08 0.916 0.88 (0.84-0.92) ???222?22

cg11699125 Chr 1: 6341327 ACOT7 ACOT8 7.54E-10 0.799 0.90 (0.87-0.93) 221222222

cg00043800 Chr 2: 74612144 LOC100189589 LOC100189589 1.32E-05 0.585 0.91 (0.87-0.95) 222221122

cg17988187 Chr 2: 74612222 LOC100189589 LOC100189590 1.21E-06 0.699 0.90 (0.86-0.94) 221?22122

cg01310029 Chr 3: 3152374 IL5RA IL5RA 4.18E-06 0.744 0.89 (0.85-0.94) 222?22122

cg10159529 Chr 3: 3152530 IL5RA IL5RA 4.48E-06 0.736 0.90 (0.86-0.94) 222?2222

cg07410597 Chr 3: 66404129 SLC25A26 LRIG1 2.70E-07 0.773 0.88 (0.84-0.93) 221222122

cg04217850 Chr 3: 66428294 SLC25A26 LRIG2 2.35E-06 0.747 0.88 (0.83-0.93) 221222222

cg15304012 Chr 6: 166876490 RPS6KA2 RPS6KA2 1.86E-05 0.697 1.08 (1.04-1.13) 111111111

cg19851574 Chr 6: 167178233 RPS6KA2 RPS6KA2 3.42E-06 0.671 0.95 (0.94-0.97) 221222222

cg03329755 Chr 6: 167189272 RPS6KA2 RPS6KA2 6.14E-06 0.818 0.91 (0.88-0.95) 211222222

cg05184016 Chr 7: 149543136 ZNF862 BC045757 2.74E-08 0.817 0.85 (0.80-0.90) 221222222

cg07970948 Chr 7: 149543165 ZNF862 BC045757 6.39E-08 0.771 0.91 (0.88-0.94) 222122122

cg06558622 Chr 7: 149543177 ZNF862 BC045757 3.39E-09 0.818 0.88 (0.85-0.92) 222222222

cg24576940 Chr 7: 150648283 KCNH2 KCNH2 1.83E-05 0.848 0.87 (0.81-0.93) 222222222

cg23147443 Chr 7: 150649655 KCNH2 KCNH2 1.83E-06 0.842 0.89 (0.85-0.93) ???222?22

cg18666454 Chr 7: 150651937 KCNH2 KCNH2 1.46E-07 0.761 0.89 (0.86-0.93) 222222222

cg13850063 Chr 9: 138362321 AK096249 5.49E-08 0.819 0.78 (0.71-0.85) 221?22222

cg14011077 Chr 9: 138362327 AK096249 7.02E-09 0.797 0.86 (0.82-0.90) 222?22222

cg15700636 Chr 11: 57156050 PRG2 PRG2 2.35E-07 0.746 0.89 (0.85-0.93) 221222222

cg08773180 Chr 11: 57157607 PRG2 PRG2 1.77E-07 0.741 0.89 (0.85-0.93) 221222122

cg12819873 Chr 11: 57157632 PRG2 PRG2 9.55E-06 0.760 0.90 (0.86-0.94) 222222122

cg16409452 Chr 14: 100610186 EVL AX747103 4.89E-07 0.770 0.91 (0.87-0.94) 221222222

cg14084609 Chr 14: 100610407 EVL AX747103 2.96E-09 0.780 0.89 (0.85-0.92) 222222222

cg18550847 Chr 14: 100610570 EVL AX747103 7.10E-07 0.730 0.91 (0.88-0.94) 221?22222

cg08640475 Chr 16: 85551478 KIAA0182 2.36E-06 0.815 0.92 (0.89-0.95) 221222222

cg10099827 Chr 16: 85551514 KIAA0182 1.32E-06 0.808 0.92 (0.89-0.95) 222222222

cg08940169 Chr 16: 88540241 ZFPM1 ZFPM1 2.93E-07 0.778 0.91 (0.87-0.94) 222222122

cg04983687 Chr 16: 88558223 ZFPM1 ZFPM1 1.33E-10 0.744 0.93 (0.90-0.95) 222222222

cg25173129 Chr 17: 56269410 EPX EPX 8.09E-07 0.753 0.88 (0.84-0.93) 221222122

cg02970679 Chr 17: 56269818 EPX EPX 9.99E-07 0.776 0.88 (0.83-0.92) 222222122

cg17374802 Chr 17: 56270828 EPX EPX 2.06E-06 0.713 0.90 (0.86-0.94) 222?22122

OR, Odds ratio.

*Annotation based on UCSC Known Gene also fills in nearest gene within 10 MB.

�Odds ratio of having asthma for a 1% absolute increase in methylation. Adjusted for covariates and cell type.

�For each cohort, 1 indicates a positive direction of effect, 2 indicates a negative direction of effect, and ? indicates missing information for that CpG. Cohort order is as follows:

BAMSE EpiGene, BAMSE MeDALL, CHOP, GALAII, ICAC, NFBC1986, PIAMA, RAINE, and STOPPA.
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Repository at www.jacionline.org). As an example, Fig 3 shows

the network of 4 overlapping disease and biological processes be-

tween newborns and children: tissue morphology, immunological

disease, inflammatory disease, and cell-mediated immune

response.

Druggable targets
Among regions differentially methylated in newborns in

relation to later asthma, RUNX1 is a target of the agent

CHEMBL2093862 andCASP8 is the target of CHEMBL2105721

(Nivocasan), an inhibitor of this caspase and 2 others (1 and 9).

Among genes with individual CpGs significantly differentially

methylated in childhood in relation to asthma, KCNH2 (3 signif-

icant CpGs) is a target of several approved drugs with mechanism

of action of blockingHERG (humanEther-�a-go-go-related gene),

including the antiarrhythmic agents amiodarone hydrochloride,

dofetilide, and sotalol. Notably, sotalol is also a b-adrenergic re-

ceptor antagonist. IL5RA (2 significant CpGs) is the target for a

drug approved for use in patients with severe asthma,

benralizumab, the mechanism of action of which is antagonism

of this gene.49 Several other genes implicated by either an individ-

ual CpG (16 genes) or DMR analysis (5 genes, including IGF1R)

are targets for approved or potential drugs (see Tables E11 and

E12 in this article’s Online Repository at www.jacionline.org).

DISCUSSION
This epigenome-widemeta-analysis of the association between

childhood asthma and DNA methylation measured at birth or

childhood identified numerous novel CpGs and regions differen-

tially methylated in relation to this common health outcome. The

9 CpGs and 35 regions significantly differentially methylated in

relation to asthma in newborn bloodDNA are potential markers of

risk for disease development. There were many more statistically

significant associations of asthma in relation to childhood DNA

methylation, with 179 CpGs and 36 regions; these might reflect

both the risk for and effects of this disease.50

Among the significant CpGs in newborns, 6 were in DNAse

hypersensitivity sites, supporting a potential regulatory effect on

TABLE V. DMRs for asthma in relation to childhood methylation with adjustment for covariates and cell type identified by using

both comb-p (P < .01) and DMRcate (FDR < 0.01) methods

chromosome:position Gene name*

No. of CpGs

in region

P value from

comb-py

FDR from

DMRcatez

Chr 1: 161575716-161576323 HSPA7 4 8.61E-03 1.24E-03

Chr 1: 209979111-209979780 IRF6 13 4.62E-04 1.90E-04

Chr 1: 2036283-2036644 PRKCZ 4 2.00E-04 3.14E-05

Chr 1: 87596820-87596935 LINC01140 3 1.58E-03 2.79E-05

Chr 2: 149639612-149640260 KIF5C 4 3.50E-03 1.14E-05

Chr 2: 11917490-11917788 LPIN1 3 4.81E-03 6.25E-04

Chr 3: 195974258-195974330 PCYT1A 3 5.07E-05 2.00E-05

Chr 3: 3151795-3152917 IL5RA 6 1.35E-08 2.12E-09

Chr 5: 38445220-38446193 EGFLAM 9 5.11E-06 1.28E-05

Chr 5: 132008525-132009631 IL4 4 5.36E-07 3.11E-05

Chr 6: 112688010-112688931 RFPL4B 4 4.89E-05 5.19E-04

Chr 6: 166876490-166877039 RPS6KA2;RPS6KA2-IT1 8 3.08E-05 1.74E-06

Chr 7: 156735383-156735657 NOM1 3 7.11E-03 2.82E-03

Chr 7: 149543136-149543178 ZNF862 3 3.85E-16 1.43E-16

Chr 7: 65419185-65419289 VKORC1L1 7 2.82E-03 1.04E-03

Chr 8: 832917-833049 ERICH1-AS1;DLGAP2 3 6.15E-03 6.44E-03

Chr 8: 141046436-141046853 TRAPPC9 5 8.93E-07 3.45E-09

Chr 9: 138362321-138362505 PPP1R26-AS1 3 2.72E-05 1.44E-09

Chr 9: 130859454-130859607 SLC25A25 2 2.69E-08 5.84E-08

Chr 11: 65545808-65547173 AP5B1 8 1.31E-10 9.73E-12

Chr 11: 69291998-69292065 LINC01488 3 4.55E-04 1.65E-04

Chr 11: 59856225-59856359 MS4A2 2 1.50E-03 3.25E-04

Chr 12: 15125458-15126021 PDE6H 4 6.93E-03 7.65E-06

Chr 14: 100610071-100610668 EVL 6 7.79E-16 1.24E-19

Chr 15: 64275810-64275854 DAPK2 2 4.91E-04 2.04E-04

Chr 15: 99443213-99443667 IGF1R 4 6.57E-05 2.41E-04

Chr 16: 875257-875627 PRR25 4 3.34E-03 3.21E-03

Chr 16: 88539861-88540397 ZFPM1 5 1.09E-04 1.13E-05

Chr 16: 615709-616221 PRR35 5 1.62E-04 2.70E-07

Chr 16: 85551478-85551749 GSE1 3 5.27E-07 2.37E-07

Chr 17: 56269410-56270829 EPX 5 6.20E-11 1.41E-08

Chr 17: 78682785-78683458 RPTOR 5 1.18E-04 4.03E-04

Chr 19: 51961666-51961938 SIGLEC8 3 2.37E-04 5.07E-04

Chr 19: 50553682-50554511 LOC400710 10 1.78E-07 3.81E-06

Chr 20: 35503832-35504554 TLDC2 8 1.23E-03 5.90E-08

Chr 21: 42520365-42520903 LINC00323 3 1.41E-04 2.64E-05

*DMRcate annotates to UCSC RefGene from Illumina annotation file. The first listed gene is shown.

�Comb-p uses a 1-step Sidak multiple-testing correction on the regional P value assigned by using the Stouffer-Liptak method.

�DMRcate takes the minimum Benjamini-Hochberg FDR-corrected P value in the region as representative after recalculating P values by using Gaussian kernel smoothing.
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gene function. Additionally, genes to which cg13427149

(GPATCH2/SPATA17) and cg16792002 (MAML2) annotate

have previously been associated with obesity phenotypes,51,52

conditions related to childhood asthma. This supports the poten-

tial functional importance and asthma relevance of our newborn

findings.

Some CpGs on the 450K array have been reported as

potentially polymorphic by virtue of location near SNPs.41Given

that many of the nearby SNPs are low frequency andmost will not

interfere with probe binding, which would generate a truly

spurious result rather than filter these in advance; in the PACE

consortium we examined statistically significant CpGs post hoc

for occurrence on lists of potentially problematic CpGs in the

literature, as recently recommended by others.17,18 Lists of poten-

tially problematic probes change over time, as do underlying gene

annotations.53Wenote that 2 of the 9 significant CpGs in newborn

methylation (ch.11.109687686R and ch.6.1218502R) were

flagged as potentially nonspecific (‘‘ch’’) probes by Chen

et al.41 We provide association results for these because they

might be useful to others but, acknowledging this caveat, do not

include them in downstream analyses that assume certainty

regarding gene localization. With respect to the issue of CpGs

previously reported as near SNPs, we visually assessed plots of

all significant CpGs in 3 of our largest cohorts (MoBa1 and
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FIG 3. A network is shown for 4 categories of disease and biological functions overlapping between

analyses of asthma in relation to either newborn or childhood methylation: immunological disease, cell-

mediated immune response, inflammatory disease, and tissue morphology. A gene is connected to a

disease or function if it has been previously shown to be involved in it. All genes marked in red are

implicated from newborn methylation analyses, and those marked in in orange are implicated from

childhood methylation analyses.
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Generation R for newbornmethylation [see Fig E9 in this article’s

Online Repository at www.jacionline.org] and STOPPA for child-

hood methylation [see Fig E10 in this article’s Online Repository

at www.jacionline.org]) to verify unimodal distributions.

We identified many more CpGs and DMRs associated with

later asthma, likely because these also capture disease effects. Our

findings might also reflect different pathophysiologic mecha-

nisms related to newborn versus childhood methylation and

asthma. A comprehensive search for methylation signals at birth

that predict later development of asthma likely requires much

larger sample sizes given the intervening effects of exposures and

developmental processes that may outweigh effects of small

methylation differences present at birth.54 However, although

overlap at the level of specific CpGs or DMRs was low, there

was substantial overlap at the pathway and network levels (Fig

3 and see Fig E8).

To follow-up our differentially methylated signals for potential

functional effect, we examined correlations with gene expression.

Because of the relatively small sizes of the paired gene expression

data sets in newborns or children, we also examined amuch larger

data set of adults to increase power. Although the number of

subjects in data sets of newborns or children with both gene

expression and methylation data were modest (range, 38-248),

limiting power to find correlations, we found that a high propor-

tion of CpGs and DMRs related to asthma were also correlated

with gene expression in at least 1 data set in this age range. This

further supports the functional effect of our methylation findings.

Our search for druggable targets identified 2 genes from the

newborn DMR analysis that are targets for either approved or

potential drugs. The childhood analysis identified more drug

targets. One of these genes, IL5RA, already has an approved

asthma drug that inhibits its product. This analysis further sup-

ports the relevance to asthma pathogenesis and the potential clin-

ical usefulness of these findings. Investigating the potential to

repurpose approved drugs for new indications has been recently

highlighted as a cost-effective way to develop new therapeutic

modalities.55

We meta-analyzed results across studies by using fixed-effects

meta-analysis with inverse variance weighting. Recently, Rice

et al25 have summarized issues regarding the choice of meta-

analytic models for combining study-specific results in genomic

analyses and show that the inverse variance–weighted average es-

timates a reasonable and interpretable parameter, even under the

assumption that effect sizes differ. Furthermore, they point out

that a fixed-effects meta-analysis does not require the assumption

of homogeneity. Rice et al25 also emphasize the importance of

evaluating meta-analysis effect estimates and significance tests

along with visualization of study-specific estimates rather than

relying on a single statistical estimate of heterogeneity. Accord-

ingly, we provide forest plots to show the consistency of study-

specific findings for all significant meta-analysis results (see Fig

E1 for newborn methylation and Fig E3 for childhood methyl-

ation). Furthermore, we performed a systematic leave-one-out

meta-analysis for all significant CpGs, in which we leave each

cohort out one by one (see Fig E2 for newborn methylation and

Fig E4 for childhood methylation). In addition, where there is

even nominal evidence for heterogeneity (Pheterogeneity < .05),

we provide random-effects results in Tables E3 (newborn methyl-

ation) and E5 (childhood methylation).

We recognize various limitations. As in most EWASs,13 as well

as GWAS meta-analyses,56 asthma was defined by questionnaire.

As in Xu et al,13 we used a reported doctor’s diagnosis combined

with symptoms andmedication use. Although use of self-reported

outcomes can lead to misclassification, this should be nondiffer-

ential with respect to methylation and thus should lead to bias to-

ward the null rather than create false-positive findings.We did not

stratify the analyses by allergic status becausemost cohorts do not

have objective measures of atopy, and in many cohorts sample

size would have been inadequate for stratification.

We also note that the diverse cohorts included in the analysis

could have introduced heterogeneity based on ancestry or, in the

analysis of methylation in older children, 2 studies in older

adolescents. However, in the studies of older children, non-

European ancestry of older children did not appear to be

influential in sensitivity analyses. Although magnitudes of the

associations are modest, this is consistent with other genome-

wide analyses of methylation in newborns and children in relation

to various exposures.15,57,58 These effect sizes are not surprising

given that highly reproducible genetic signals discovered in

asthma GWASs, such as ORMDL3,59 are also modest.

We used logistic regression in the prospective analyses of

newborn methylation in relation to asthma rather than Cox

regression, which is not commonly used in high-dimensional

genomic studies. If time to asthma were available or could be

estimated reliably, a Cox model would be more efficient. How-

ever, for asthma, the exact time to disease development is poorly

estimated. Thus epidemiologic studies generally use age at

diagnosis, but there can be a very long lag between disease onset

and diagnosis. In our scenario, where the exact time to asthma is

unknown, using error-prone outcomes can actually result in larger

bias. Thus, considering the tradeoff between bias and efficiency,

logistic regression is the better option.We also note that where the

condition under study has less than 10% prevalence, as is the case

for our outcome of asthma diagnosed at school age, the odds ratio

is a good approximation of the hazard ratio.60 To address the

important aspect of age at diagnosis of asthma, we used age at

diagnosis for the harmonized definition of asthma. With the

exception of a couple of studies, in which sensitivity analyses

removing them did not suggest undue influence, the range of

mean ages was not large.

Unmeasured confounding is a concern in all analyses of

observational data. With high-dimensional genomic data, vari-

ability caused by batch effects is an additional potential source of

unmeasured confounding.61 In this meta-analysis each cohort

corrected for batch effects by using methods most suitable for

their own data. In most studies methylation analyses were

completed over a short period of time, which greatly reduces

batch effects.61When using methods such as adjustment for batch

variables or ComBat, one must specify the putative batch vari-

ables. To the extent that there are unknown factors contributing

to laboratory variability, there might be residual confounding.

Various methods have been proposed to attempt to address un-

measured confounding in high-dimensional data. However, in

meta-analyses findings tend to be significant because they are

consistent across studies. Thus the chance that unmeasured con-

founding is operating in the same manner across studies done in

different countries with methylationmeasured in different labora-

tories and at different times, resulting in false-positive significant

associations in the meta-analysis, is greatly reduced. Further-

more, in the childhood methylation analysis we have substantial

replication of findings from a recently published meta-analysis,13

even after overlapping subjects are removed. In addition, the
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consistency of our findings from blood DNAwith results for DNA

isolated from 2 tissues highly relevant for asthma, eosinophils and

nasal respiratory epithelium, provides compelling evidence that

our findings are not driven by unmeasured confounding.

Identification of DMRs provides a way to reduce the dimen-

sionality of the epigenome-wide methylation data and can

identify associations at the regional level, where there are not

individually significant CpGs. The 2 methods that we used for

DMR identification, DMRcate and comb-p, are the only 2

published methods available for use with results of meta-

analyses.29,30A recent review noted that the variousmethods pub-

lished for identifying DMRs use different assumptions and

statistical approaches and thus rarely identify exactly the same re-

gions.62Accordingly, to reduce false-positive results, we reported

only DMRs identified as statistically significant by both methods.

We measured DNA methylation in whole blood, a mix of cell

types. Cell counts were not measured, but we adjusted our models

for estimated cell counts using established reference-based

methods to address confounding by cell-type differences.21 For

childhood, as opposed to newborn, methylation, we used an adult

reference panel because a suitable one is not available for chil-

dren. Notably, the considerable overlap between our findings in

whole blood and smaller studies of 2 highly asthma-relevant tis-

sues, nasal epithelium, an excellent proxy for airway epithelium

in studies of asthma,63 and purified eosinophils, greatly reduces

the concern that our findings are false-positive results because

of failure to fully account for the influence of asthma on white

blood cell proportions.

In addition to confirmation of findings in studies of eosino-

phils and nasal respiratory epithelium and the high power

resulting from meta-analyses, other strengths of the study

include our efforts to standardize the definition of asthma

across studies, the large sample size provided by meta-analyses,

and evaluation of potential biological implications of our

findings through detailed examination of functional annotation,

pathway analysis, correlation of differentially methylated sites

with gene expression, and consideration of potential druggable

targets.

In summary, we identified numerous novel CpGs and regions

associated with childhood asthma in relation to DNAmethylation

measured either at birth in prospective analyses or in childhood in

cross-sectional analyses. Many of the genes annotated to these

CpGs and regions are significantly enriched for pathways related

to immune responses crucial in asthmatic patients; several genes

are targets for either approved or investigational drugs. Most

differentially methylated CpGs or regions correlated with expres-

sion at a nearby gene. Many more individual CpGs were

differentially methylated in childhood in relation to their current

asthma status. There was appreciable overlap with findings in

nasal respiratory epithelium and purified eosinophils. The CpGs

and regions identified in newborns might be potential biomarkers

of later asthma risk; those identified in childhood likely reflect

both processes that affect disease risk and effects of having the

disease. The novel genes implicated by this study might shed new

light on asthma pathogenesis.

We thank Dr Frank Day (National Institute of Environmental Health

Sciences [NIEHS]) and Jianping Jin of Westat (Durham, NC) for expert

computational assistance and Erin Knight (NIEHS) for assistance with the

literature review. See the supplementary materials in this article’s Online Re-

pository at www.jacionline.org for complete acknowledgements.

Key message

d This large-scale genome-wide meta-analysis of DNA

methylation and childhood asthma identified novel epige-

netic variations related to asthma in newborns and

children.
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