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 2 

SUMMARY 39 

B-cell lineage acute lymphoblastic leukemia (B-ALL) is comprised of diverse molecular subtypes and 40 

while transcriptional and DNA methylation profiling of B-ALL subtypes has been extensively examined, 41 
the accompanying chromatin landscape is not well characterized for many subtypes. We therefore 42 

mapped chromatin accessibility using ATAC-seq for 10 B-ALL molecular subtypes in primary ALL cells 43 

from 154 patients. Comparisons with B-cell progenitors identified candidate B-ALL cell-of-origin and 44 
AP-1-associated cis-regulatory rewiring in B-ALL. Cis-regulatory rewiring promoted B-ALL-specific gene 45 

regulatory networks impacting oncogenic signaling pathways that perturb normal B-cell development. 46 

We also identified that over 20% of B-ALL accessible chromatin sites exhibit strong subtype 47 
enrichment, with transcription factor (TF) footprint profiling identifying candidate TFs that maintain 48 

subtype-specific chromatin architectures. Over 9000 inherited genetic variants were further uncovered 49 
that contribute to variability in chromatin accessibility among individual patient samples. Overall, our 50 
data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic 51 
variants which promote unique gene regulatory networks that contribute to transcriptional differences 52 

among B-ALL subtypes. 53 
 54 
 55 

 56 
 57 
 58 

 59 
 60 
 61 

 62 

HIGHLIGHTS 63 

• Pro-B progenitor cells as the most common cell-of-origin for B-ALL  64 

• AP-1 TF-associated cis-regulatory rewiring in B-ALL  65 

• Subtype-specific accessible chromatin signatures representing 20% of all B-ALL sites  66 

• Role for distinct TFs in promoting subtype-specific chromatin architectures 67 

• Thousands of inherited genetic variants identified impacting chromatin state  68 

 69 
 70 

 71 
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INTRODUCTION 72 

Acute lymphoblastic leukemia (ALL) is derived from B- and T-cell lineage precursor cells and is the 73 

most common childhood cancer 1. A majority of acute lymphoblastic leukemias are derived from B-cell 74 
lineages (B-ALL) that are comprised of distinct molecular subtypes characterized by unique 75 

chromosomal lesions, including aneuploidy, translocations, gene fusions, point mutations and other 76 

chromosomal rearrangements that drive leukemogenesis 2. Numerous studies have identified extensive 77 
heterogeneity in transcriptomes 3,4 and DNA methylomes 5,6 among B-ALL subtypes in large patient 78 

cohorts, but there is limited understanding of chromatin landscapes. Here we provide an extensive 79 

survey of accessible chromatin state and cis-regulatory element activity in primary B-ALL cells from 80 
over 150 patients across the United States. 81 

 Chromatin accessibility or open chromatin is a hallmark of active cis-regulatory elements that 82 
control spatial and temporal gene expression 7. Because ALL typically involves mutations (PAX5-83 
altered), complex rearrangements (DUX4-rearranged, PAX5-altered, ZNF384-rearranged, etc.) and/or 84 
oncogenic gene fusions (ETV6::RUNX1, TCF3::PBX1, KMT2A-rearranged, etc.) of transcription factor 85 

(TF) genes as well as disruptions of cis-regulatory elements8, chromatin accessibility maps can provide 86 
valuable information to better understand the leukemogenic process. Accessible chromatin sites can be 87 
mapped using transposases by performing assay for transposase-accessible chromatin with high-88 

throughput sequencing (ATAC-seq) 9,10. Although DNase treatment has also been used 11, one key 89 
advantage of ATAC-seq is the low sample input requirements compared to DNase-based assays. This 90 
makes ATAC-seq an attractive assay for mapping open chromatin in primary cells from patients 91 

wherein sample availability is limited. Additionally, chromatin accessibility allows for identification of 92 
bound TFs through an examination of TF footprints which are defined by a depletion in DNA 93 
transposition 12 or DNase 13 cleavage events within regions of accessible chromatin signal. As a result, 94 

the underlying TF-binding gene regulatory networks that promote chromatin accessibility and 95 
differential gene expression can be predicted. 96 
 Previous large-scale studies of chromatin accessibility in primary cells have predominantly 97 

focused on distinct cell types 10,14 or distinct tumor types and locations 15,16. Therefore, large-scale 98 

analyses aimed to better understand chromatin state in a single heterogeneous malignancy are 99 
currently lacking. To address this knowledge gap, we mapped chromatin accessibility in fresh primary 100 

ALL cells from 154 patients across 10 molecular subtypes of B-ALL (BCR::ABL1, DUX4-rearranged, 101 

ETV6::RUNX1, high hyperdiploid, low hypodiploid, KMT2A-rearranged, BCR::ABL1-like (Ph-like), 102 
PAX5-altered, TCF3::PBX1, ZNF384-rearranged) and B-other patient samples. Notably, these 103 

subtypes span the entire spectrum of clinical prognoses, including patients with excellent (DUX4-104 

rearranged, ETV6::RUNX1, high hyperdiploid), good (TCF3::PBX1), intermediate (ZNF384-rearranged, 105 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.02.14.528493doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.14.528493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

PAX5-altered) and poor (BCR::ABL1, low hypodiploid, KMT2A-rearranged and Ph-like) prognosis. We 106 

also mapped histone H3 lysine 27 acetylation (H3K27ac) enrichment using ChIP-seq in a subset of 107 
these patient samples to additionally infer functional activity. 108 

 Using ATAC-seq chromatin accessibility and histone profiling in primary ALL cells, we mapped 109 
cis-regulatory element activity in B-ALL. In complement to chromatin accessibility profiling, we identified 110 

thousands of chromatin loops targeting promoters in multiple B-ALL cell lines to better inform linkages 111 

of cis-regulatory elements to cognate genes. We coupled these maps to transcription factor (TF) 112 
footprints at accessible chromatin sites to identify key TFs and gene regulatory networks across B-ALL 113 

samples and within distinct B-ALL subtypes. Our results identified extensive chromatin reprogramming 114 

between B-cell progenitors and B-ALL, as well as extensive heterogeneity in accessible chromatin 115 
landscapes among B-ALL subtypes. Specifically, we uncovered a focused subset of over 42,000 B-ALL 116 

open chromatin sites exhibiting extensive subtype-enrichment and subtype-enriched TF binding events. 117 
Notably, these sites can predict and classify B-ALL samples with 86% cross-validation accuracy.  We 118 

additionally explored the impact of inherited genetic variation on chromatin state and delineated over 119 
9000 ATAC-seq chromatin accessibility quantitative trait loci (ATAC-QTLs) in B-ALL cells, including a 120 
subset that alter neighboring gene expression. Using the largest accessible chromatin accessibility 121 

dataset for B-ALL to date, our data collectively support substantial subtype-specificity in chromatin 122 
accessibility that is driven in part by distinct TFs, as well as pronounced inter-individual heterogeneity in 123 
chromatin state through inherited genetic variants. Our work further supports the role of these distinct 124 
chromatin architectures in establishing unique gene regulatory networks that impact gene expression 125 

and B-ALL cell biology. 126 
 127 
 128 

 129 

RESULTS 130 

Chromatin accessibility profiles of B-ALL patient samples spanning multiple subtypes 131 

ATAC-seq using the Fast-ATAC 10 method was performed on recently-harvested primary ALL cells from  132 
154 patients spanning 10 B-ALL molecular subtypes (BCR::ABL1, DUX4-rearranged, ETV6::RUNX1, 133 

high hyperdiploid, low hypodiploid, KMT2A-rearranged, Ph-like, PAX5-altered, TCF3::PBX1, ZNF384-134 

rearranged) and B-other samples (Table S1) from diverse medical centers, research groups and 135 
clinical trials networks across the United States (see Methods). To identify high-confidence sites, we 136 

identified ATAC-seq peak summits using subtype merged data and selected only loci reproducible 137 
among unmerged individual patients. Using this approach we identified 110,468 accessible chromatin 138 
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fsites, on average, in each B-ALL subtype (range= 71,797–142,498), with 217,240 merged sites 139 

identified in total representing the final genomic regions of interest (Figure 1A, Table S2).  140 
Using H3K27ac ChIP-seq data generated from a subset of 11 B-ALL patient samples, as well as 141 

primary B-ALL cell H3K27ac, H3K4me1 and H3K27me3 ChIP-seq data from the Blueprint Epigenome 142 
Consortium (https://www.blueprint-epigenome.eu/), we determined that nearly all open chromatin sites 143 

mapped to regions containing only active histone marks (H3K27ac and/or H3K4me1, 89.6%; 144 

H3K27ac= 3.3%, H3K4me1=34% and H3K4me1+H3K27ac=52.3%) or regions with bivalent marks 145 
suggesting a poised chromatin state (H3K27ac and/or H3K4me1 and H3K27me3, 8.9%), compared to 146 

only 1.5% of ATAC-seq sites that mapped to regions solely harboring repressive chromatin 147 

(H3K27me3; Figure 1B). Because these histone modifications are typically found at transcriptional 148 
enhancers and promoters17-20, these findings suggest that these accessible chromatin regions are B-149 

ALL cis-regulatory elements implicated in gene regulation.  150 
In most cases, these candidate cis-regulatory elements map within intergenic or intragenic loci 151 

with unclear gene targets. Therefore, to better inform gene connectivity we produced chromatin looping 152 
data using promoter capture Hi-C 21 across seven B-ALL cell lines (697, BALL1, Nalm6, REH, RS411, 153 
SEM and SUPB15)  to complement B-ALL patient chromatin accessibility profiles. Collectively, across 154 

the B-ALL cell lines we detected approximately 400,000 chromatin loops, with approximately 50% of 155 
the 217,240 chromatin accessible regions of interest intersecting with a promoter loop, including 15,929 156 
chromatin accessible sites that looped to a cancer implicated gene set (Figure 1C) 22,23 . In many 157 
instances, large domains of extensive chromatin looping are present, which with chromatin accessibility 158 

and active histone marks emphasize the gene regulatory networks present across B-ALL patient 159 
samples (e.g., Figures 1D and 1E).  160 
 161 

Chromatin accessibility identifies Pro-B cell-of-origin for most B-ALL patient samples 162 
To better understand chromatin remodeling during leukemogenesis we sought a comparison of 163 

chromatin accessibility between B-ALL and B-cell progenitors. Moreover, although it is widely accepted 164 

that the B-ALL cell-of-origin is a B-cell precursor, exactly which precursor is not always clear, 165 

particularly at the chromatin accessibility level 24. To resolve this uncertainty, we examined publicly 166 

available ATAC-seq data from several human B-cell progenitors10,25 (Figure 2A). When comparing 167 

chromatin accessibility signal between B-cell progenitor groups, we identified a set of approximately 168 
42,344 genomic loci which demonstrate a chromatin accessibility enrichment or depletion trend for a B-169 

cell progenitor (Figure 2B, Table S3). We refer to these chromatin loci as B-progenitor identity loci due 170 

their distinct patterning across B-progenitor differentiation and are likely representations of stage-171 
specific gene regulatory programs.  172 
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 6 

 Next, we examined patient B-ALL cell chromatin accessibility across these B-progenitor identity 173 

loci. When plotting chromatin accessibility signal as a heatmap comparing B-cell progenitors and B-ALL 174 
patient samples, a high degree of similarity was observed with prePro-B cells and Pro-B cells (Figure 175 

2B). Further, when applying the K-nearest neighbor classification model previously trained on B-176 
progenitor identity loci the majority of B-ALL samples classified as either prePro-B or Pro-B (Figures 177 

2C and 2D). However, prePro-B cells have been reported to be an extremely rare population beyond 178 

embryonic and fetal development 25. Overall, Pro-B cells demonstrate the most similarity to B-ALL cells 179 
at the chromatin accessibility level when focusing specifically on B-cell precursor defining loci, 180 

emphasizing this precursor B-cell as a common cell-of-origin for B-ALL.  181 

 182 
Extensive differences in chromatin accessibility between B-ALL and Pro-B cells 183 

To better understand chromatin remodeling during leukemogenesis we next compared accessible 184 
chromatin sites between B-ALL and Pro-B cells (n=3) and uncovered 42,661 differentially accessible 185 

chromatin sites (DAS) exhibiting lesser or greater accessibility in B-ALL samples (Figures 3A and 3B; 186 
Figure S1 and Table S4). Ontology analysis focusing strictly on DAS with higher chromatin 187 
accessibility in B-ALL indicated an enrichment for sites associated with genes involved with toll-like 188 

receptor signaling, interleukin production, metabolism (acetyl-CoA production) and cell proliferation 189 
(Figure 3C). Enriched ontology terms were frequently present at multiple fold change thresholds of 190 
input B-ALL DAS (Table S5).  191 

In addition to profiling differential chromatin accessibility, global transcription factor (TF) binding 192 

was also compared between B-ALL and Pro-B cells. To identify differential TF binding, we performed 193 
genome-wide TF footprint profiling 12 using 810 TF motifs comparing B-ALL patient samples and normal 194 
Pro-B cell samples across all B-ALL genomic regions of interest (217,240 regions). Differential binding 195 

scores indicated the AP-1 family of TFs (e.g., FOS, JUN) as the most prominent TFs with higher 196 
binding in B-ALL patient samples compared to normal Pro-B cells (Figure 3D). In contrast, prominent 197 

TFs with higher binding in Pro-B cells were TFs such as TFAP2A, KLF15, CTCFL, ZBTB14 and EBF1.  198 

To further demonstrate AP-1 TF occupancy in B-ALL accessible chromatin sites we performed 199 

CUT&RUN for FOSL2, JUN and JUNB in 697 and SUB15 human B-ALL cell lines (Figure 3E; Figure 200 

S2). Intersections with B-ALL accessible chromatin sites from primary cells identified that 27% of these 201 

sites were occupied by an AP-1 TF in B-ALL cell lines. Strikingly, our results further uncovered that 202 
45% of DAS with higher chromatin accessibility in B-ALL (i.e., B-ALL enriched DAS) also exhibit AP-1 203 

TF occupancy (Figure 3F), thereby supporting AP-1-associated cis-regulatory rewiring in B-ALL. We 204 

determined that even though most AP-1 occupied B-ALL enriched DAS localized to promoter-distal 205 
regions of the human genome (77%), there is a 2.7-fold enrichment for AP-1 occupancy at B-ALL 206 
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enriched promoters compared to B-ALL enriched DAS devoid of AP-1 occupancy (Figure 3G; 16% vs 207 

6%). Further integration of AP-1 occupied B-ALL enriched DAS with promoter capture Hi-C in B-ALL 208 
cell lines identified target genes that were enriched for cell cycle, autophagy and apoptotic signaling 209 

pathways (Table S6; example in Figure 3H). 210 
As an extension of our TF footprinting data we also integrated B-ALL cell line promoter capture 211 

Hi-C using the ABC enhancer algorithm to refine identification of TF-target gene relationships across 212 

top TFs and a cancer implicated gene set 26. Specifically, we focused on top TF footprints within B-ALL 213 
enriched DAS and the cancer implicated gene targets of these DAS predicted by the ABC enhancer 214 

algorithm. Concordant with global TF footprint and AP-1 TF occupancy analyses we identified the AP-1 215 

family as top TFs in this network. We also identified other top TFs from TF footprinting such as CEBP 216 
family TFs and BACH2 (Figure 3I). Other prominent top TFs include NFIC, XBP1, TBX1 and numerous 217 

basic helix-loop-helix (bHLH) class TFs (e.g., MYOG, MYF5 and HES5). Top expressed cancer 218 
implicated gene targets for each TF converged on notable genes involved in cell signaling (TGFBR2, 219 

CXCR4), histone mark modification (ARID5B), transcriptional regulation (MYC, KLF6, HIF1A) and the 220 
PI3K-AKT pathway (PTEN) (Figure 3I). Collectively, these results highlight a rewiring of signaling 221 
pathways and TF binding networks that facilitate the proliferative potential of B-ALL samples compared 222 

to Pro-B cells.  223 
 224 
Identification of subtype-enriched chromatin architecture   225 
To better understand chromatin accessibility within B-ALL, inter-subtype analyses were performed to 226 

identify DAS exhibiting subtype-enriched signal (i.e., henceforth referred to as subtype-enriched DAS) 227 
in 10 B-ALL molecular subtypes harboring known molecular drivers (BCR::ABL1, DUX4-rearranged, 228 
ETV6::RUNX1, high hyperdiploid, low hypodiploid, KMT2A-rearranged, Ph-like, PAX5-altered, 229 

TCF3::PBX1 and ZNF384-rearranged; Figures 4A and 4C). For this analysis, we compared a single B-230 
ALL subtype cohort with all other B-ALL cell samples not belonging to that subtype in pairwise fashion 231 

covering all subtypes. This approach was utilized to emphasize high degrees of subtype enrichment 232 

compared to the full spectrum of chromatin accessibility variability in the remaining sample cohort. We 233 

identified between 307 and 10,639 DAS in each B-ALL subtype, with a total of 42,457 subtype-enriched 234 

DAS identified across all 10 B-ALL subtypes (log2 fold change > or < 1, FDR<0.05; Figure 4B, Table 235 

S7). We annotated subtype-enriched DAS on a subtype basis and determined that a majority of 236 
subtype-enriched DAS in each B-ALL subtype (87%, range=80%-90%) localized to promoter-distal 237 

regions of the genome (intronic and distal intergenic; Figure 4D), and 43%, on average (range=39%-238 

49%), localized to distal intergenic regions, thereby emphasizing the importance of non-genic loci in 239 
defining B-ALL chromatin heterogeneity. 240 
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 To further evaluate subtype-enriched DAS, we determined if they displayed enrichment patterns 241 

that were consistent with five established human B-ALL cell lines (697= TCF3::PBX1, Nalm6= DUX4-242 
rearranged, REH= ETV6::RUNX1, SEM= KMT2A-rearranged and SUPB15= BCR::ABL1). Concordant 243 

with DAS in patient samples, subtype-enriched DAS exhibited the strongest (BCR-ABL, DUX4-244 
rearranged, ETV6::RUNX1, KMT2A-rearranged) or second strongest (TCF3::PBX1) accessibility in the 245 

concordant cell line that was representative of that subtype (Figure S3). These data suggest that B-246 

ALL cell lines exhibit chromatin accessibility that is largely consistent with primary B-ALL cell sample 247 
from the corresponding subtype.  248 

 To further determine functional effects on gene expression, we integrated subtype-enriched 249 

DAS with DEGs uniquely up-regulated (log2 fold change >1, FDR<0.05) in each of the 10 B-ALL 250 
molecular subtypes to determine if they were enriched near DEGs. We identified a statistically 251 

significant enrichment of subtype-enriched DAS near up-regulated DEGs in 9 of 10 subtypes compared 252 
to total expressed genes in the corresponding subtype (Kolmogorov-Smirnov test p< 0.05; Figure 4E, 253 

Figure S4) and uncovered a strong statistical trend in Ph-like B-ALL (Kolmogorov-Smirnov test p= 254 
0.06; Figure S4). Consequently, these data support the role of subtype-enriched DAS in gene 255 
regulation and gene activation and further suggest that differences in chromatin accessibility contribute 256 

to transcriptomic differences among B-ALL subtypes 3,4. Collectively, these results highlight extensive 257 
open chromatin heterogeneity among B-ALL molecular subtypes. 258 
 259 
Mapping transcription factor drivers and gene regulatory networks in B-ALL subtypes 260 

We performed TF footprint profiling using merged ATAC-seq signal from 10 B-ALL subtypes with 261 
known molecular drivers to identify subtype-enriched TF drivers. TF footprint profiling 12 identified 262 
between 4,303,155 and 5,441,937 bound motifs in each B-ALL subtype, with 49,402,067 TF footprints 263 

at 815,992 unique genomic loci identified across all subtypes. Using these data, we next identified key 264 
TF footprints that were enriched in each subtype (i.e., subtype-enriched TF footprints) by calculating 265 

differential footprint scores between every subtype-subtype pair for each TF motif. The top median 266 

differential motif scores for each subtype were selected as subtype-enriched TF footprints. This 267 

approach was utilized to emphasize differential TF footprint motifs that were consistent and distinct for 268 

each subtype rather than repetitive global trends (Figure 5A). Notably, subtype-enriched TF footprints 269 

were identified for recognized TF drivers such as DUX4 in DUX4-rearranged ALL and ZNF384 in 270 
ZNF384-rearranged ALL. We also identified HOX family TFs (HOXA9, HOXB9, HOXC9 and HOXD9) in 271 

KMT2A-rearranged ALL, GATA family TFs (GATA2, GATA3, GATA4, GATA5 and GATA6) in ZNF384-272 

rearranged ALL and nuclear receptor family TFs in PAX5-altered ALL (ESR1, ESR2, ESRRA, NR2F6, 273 
NR2F1, RARA and THRB) that all had strong subtype-enriched TF footprints. 274 
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Because DNA consensus motifs can be highly redundant within TF families, we integrated 275 

subtype-enriched TF footprints with DEGs uniquely up-regulated in each subtype to identify candidate 276 
TFs from these TF families that are up-regulated in the corresponding B-ALL subtype. This analysis 277 

identified HOXA9 and HOXC9, RARA and GATA3 as up-regulated genes in KMT2A-rearranged, PAX5-278 
altered and ZNF384-rearranged subtypes, respectively (Figure 5B, Figure S5). In addition, DUX4 279 

(DUX4-rearranged) and MEIS1 (KMT2A-rearranged) were also identified as up-regulated TF genes 280 

with subtype-enriched TF footprints (Figure S5).  281 
 To determine if these up-regulated TFs promote unique chromatin accessibility landscapes 282 

among B-ALL subtypes, we also performed TF footprinting on subtype-enriched DAS by comparing 283 

differential footprint scores at subtype-enriched DAS between each B-ALL subtype and Pro-B cells 284 
(Figure 5C, Figure S6). Notably, these data supported a role of DUX4 in DUX4-rearranged ALL, 285 

ZNF384 and GATA3 in ZNF384-rearranged ALL, and HOXA9 and MEIS1 in KMT2A-rearranged ALL in 286 
the generation of subtype-specific chromatin landscapes (Figure 5C, Figure S6).  287 

 288 
Predictive potential of B-ALL subtype-enriched DAS 289 
We determined how well chromatin accessibility can predict B-ALL subtypes by constructing a stepwise 290 

Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) classification model using the 291 
42,457 subtype-enriched DAS ATAC-seq read count matrix as initial input across 10 B-ALL subtypes 292 
harboring known molecular drivers (outlined in Figure 6A). Notably, the constructed classification 293 
model was tested with leave-one-out cross validation at an accuracy of 86%. The most common failure 294 

was incorrect classification of BCR::ABL1 and Ph-like subtypes (Figure 6B), as has been observed 295 
with other ALL classification algorithms 27. Taking this into account by grouping BCR::ABL1 and Ph-Like 296 
subtype samples into a common class yielded a re-calculated cross validation accuracy of 91%. 297 

Visualization of B-ALL subtype separations using select dimensions output by the LDA model 298 
demonstrates distinct groupings of related subtypes emphasizing classification model performance 299 

(Figure 6C).  300 

 As a further application of our classification model, we also applied the algorithm to 26 B-ALL 301 

patient samples of unknown molecular B-ALL subtype. Although transcriptomic profiling for B-ALL 302 

drivers is not available to fully validate these samples, when processed with the constructed PCA-LDA 303 

model and projected onto original LDA dimensions they distinctly cluster with known molecular 304 
subtypes supporting reasonable predictions (Figure 6D). Collectively, these data support the utility of 305 

chromatin structure and subtype-enriched DAS in B-ALL subtype classification.  306 

 307 
 308 
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Mapping inherited DNA sequence variants that impact chromatin accessibility 309 

To determine how germline variation impacts chromatin accessibility, we identified chromatin 310 
accessibility quantitative trait loci using ATAC-seq (ATAC-QTLs) in a subset of 69 patient samples with 311 

available SNP genotyping information and allele-specific ATAC-seq read counting using RASQUAL 28. 312 
In total, 9080 ATAC-QTLs were identified representing both directionalities, with reference or alternative 313 

alleles increasing chromatin accessibility (FDR<0.1; Figure 7A, Table S8). Manual quantification and 314 

scaling of allele-specific read counts for select ATAC-QTLs identified with RASQUAL demonstrated a 315 
clear concordance and directionality among individual patient samples classified into genotype groups 316 

(Figure 7B). Visual inspection of merged read counts from patient samples grouped into reference 317 

allele homozygote, heterozygote, or alternate allele homozygote for select ATAC-QTLs further supports 318 
the high-quality nature of identified ATAC-QTLs (Figure 7C). We further determined that 218 ATAC-319 

QTLs where also lead eQTL SNPs when compared to GTEx eQTLs 29 from relevant tissues (blood and 320 
lymphoblastoid cells), with 85% also concordant for allele overrepresentation directionality (Figure 7D; 321 

Table S9). ATAC-QTLs were also compared with inherited genome-wide association study (GWAS) 322 
variants for ALL disease susceptibility which identified rs3824662 (GATA3) 30 and rs17481869 (2p22.3) 323 
31 as ATAC-QTLs that were associated with risk of developing B-ALL. Further supporting the validity of 324 

our methodology, rs3824662 was also identified as an ATAC-QTL in ALL PDX samples 32, and we 325 
functionally validated differential allele-specific activity for rs17481869 in multiple B-ALL cell lines 326 
(Figure S7).   327 
 To infer the impact of TF binding in control of chromatin accessibility at ATAC-QTLs we 328 

overlapped ATAC-QTL loci with TF motifs determined as TF-bound by footprint profiling 12. Nearly one-329 
third (28.8%; 2615/9080 ATAC-QTLs) of these ATAC-QTLs overlapped a TF-bound motif footprint 330 
across multiple B-ALL subtypes, suggesting that most ATAC-QTLs do not have a clear TF-binding 331 

mechanism in how they impact chromatin accessibility. Analysis of bound TF motif footprint prevalence 332 
at ATAC-QTLs identified several ETS family TFs (EHF, ELF3, SPI1/PU.1 and SPIB), zinc finger TFs 333 

(ZNF263, ZNF460, ZNF740 and ZNF148) and CTCF as the most altered motifs leading to differences 334 

in chromatin accessibility between alleles (Figure 7E). Notably, we also identified PAX5 and IKZF1, 335 

which have known roles in B-cell development and leukemogenesis 33-36. Collectively, these data 336 

identify inherited DNA sequence variants contributing to chromatin heterogeneity among B-ALL 337 

subtypes and indicate specific TFs of interest for further exploration of ATAC-QTLs.  338 
 339 

 340 

 341 

 342 
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DISCUSSION 343 

Our study provides the first, large-scale examination of chromatin accessibility in the B-ALL genome 344 

across an expansive set of B-ALL subtypes. We further integrated this data with ChIP-seq histone 345 
modification enrichment in primary B-ALL cells and three-dimensional chromatin looping data using 346 

promoter capture Hi-C in multiple B-ALL cell lines. Our data demonstrate that most regions of 347 

chromatin accessibility harbor activating chromatin marks consistent with cis-regulatory elements 348 
involved in gene regulation, and we further confirmed direct looping to gene promoters for 349 

approximately 50% of accessible chromatin sites. However, this does not rule out more transient 350 

chromatin looping interactions difficult to detect by current chromatin conformation capture genomic 351 
techniques. 352 

 Extensive epigenomic reprogramming was uncovered between B-cell progenitors and B-ALL, 353 
and cell-of-origin analyses identified Pro-B cells as the most common cell-of-origin. Our comparison of 354 
B-ALL and pro-B cell chromatin accessibility suggests epigenomic reprogramming that is, in part, 355 
associated with AP-1 TF occupancy. We further identify disruptions to normal B-cell function through 356 

the activation of toll-like receptor signaling and interleukin production. Acetyl Co-A synthesis was also 357 
identified as an enriched gene ontology term when comparing B-ALL and Pro-B cells. Metabolic 358 
alterations in cancer are well known, particularly acetyl-Co-A synthesis alterations which have been 359 

previously reported in cancer 37. In addition to metabolic alterations, PTEN, a known tumor suppressor 360 
gene is frequently mutated in a large portion of cancers 38. However, in B-ALL the cancer role of PTEN 361 
has been reported to be inverted, functioning instead as an oncogene 39. Reinforcing this conclusion 362 

and further suggesting PTEN as an intriguing target for B-ALL treatment, we also found PTEN in our 363 
network as a top gene target of B-ALL enriched DAS.  364 
 We further examined accessible chromatin landscapes among diverse molecular subtypes of B-365 

ALL. Collectively, we identified 42,457 subtype-enriched DAS which strikingly represent 20% of 366 
analyzed accessible chromatin sites across a pan-subtype B-ALL genome. Subtype-enriched DAS 367 
were enriched near up-regulated DEG in the corresponding subtype, supporting their role in gene 368 

activation. Moreover, comparisons between subtype-enriched DAS and chromatin accessibility data 369 

from cell lines identified largely consistent patterns. We further identified candidate TFs that exhibited 370 
strong subtype-specificity through TF footprinting analyses and validated some of these findings using 371 

transcriptomic data from primary B-ALL cells. Collectively, these analyses highlighted the role of 372 

HOXA9 and MEIS1 in KMT2A-rearranged ALL, GATA3 in ZNF384-rearranged ALL and RARA in 373 
PAX5-altered B-ALL. We further confirmed the previously reported roles of DUX4 and ZNF384 in 374 

DUX4-rearranged and ZNF384-rearranged ALLs, respectively. Concordant with our findings, previous 375 

studies have identified the co-upregulation of HOXA9 and MEIS1 in KMT2A-rearranged leukemias and 376 
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further support that these TFs are key drivers of leukemogenesis 40-42. Our identification of numerous 377 

HOX TFs with enriched footprints in KMT2A-rearranged ALL is also consistent with observations of 378 
HOX gene dysregulation in this subtype 43. Further supporting our results, ZNF384 fusion proteins in 379 

ZNF384-rearranged ALL are known to up-regulate GATA3 expression 44,45. Although a direct role for 380 
RARA in PAX5-altered B-ALL has not been established, previous work has identified PAX5 as a target 381 

gene of the PLZF-RARA fusion protein in acute promyelocytic leukemia 46. Moreover, both RARA and 382 

PAX5 genes can form fusions with PML in acute promyelocytic leukemia 47 and ALL 48, respectively. 383 
While PAX5-altered ALL has not been well connected to RARA nuclear receptor signaling, there has 384 

been previous work treating IKZF1 mutated BCR-ABL1 ALL with RARA and RXR agonists that 385 

suppressed a self-renewal phenotype 49. Collectively, these data warrant further investigation of RARA 386 
and RXR signaling in PAX5-altered ALL. 387 

 Supporting the utility of chromatin accessibility in B-ALL classification, subtype-enriched DAS 388 
predicted subtypes with 86% accuracy. As a comparison to chromatin accessibility, transcriptional 389 

profiling using ALLSorts correctly assigned B-ALL subtypes with 92% accuracy 27. However, this RNA-390 
seq dataset included over 1223 transcriptomes from 18 subtypes representing a considerably larger 391 
dataset for model development. We therefore suspect that additional chromatin accessibility profiling 392 

across more B-ALL subtypes and increased sample sizes will lead to even better subtype prediction 393 
that will rival transcriptomic profiling and importantly, incorporate intergenic heterogeneity that can 394 
elucidate cis-regulatory drivers of B-ALL leukemogenesis.  395 
 To identify the role of inherited DNA sequence variation on the B-ALL chromatin landscape, we 396 

mapped over 9000 ATAC-QTLs (FDR<0.1). A large subset of ATAC-QTLs mapped to TF footprints and 397 
were concordant in allelic biases with GTEx lead eQTLs. Further validating our analysis, we functionally 398 
validated a variant (rs17481869; 2p22.3) associated with susceptibility to ALL 31. Collectively, this 399 

analysis suggests that chromatin accessibility is additionally modified by inherited DNA sequence 400 
variation, thereby further contributing to increased chromatin heterogeneity in B-ALL.  401 

 Overall, our data support pronounced changes in chromatin accessibility between B-ALL and 402 

precursor B-cells, as well as among B-ALL subtypes. Our results further support the role of diverse TFs 403 

and inherited genetic variants in modulating and promoting differences in chromatin accessibility among 404 

B-ALL subtypes. Ultimately, these diverse chromatin architectures contribute to unique gene regulatory 405 

networks and transcriptional programs. Our work therefore provides a valuable resource to the cancer 406 
genomics research community and can be further used to better understand biological as well as 407 

clinical differences among B-ALL subtypes. 408 

 409 
 410 
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METHODS 411 

Patient samples 412 

Patient samples were obtained from: St. Jude Children’s Research Hospital (Memphis, Tennessee), 413 
ECOG-ACRIN Cancer Research Group, The Alliance for Clinical Trials in Oncology, MD Anderson 414 

Cancer Center (Houston, Texas), Cook Children’s Medical Center (Fort Worth, Texas), Lucile Packard 415 

Children’s Hospital (Palo Alto, California), The University of Chicago (Chicago, Illinois), Novant Health 416 
Hemby Children’s Hospital (Charlotte, North Carolina) and Children’s Hospital of Michigan (Detroit, 417 

Michigan). All patients or their legal guardians provided written informed consent. The use of these 418 

samples was approved by the institutional review board at St. Jude Children’s Research Hospital. 419 
 420 

Functional genomic studies 421 
ATAC-seq using the Fast-ATAC10 protocol was performed on 10,000 fresh primary ALL cells. H3K27ac 422 
ChIP-seq was performed as previously described50 on 20 million fresh primary ALL cells. CUT&RUN for 423 
FOSL2/Fra2 (Cell signaling; 19967S), JUN (Epicypher; 13-2019) and JUNB (Cell Signaling; 3753S) 424 

was performed using the Epicypher Cutana CUT&RUN kit v3.0 (14-1048) according to the 425 
manufacturers provided instructions. Next-generation sequencing of ATAC-seq, CUT&RUN, and ChIP-426 
seq was performed at the Hartwell Center for Bioinformatics and Biotechnology at St. Jude Children’s 427 

Research Hospital. Transcriptomic and SNP genotyping data from B-ALL patient samples were 428 
obtained from St. Jude Children’s Research Hospital. Normal B-cell ATAC-seq 10,25 were downloaded 429 
from NCBI (GSE122989 and GSE74912). B-ALL cell histone modification ChIP-seq datasets 430 

(H3K27ac, H3K4me1 and H3K27me3) were downloaded from the Blueprint Epigenome Consortium 431 
(https://www.blueprint-epigenome.eu/). Expression quantitative trait loci (eQTL) data was obtained from 432 
previous studies 51. Arima promoter capture Hi-C (Arima; A510008, A303010, A302010) was performed 433 

on 10 million B-ALL cell lines (697, BALL1, Nalm6, RS411, REH, SEM and SUPB15) according to the 434 
manufacturers provided instructions using unspecified proprietary buffers, solutions, enzymes, and 435 
reagents. See Supplemental Methods for additional details. 436 

 437 

Data analysis 438 
ATAC-seq and ChIP-seq reads were mapped to the hg19 reference genome using bowtie2 52 and 439 

peaks were identified using MACS2 53. Regions of interest for ATAC-seq analyses were selected using 440 

a reproducible peak summit approach within each subtype cohort with subsequent region merging. 441 
DESeq2 54 was employed to identify B-ALL-enriched or subtype-enriched differentially accessible 442 

chromatin sites (DAS). Two B-ALL subtype patient samples (IKZF1 N159Y and iAMP21) were included 443 

in B-ALL versus Pro-B cell analyses but were excluded from additional studies due to limited sample 444 
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size. Promoter capture Hi-C libraries from B-ALL cell lines were analyzed at 3-kb resolution using the 445 

Arima CHiC pipeline (v1.4, https://github.com/ArimaGenomics/CHiC). Genomic regions representing 446 
separate loop ends were compiled to facilitate overlap determinations with B-ALL patient chromatin 447 

accessible regions of interest using “bedtools intersect”. Enhancer and target gene prediction for 448 
network construction was analyzed with the ABC enhancer algorithm 449 

(https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction). In brief, inputs for the ABC 450 

enhancer algorithm included, B-ALL enriched DAS, merged B-ALL patient ATAC-seq, H3K27Ac ChIP-451 
seq, Arima promoter capture Hi-C contact counts with ABC score threshold at 0.04. The Genomic 452 

Regions Enrichment of Annotations Tool (GREAT) 55 was used to identify candidate target gene sets 453 

and ontologies associated with DAS. TOBIAS 12 was used to identify TF footprints at accessible 454 
chromatin sites. The Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) subtype 455 

classification model was constructed stepwise by first PCA transformation of subtype-enriched ATAC-456 
seq counts, then applying LDA on an optimized number of principal components. RASQUAL 28 was 457 

used to map chromatin accessibility quantitative trait loci using ATAC-seq (ATAC-QTLs). Significant 458 
ATAC-QTLs for each region were identified with a genome-wide computed FDR of 10%. See 459 
Supplemental Methods for additional details. 460 

 461 
 462 

 463 

DATA AND CODE AVAILABILITY 464 

ATAC-seq and H3K27ac ChIP-seq from patient biospecimens have been deposited to NCBI Gene 465 

Expression Omnibus (GSE211631). Further information and requests for resources should be directed 466 
to and will be fulfilled by the lead contact, Daniel Savic (daniel.savic@stjude.org). 467 
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FIGURE LEGENDS 672 

 673 

FIGURE 1: Chromatin accessibility landscapes in B-ALL. (A) Number and genomic location of 674 
accessible chromatin sites for 10 B-ALL subtypes and B-other samples is provided. (B) Percentage of 675 

B-ALL accessible chromatin sties that maps to H3K4me1 and/or H3K27ac active histone marks (Active; 676 

green), H3K27me3 and H3K4me1 and/or H3K27ac bivalent or poised histone marks (Bivalent or 677 
Poised; yellow) and H3K27me3 only repressed histone marks (Repressed; red). (C) B-ALL cell line 678 

chromatin loops detected using promoter capture Hi-C at B-ALL accessible chromatin sites. The total 679 

number of B-ALL accessible chromatin sites, number of B-ALL accessible chromatin sites within loops 680 
and the total number of accessible chromatin sites with a loop to a gene implicated in cancer is shown. 681 

(D) UCSC genome browser ATAC-seq signal track of average B-ALL chromatin accessibility and 682 
promoter capture Hi-C loops across the IKZF1 gene locus. (E) UCSC genome browser ATAC-seq 683 
signal tracks of 10 merged B-ALL subtypes with known molecular drivers across the IKZF1 gene locus. 684 
 685 

FIGURE 2: B-ALL cell type-of-origin defined by chromatin accessibility. (A) Differentiation timeline 686 
of B-cell progenitors from least differentiated to most differentiated. HSC= hematopoietic stem cell, 687 
MPP= multipotent progenitor cell, LMPP= lymphoid-primed multipotent progenitor cell, CLP= common 688 

lymphoid progenitor cell, PreProB= prePro-B cell, ProB= Pro-B cell and CD19+,CD20+= B cell. (B) 689 
Heatmap of B-cell progenitor or B-ALL patient sample variance stabilized ATAC-seq signal across B-690 
cell progenitor-defining chromatin loci. B-cell progenitor groups most similar to B-ALL patient samples 691 

(preProB and ProB) are outlined in yellow. (C) Confusion matrix showing number (listed) and 692 
percentage (color-coded) of B-cell progenitor truths and predictions for leave-one-out cross validation of 693 
a K-nearest neighbor classifier model. (D) Distribution of B-cell progenitor classification across B-ALL 694 

patient samples using a K-nearest neighbor classifier model trained with B-cell progenitor data.  695 
 696 
FIGURE 3: Mapping differential accessibility between B-ALL and Pro-B cells. (A) Heatmap of Pro-697 

B cell or B-ALL patient sample variance stabilized ATAC-seq signal as z-score across Pro-B cell and B-698 

ALL enriched DAS. DAS within heatmap are > 1 or < -1 log2-adjusted fold change. (B) ATAC-seq signal 699 
track examples of Pro-B-cell-enriched DAS and B-ALL-enriched DAS on the UCSC genome browser. 700 

Flanking genomic regions are included for context. (C) Gene ontology analysis of DAS with higher 701 

accessibility in B-ALL (B-ALL-enriched) at various log2-adjusted fold change thresholds. All terms were 702 
significant using both binomial and hypergeometric statistical tests. (D) Differential transcription factor 703 

footprinting between Pro-B cells and B-ALL patient samples across 217,240 B-ALL genomic regions of 704 

interest. (E) FOSL2 CUT&RUN enrichment heatmaps at all B-ALL accessible chromatin sites and B-705 
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ALL enriched DAS (B-ALL enrich) in SUPB15 (left) and 697 (right) cells. (F) Number of B-ALL enriched 706 

DAS overlapping AP-1 TF occupancy (FOSL2, JUN and/or JUNB) in 697 (left) SUPB15 (middle) and 707 
both B-ALL cell lines (right). Number of overlapping sites are shown in purple while non-overlapping 708 

sites are shown in yellow. (G) Genome annotation of B-ALL enriched DAS with AP-1 TF occupancy 709 
(left) or that are devoid of AP-1 TF occupancy (right). (H) IGV genome browser image showing a B-ALL 710 

enriched DAS that maps to accessible chromatin and sites of AP-1 TF occupancy in SUPB15 cells. 711 

Promoter capture Hi-C (PC-HiC) looping between the distal AP-1 occupied sites and the IGFBP7 gene 712 
promoter is shown. B-ALL (red) and pro-B (blue) cell ATAC-seq tracks are overlaid in the top panel. 713 

Signal tracks for FOSL2, JUN and JUNB in SUBP15 cells are shown. (I) Transcription factor and target 714 

gene network of DAS with higher accessibility in B-ALL (B-ALL-enriched). Network is subset for top 715 
transcription factor footprints across DAS ranked by the top mean log2-adjusted fold change 716 

transcription factor footprint signal. Target genes are subset for a cancer implicated gene set ranked by 717 
the top expressed genes. Network connections are colored as transcription factors (purple blocks) to 718 

target gene (green arrow heads) pairs. Select expansive and highly similar transcription factor motif 719 
families are grouped (AP-1 and CEBP; AP1-family and CEBP-family). 720 
 721 

FIGURE 4: Mapping differential accessibility among B-ALL molecular subtypes. (A) Heatmap of 722 
variance stabilized ATAC-seq signal as z-score across subtype-enriched DAS. Enrichment patterns for 723 
each subtype DAS set are shown on vertical axis and are grouped by B-ALL subtype patient sample on 724 
the horizontal axis. Ph-like and BCR-ABL subtype-enriched DAS are expanded at the right for clarity. 725 

(B) Pie chart shows the number and percentage of subtype-enriched DAS identified. (C) ATAC-seq 726 
signal track examples of subtype-enriched DAS on the UCSC genome browser. (D) Genomic 727 
annotations of subtype-enriched DAS for each B-ALL subtype is provided. The fraction of sites 728 

harboring different annotations is plotted. (E) Cumulative distribution function for BCR::ABL1 and 729 
ZNF384-rearranged ALL comparing the fraction (y-axis) of subtype up-regulated genes (Subtype 730 

DEGs; gray or light green) and all expressed subtype genes (Expressed; black) at different distance 731 

cutoffs from subtype-enriched DAS and their transcription start sites (x-axis). Kolmogorov-Smirnov (K-732 

S) p-values are provided.   733 

 734 

FIGURE 5: TF footprinting and gene regulatory networks identify key TF drivers in B-ALL 735 
subtypes. (A) Heatmap list of the topmost consistently differential TF footprints between all pairwise 736 

subtype-subtype comparisons (y-axis; labeled to the right of the heatmap as TF motif identifiers) 737 

enriched in 10 B-ALL subtypes (x-axis; labeled on top of heatmap as z-score of differential TF footprint 738 
signal output by TOBIAS). (B) RNA-seq transcripts per million (TPM) expression of key TFs with 739 
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subtype-enriched footprints that are also up-regulated in the corresponding subtype (colored) versus all 740 

other subtypes (gray). DESeq2 differentially expressed gene FDR significance values are provided. (C) 741 
Top TF footprints at KMT2A-enriched DAS are shown. Differential footprint score between B-ALL and 742 

Pro-B cells is provided on the x-axis and TF footprint significance is provided on the y-axis. Transcripts 743 
per million (TPM) transcript abundance of associated TF transcript is shown as both color and size of 744 

points.  745 

 746 
FIGURE 6: Classification model accurately predicts B-ALL subtypes. (A) Flow chart outlines 747 

process for PCA-LDA classification of B-ALL subtypes. (B) Confusion matrix showing number (listed) 748 

and percentage (color-coded) of B-ALL subtype truths and predictions for leave-one-out cross 749 
validation. (C) Three-dimensional plots showing clustering of B-ALL subtypes utilizing select 750 

dimensions from the LDA model. (D) B-ALL subtype identification for unknown B-ALL samples (black 751 
points). Clustering for unknown samples identified as DUX4-rearranged, BCR::ABL1 and high 752 

hyperdiploid (from left to right) is shown.  753 
 754 
FIGURE 7: Identification of ATAC-QTLs impacting chromatin accessibility. (A) ATAC-QTL effect 755 

size (x-axis) and significance (y-axis) is plotted for all significant ATAC-QTLs (FDR<0.1). (B) Examples 756 
of allele-specific effects on ATAC-seq read count at ATAC-QTLs between samples from the three 757 
genotype groups. Homozygous reference allele= homoz_REF, heterozygous= heteroz_REFALT and 758 
homozygous alternative allele= homoz_ALT. (C) UCSC browser ATAC-seq signal tracks of merged 759 

BAM files from patients with distinct genotypes at ARL11 (top panel) and TTC7B (bottom panel) gene 760 
loci. ATAC-QTLs are marked by an asterisk. Homozygous reference allele= homoz_REF, 761 
heterozygous= heteroz_REFALT and homozygous alternative allele= homoz_ALT. ENCODE ChIP-seq 762 

TF binding sites are shown below each ATAC-seq signal track. (D) Scatterplot of effect size for SNPs 763 
significant as both ATAC-QTLs (x-axis) and GTEx lead eQTL (y-axis). (E) Abundance of top TF-bound 764 

motifs overlapping ATAC-QTLs. Highly similar TF motifs were grouped into motif families via TOBIAS 765 

motif clustering as shown on the x-axis.  766 
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