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R E V I E W S

EPIGENOMICS: BEYOND CpG ISLANDS
Melissa J. Fazzari* and John M. Greally†

Epigenomic studies aim to define the location and nature of the genomic sequences that are
epigenetically modified. Much progress has been made towards whole-genome epigenetic
profiling using molecular techniques, but the analysis of such large and complex data sets is far
from trivial given the correlated nature of sequence and functional characteristics within the
genome. We describe the statistical solutions that help to overcome the problems with data-set
complexity, in anticipation of the imminent wealth of data that will be generated by new genome-
wide epigenetic profiling and DNA sequence analysis techniques. So far, epigenomic studies
have succeeded in identifying CpG islands, but recent evidence points towards a role for
transposable elements in epigenetic regulation, causing the fields of study of epigenetics 
and transposable element biology to converge.
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Epigenetic inheritance involves the transmission of
information not encoded in DNA sequences from cell
to daughter cell or from generation to generation.
Covalent modifications of the DNA or its packaging
histones are responsible for transmitting epigenetic
information. Epigenomics can be defined as a genome-
wide approach to studying epigenetics. This term
encompasses whole-genome studies of epigenetic
processes and the identification of the DNA sequences
that specify where the epigenetic processes are targeted.
The former aspect of epigenomics has been the subject
of previous reviews1–6, but the mining of genomic
sequence annotations has added an interesting facet to
our understanding of epigenomics and is the main
focus of this review. The central goal of epigenomics is
to define the DNA sequence features that direct epige-
netic processes. That such features exist is evident from
the example of CpG islands, originally defined as repre-
senting the hypomethylated fraction of the genome7

and subsequently characterized in terms of DNA base
composition8. We look critically at CpG island biology
in the context of the more detailed genome sequence
that has been generated since these original studies. The
hope for identifying additional DNA sequence features
that direct epigenetic processes is now founded on a
two-pronged approach that involves genome-wide epi-
genetic assays and sequence data mining. The results of
such complex, large-scale studies are complicated by

issues of correlation and causality — for example, the
DNA sequence feature might be the effect of the epige-
netic process rather than mechanistically involved in
directing it. As new techniques to characterize epigenetic
processes throughout the genome are being applied, we
have the potential to generate large amounts of data to
facilitate epigenomic studies. It is a good time now to
consider these issues so that we can design our analytical
approaches appropriately.

Mediators of epigenetic regulation
Since it was realized that CpG dinucleotides in mam-
mals represent the target for the covalent modification
of DNA9, it has been apparent that DNA sequence char-
acteristics can influence the targeting of epigenetic
processes. This methyl group protrudes from the cyto-
sine nucleotide into the major groove of the DNA and
has two main effects: it displaces transcription factors
that normally bind to the DNA10,11; and it attracts
methyl-binding proteins, which in turn are associated
with gene silencing and chromatin compaction12 (prob-
ably through interactions with complexes that modify
the tails of histone proteins). Histone proteins form
octamers around which DNA loops to form the nucleo-
some, the individual packaging unit of genomic DNA.
The histone tails that extrude from the nucleosomes can
be modified by methylation13, acetylation14, phosphory-
lation15 or ubiquitylation16 at different sites, creating
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CHROMATIN

IMMUNOPRECIPITATION

Intact nuclei are gently fixed to
maintain the physical
relationship of DNA-binding
molecules to genomic DNA. The
chromatin (DNA plus bound
molecules) is sheared to small
fragments and exposed to an
antibody that
immunoprecipitates one of the
bound molecules selectively. The
sites of binding of the molecule
(usually protein) of interest are
apparent from their enrichment
in the immunoprecipitated
fraction of the genome.

methylated in animal genomes20–22. The hypomethy-
lated minority of the genome digested by HpaII became
known as HpaII tiny fragments (HTFs)7. When these
were cloned and sequenced, it became apparent that
these were strikingly (G+C) and CpG rich7. Empirical
genomic criteria to define these CpG islands were estab-
lished8 based on relatively few sequence descriptors, a
small number of HTF sequences and the 1985 GenBank
database, resulting in criteria that are still in use today.
To be recognized as a CpG island, a sequence must sat-
isfy the following critera: (G+C) content of 0.50 or
greater; an observed to expected CpG dinucleotide ratio
of 0.60 or greater; and both occurring within a sequence
window of 200 bp or greater.

CpGs are vastly underrepresented genome-wide
compared to what would be expected by chance (0.23 in
the human genome and 0.19 in the mouse genome,
respectively) (see online supplementary information S1
(box)). This is because deamination of cytosine gives
rise to uracil, which is easily recognized as foreign within
the DNA strand and replaced, whereas deamination of
methylcytosine gives rise to thymine, which is less read-
ily recognized as foreign and therefore prone to muta-
tion and depletion in the genome23.

CpG island definition based on sequence composi-
tion identifies these elements at the promoter sites of
approximately half of the genes in the human genome24,
most of which are expressed in most or all tissues, hence
their designation as ‘housekeeping’ genes25. But, based
on this definition, the CpG-rich promoters of some
endogeneous retro-elements are defined as CpG islands.
Takai and Jones26 revisited the above criteria in order to
refine them, focusing on the sequences of chromosomes

potential combinations that have been referred to as a
‘histone code’17 in which gene regulatory information
is encrypted. Cell-type-specific cytosine methylation
and histone-tail modifications could contribute to the
differences in gene expression patterns between cell
types. This possibility has prompted the search for
global epigenetic patterns that distinguish or are vari-
able between cell types. These patterns have been
named the ‘epigenome’4 or the ‘methylome’18. The
Human Epigenome Project (see online links box),
which is discussed below, aims to define the sites at
which the cytosine methylation component of epige-
nomic regulation differs between cell types. Between
this project and the use of genomic microarrays to
define the sites of cytosine methylation or binding of
transcription factors by CHROMATIN IMMUNOPRECIPITATION

(ChIP), whole-genome annotation of these epigenetic
patterns is now underway.

Cytosine methylation and CpG islands
The identification of CpG islands, almost 20 years ago,
remains a great model for today’s epigenomics studies.
These genomic features, which direct an epigenetic
process, were identified as a result of whole-genome
molecular studies. Initially, CpG islands were identified
on the basis of the strikingly discordant patterns of
digestion of genomic DNA by restriction enzyme
isoschizomers that differed only by their sensitivity to
cytosine methylation19. The methylation-insensitive
MspI (5′-CCGG-3′) enzyme digests the genome to
completion, whereas most of the DNA exposed to its
methylation-sensitive isoschizomer HpaII remains
high-molecular weight, as 55–70% of these sites are
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Figure 1 | Genomic distribution of CpG dinucleotides. Sequence data from the UCSC Genome Browser for the human (hg16, July
2003; panel a) and mouse (mm4, October 2003; panel b) genomes were analysed using a Perl program (see online supplementary
information S1 (box)) to count CG, CCGG and GCGGCCGC motifs in unique and repetitive sequences. Those occurring in simple or
low-complexity repeats were excluded from the repetitive DNA sample to allow a direct comparison with a previous study27.The
proportion of CpG dinucleotides in repetitive and unique sequences are illustrated by the pie charts, with the proportions of total CpG
content contained in HpaII (CCGG) and NotI (GCGGCCGC) also represented (see online supplementary information S1 (box)). The data
show that only a small proportion of CpGs are located within HpaII sites in unique sequence, demonstrating the limitation of our current
‘whole-genome’ methylation approaches that depend on methylation-sensitive restriction enzymes and hybridization. In addition, only
35.25% of HpaII sites lie within transposable-element-derived DNA in the mouse genome, indicating that a substantial proportion of
HpaII sites in unique sequence is, in fact, methylated, contrary to the conclusions drawn from more limited bioinformatics studies27.
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GENOMIC IMPRINTING

The epigenetic marking of a
locus on the basis of parental
origin, which results in
monoallelic gene expression.

ANDROGENETIC

A diploid offspring that is
produced from two sets of
haploid paternal gametes and no
maternal contribution.

PARTHENOGENETIC

A diploid offspring that is
produced from two sets of
haploid maternal gametes and
no paternal contribution.

also linked to chromosomal instability, a common phe-
nomenon in human tumours34, which has been
observed in mice with hypomethylated genomes due to
engineered methyltransferase deficiencies35. A practical
current focus of epigenomics research is the genome-
wide characterization of cytosine methylation changes
in cancer5, which promises to reveal additional loci that
contribute to the neoplastic process through epigenetic
dysregulation rather than mutation.

Genome-wide epigenetic assays
One of the first techniques that successfully analysed
epigenetic patterns genome-wide was RLGS36. It identi-
fies methylation differences at NotI sites (5′-GCG-
GCGCC-3′) between DNA samples, using radiolabelling
and 2D gel electrophoresis. What this technique lacks in
ease of use is made up for with a proven track record of
sensitivity — for example, differentially methylated sites
between ANDROGENETIC and PARTHENOGENETIC embryos
were identified using this technique to allow the identifi-
cation of several new imprinted genes36,37.

More recently, techniques that use methylation-sen-
sitive restriction enzymes and genomic DNA microar-
rays have been developed to isolate methylated
sequences throughout the genome. The techniques have
been named differential methylation hybridization
(DMH)38, amplification of inter-methylated sites
(AIMS)39 and methylation target array (MTA)40. In each
case, the methylated fraction of the genome is enriched,
in a manner that depends on restriction digestion of
unmethylated sequences using a methylation-sensitive
enzyme, followed by the failure to PCR amplify the
digested fragments. For DMH, two restriction enzymes
at a time are used: MseI (5′-TTAA-3′) to reduce the
average size of the DNA while preserving CpG-rich
sequences, followed by a 5′ methylcytosine-sensitive
restriction enzyme (for example, BstUI (5′-CGCG-3′)
or HpaII). AIMS uses the methylation-sensitive SmaI
restriction enzyme (5′-CCCGGG-3′), whereas MTA
uses a similar approach to DMH, cutting initially with
an enzyme that spares CpG-rich sequences followed by
the use of a methylation-sensitive enzyme such as BstUI
or HpaII. The analysis of the methylation patterns for
DMH and MTA requires a subsequent hybridization to
genomic microarrays, whereas the limited number of
SmaI sites in the genome means that a fingerprinting
approach using electrophoresis is sufficient to identify
differentially methylated sites.

The use of restriction enzymes limits the proportion
of CpGs in the genome that can be tested using these
techniques. The proportion of CpGs that are located
within HpaII sites in the human genome is 4.14% in
transposable elements + 3.90% in unique sequence
(8.04% in total), and 7.45% in the mouse genome (FIG. 1).
Only those that reside in unique sequence can be tested
using hybridization-based techniques, reducing the
totals to 3.90% and 4.37% for human and mouse,
respectively. The use of NotI sites in RLGS is even more
limited in terms of representation, but most NotI sites in
human and mouse (75% and 63%, respectively) are
located in unique sequence, of which three-quarters are

21 and 22. They found that increasing the size threshold
to 500 bp and the (G+C) content threshold to 0.55
biased the definition away from repeated sequences,
towards unique sequence.

CpG islands have been proposed to be invariantly
unmethylated27. Although the basis for this influential
proposal was largely indirect, few data have been avail-
able to challenge it. Based on the observation that the
proportion of HpaII restriction sites located within
transposable elements in the human genome (in fact, in
a sample of 606 kb, ~1/500th of the genome) was
approximately equivalent to the proportion of HpaII
sites that are methylated in the mouse genome (both
~60%), the authors suggested that most CpGs at HpaII
sites that are not located within transposable elements
remain free from methylation27. Because CpG islands
seemed to be the main remaining location for HpaII
sites, it was proposed, by exclusion, that CpG islands
were always free from methylation. Exceptions to this
rule include those CpG islands at loci that undergo
GENOMIC IMPRINTING28 and those that are subject to 
X-chromosome inactivation29 (see below). The observa-
tion indicates that there is an invariant pattern of cyto-
sine methylation — always targeted to transposable
elements and never to CpG islands (apart from
imprinted or X-inactivated loci). The existence of this
pattern implies that cytosine methylation can have no
role in establishing differences in epigenetic regulation
between cell types.

When the HpaII analysis is extended to the entire
human and mouse genomes (using data from the UCSC
Genome Browser30 (see online links box)), 50.58% of
HpaII sequences are located within transposable ele-
ments in the human genome and 35.25% in the mouse
genome (FIG. 1). Both values are below the 55–70%
HpaII sites that are methylated in animal genomes20–22,
which indicates that a variable and substantial propor-
tion of HpaII sites within unique sequences are methy-
lated in any given cell type. Only a few HpaII sites in the
mouse (14%) and the human (22%) genomes are
located within CpG islands; therefore, these data do not
address whether cytosine methylation at CpG islands is
responsible for this variation. However, most NotI sites
(90%) in both species are located within CpG islands,
and the restriction landmark genomic scanning (RLGS)
technique (see below), which studies methylation at
these restriction sites, has repeatedly shown tissue-
dependent methylation31,32. It is crucial to address
whether cytosine methylation varies among tissues, as
the entire rationale for performing whole-genome
analyses to study the redistribution of cytosine methyla-
tion assumes that such a redistribution of methylation
occurs. Our updated bioinformatic analyses (FIG. 1) now
support the likelihood that cytosine methylation is
physiologically variable.

The dynamic nature of cytosine methylation
becomes especially evident during tumorigenesis —
methylation is decreased genome-wide, whereas the
CpG islands at promoters of tumour-suppressor genes
acquire methylation33, which leads to their silencing and
subsequent tumour progression. Hypomethylation is



NATURE REVIEWS | GENETICS VOLUME 5 | JUNE 2004 | 449

R E V I E W S

BISULPHITE SEQUENCING

A technique that is used to
identify methylcytosines that
depends on the relative
resistance of the conversion of
methylcytosine to uracil
compared with cytosine. PCR
amplification and sequencing of
the DNA following conversion
shows a thymine where a
cytosine was located, whereas
persistence of a cytosine reflects
its methylation in the starting
DNA sample.

MALDI MASS SPECTROMETRY

Matrix-assisted laser
desorption/ionization mass
spectroscopy is based on the 
co-crystallization of a test
compound with an ultraviolet-
light-absorbing matrix, which
allows ionization using laser
excitation to determine the mass
of the test compound.

L1 LINES

The currently active long
interspersed nuclear element in
the eutherian genome. These
elements are capable of
retrotransposition but lack the
long terminal repeats that
characterize retroviruses.

MIR AND ALU SINES

Short interspersed nuclear
elements, of which the Alu type
is currently active in primates,
whereas the MIR (mammalian
interspersed repeat) type
became extinct since eutherians
diverged from marsupials.

sequence features, provide the technical foundation for
the analyses of data that will be generated by whole-
genome epigenetic studies.

The first example of such a study was prompted by a
molecular cytogenetic finding that L1 LINES are strongly
overrepresented on most of the X chromosome in
humans51 and mice52. Random X-chromosome inacti-
vation in females depends on a single region within the
X chromosome53, which spreads an inactivation signal
along its ~160 Mb length. How the signal is propagated
over such immense distances has been puzzling, leading
to the proposal that booster elements or waystations
might exist on the X chromosome specifically for this
purpose. Given the increased L1 LINE density on the 
X chromosome, these transposable element sequences
were proposed as candidates for mediating the spread-
ing of the X-chromosome inactivation54.

Analysis of the draft human genome sequence con-
firmed the L1 LINE enrichment on the X chromosome;
moreover, it turns out that L1 LINE content is lower in
the regions that contain increased numbers of genes
that escape X-chromosome inactivation55. A subsequent
study took a gene-centred approach, comparing the
sequence features that flank the genes that escape or are
subject to X-chromosome inactivation56. The results
showed that MIR (mammalian-wide interspersed repeat)
SINES are less common near genes that escape inactiva-
tion, whereas CpG islands are more common at those
that are subject to it. The study did not, however, find L1
LINEs to be associated with inactivating genes, a finding
which was confirmed in our laboratory’s unpublished
analysis of these same gene samples. Considering the
scale of the initial study, which looked at very broad
genomic landscapes for L1 LINE density, it is possible
that the 100-kb window of flanking sequence that was
used in the subsequent studies was insufficient to detect
differences in L1 LINE accumulation, indicating that a
functional role for these transposable elements would
be exerted over even greater distances. It is also possible
that L1 LINEs are not involved in propagating epige-
netic signals or that they accumulate on the X chromo-
some for reasons that are causally unrelated to
X-chromosome inactivation (see below).

X-chromosome inactivation is an example of mono-
allelic gene expression, with effects extending through-
out the chromosome. A second example is genomic
imprinting. It occurs when the epigenetic state of a
genomic region differs between homologous chromo-
somes, resulting in gene activation that depends on its
gamete of origin. As with X-chromosome inactivation,
the silenced allele at an imprinted locus is characterized
by cytosine methylation28, histone-tail modifications57,58

and chromatin conformation differences59. Intrigued by
previous observations that suggested that imprinted
genes might have unusual sequence characteristics60, we
studied the influence that flanking sequences at the site
of integration can have on transgene expression61,62 —
so-called position effects63. To this end, we described the
regions that flank imprinted loci in terms of available
sequence annotations, expanding on previous studies in
terms of the size of the imprinted gene sample and the

located in canonical CpG islands for both species (see
online supplementary information S1 (box)). The
RLGS technique samples fewer sites than the other tech-
niques described here, but it is more CpG-island-spe-
cific (see online supplementary information S1 (box)).

All of these techniques are especially useful for iden-
tifying the dynamic nature of CpG methylation in nor-
mal cell differentiation and disease. DMH has been
most widely applied so far, with several reports describ-
ing the methylation profiles in different tumour cells or
in response to pharmacological treatment38,41–43. The
limitations imposed by the use of restriction enzymes
have been bypassed in the Human Epigenome Project,
a multigroup collaborative project that is using a com-
bination of BISULPHITE SEQUENCING and MALDI MASS SPEC-

TROMETRY to perform large-scale analysis of cytosine
methylation in human cells. A combination of cell
types is used as the source of DNA, so that CpGs at
which methylation varies (methylation-variable posi-
tions, MVPs) can be identified from the mixed methy-
lated/unmethylated pattern observed4. The Human
Epigenome Project promises to provide insights into
CpG methylation whether in restriction sites or not,
with the goal of mapping MVPs in 30,000 human genes
using 200 cell types44.

The analysis of cytosine methylation is comple-
mented by experimental approaches that use ChIP to
determine the composition of chromatin. The modifica-
tion of ChIP to allow the analysis of chromatin composi-
tion genome-wide using microarrays (ChIP on chip)
represents the other main, genome-wide approach to
epigenetic organization. This technique has been pri-
marily developed in Saccharomyces cerevisiae, but studies
have also been successfully performed in mammalian
cells. The most striking studies that demonstrate the
power of this technique have been based on whole-chro-
mosome representations by oligonucleotide microarrays
to map transcription-factor binding sites45,46. Other
genomic resources used for hybridization have included
CpG island47,48 and promoter49 microarrays. Challenges
in these ChIP-on-chip experiments involve the creation
of suitable genomic microarrays and the amplification of
sparse starting material for hybridization (reviewed by
Buck and Lieb50). Again, only unique sequences can be
tested using these hybridization-based approaches, but
the main limitation at present is in common with that of
the whole-genome cytosine methylation approaches —
the need for widespread availability of suitable genomic
microarrays. The whole-chromosome oligonucleotide
microarrays indicate a very promising avenue for epige-
nomics exploration.

Monoallelic expression and flanking sequences
Genome-wide cytosine methylation and chromatin
compositional studies are imminent sources of large
amounts of data that will provide insights into the
nature of the DNA sequences that are targeted by epige-
netic processes. In the absence of such data so far, a
handful of studies have looked at loci that are known to
undergo specific types of epigenetic modification. These
studies, which mine and analyse annotated DNA
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UNIVARIATE ANALYSIS

Analysis of functions of one
variable.

MULTIVARIABLE ANALYSIS

Analysis of functions of several
variables.

neutral genomic parasites might have a direct influence
on the epigenetic outcome , or it could reflect a separate
influence on transposable element accumulation that
also influences the epigenetic outcome. The study of
epigenetic regulation is therefore converging with the
understanding of the influences on transposable ele-
ment accumulation on a genome-wide scale.

Isochores and transposable elements
Two approaches originally led to the recognition that
transposable elements are heterogeneously distributed
in the mammalian genome: the study of sequence iso-
chores and molecular cytogenetics. Isochore analysis is
founded on studies of base composition in plant69 and
animal70 genomes, and defines regions of hundreds of
kilobases in terms of their (G+C) content. Regions of
similar base composition on this scale are referred to as
isochores. The initial observation that the genome is
compositionally heterogeneous was followed by studies
that found correlations between base composition and
other sequence features, such as the presence of
increased numbers of genes71, CpG dinucleotides and
islands72, and transposable elements such as Alu SINEs
in regions of high (G+C) content72. Notably, the same
regions are characterized by decreased numbers of L1
LINE transposable elements73. Functionally, (G+C)
content positively correlates with transcriptional levels74,
earlier replication timing75, greater overall cytosine
methylation levels76 and increased meiotic recombina-
tion frequencies77. Molecular cytogenetic studies, in
which fluorescently labelled sequence features were
hybridized to metaphase chromosomes, confirmed
these findings. These sequence features include trans-
posable elements such as Alu SINES

51,52,78 and L1
LINEs51,52, CpG island libraries79, and samples of DNA
from different isochores80. It is apparent that, at the

number of sequence features analysed. The striking out-
come was that it seems that there is a constraint on
SINE accumulation in the 100-kb flanking imprinted
promoters64 — not only ALU SINES, which populated the
human genome mostly since our ancestral divergence
from rodents65, but also MIR SINEs, which became
extinct in the eutherian genome, following divergence
from marsupials66.

The same study showed that maternally-expressed
imprinted genes tend to lie in the more (G+C)-rich
compartment of the genome, whereas paternally-
expressed genes segregate to the complementary L1-
LINE-rich compartment64. With small sample sizes for
each group, this is not a robust observation, but raises
the question as to whether the male and female
germlines treat these genomic compartments differen-
tially. Although we used UNIVARIATE ANALYSIS in our study,
MULTIVARIATE TECHNIQUES subsequently confirmed the
paucity of SINEs in imprinted regions in the human
genome, and also for some (but not all) classes of SINEs
in the mouse genome67. The tendency of paternally- and
maternally-expressed imprinted genes to segregate to
genomic regions with different sequence characteristics
was confirmed by the same investigators67, although the
sample sizes of these subgroups of imprinted genes are
extremely limited.

An analysis of autosomal loci that are monoallelically
expressed, but randomly with respect to parental origin
(therefore not imprinted), showed that L1 LINEs and
not CpG islands nor SINEs accumulated in the 200 kb
that flank these genes68. Based on these findings, the
authors proposed criteria to predict other monoalleli-
cally-expressed genes in the mouse and human genomes.

All of the above studies point to transposable ele-
ment frequencies as a variable that is predictive of epige-
netic regulation. This indicates that these supposedly
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Cytogenetic band type G (Giemsa) band R (reverse) band 80

DNA sequence features

Genes Fewer More 71

Intron size Longer Smaller 81

CpG islands Fewer More 72

L1 LINEs More Fewer 73

Alu SINEs Fewer More 81
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DNA replication Later Earlier 75

Meiotic recombination Lower rate Higher rate 77
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Figure 2 | Correlations between sequence features and functional characteristics in the mammalian genome. At
cytogenetic resolution, the genome is heterogeneously organized, recognizable by banding patterns that are detectable by light
microscopy, and correlated with both DNA sequence and functional features. The 6p22.2-6p22.3 G to R band transition is shown in
panel a. Note the increased gene and CpG island densities that are apparent in the R band (right). Data from the UCSC Genome
Browser (hg16, July 2003 freeze). Additional properties of the G and R band sequences are shown in the table in panel b. As
discussed in the text, the tendency of certain DNA sequence features to co-localize in the genome is apparent at this level of
resolution, and correlates with the functional outcomes described. These correlations, which exist for unknown reasons, lead to
problems with the analysis and interpretation of epigenomics studies.
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these retrotransposed sequences. Furthermore, as L1
LINEs and Alu SINEs seem to use the identical enzy-
matic mediators for retrotransposition87 but end up seg-
regating to different regions within the genome, the
process must be more complex than insertion bias alone.
Further weakening the argument that these insertion
events are non-random is the observation that young
Alu SINEs are, in fact, randomly distributed with respect
to (G+C) content81. Non-random accumulation there-
fore seems to be due to post-insertion influences (FIG. 3).

The post-insertional influences that are usually
invoked are non-random amplification88 or deletion89

of these transposable elements. Whereas Alu SINE
density is higher in genomic regions that have under-
gone segmental duplications88, they only account for
~5% of the genome88. Non-random deletion is a more
plausible mechanism, and is currently, by exclusion,
the more likely mechanism. It is not clear why non-
random deletion should occur. Given the data on
SINE accumulation in regions that flank promoters,
might it be possible that transposable element accu-
mulation in imprinted regions (and possibly else-
where in the genome) deregulates nearby genes? If so,
insertion of transposable elements into some sequences
would not be tolerated by selection, leading to selective
deletions. Dysregulation of imprinted genes by SINEs
is a tenable hypothesis, given that SINEs are a major tar-
get of cytosine methylation in the genome82,83 and that
SINEs have been found to induce methylation in flank-
ing sequences90,91. SINEs therefore constitute candidate
sequences for epigenomic studies, especially for epige-
netic phenomena that involve cytosine methylation. We
are compelled to consider the possibility that transpos-
able elements are not neutral but actively influence gene
expression in cis. Consequently, their accumulation
would influence fitness and the likelihood of the main-
tenance of the genotype in the population.

In suggesting that epigenetic mechanisms might
underlie the process of non-random transposable ele-
ment accumulation, we are not only linking epige-
nomics studies with insights into gene regulation but
also with aspects of genome architecture. However, we
have to also consider the possibility that a DNA
sequence feature does not cause or direct the epigenetic
outcome, but instead is caused by the epigenetic process.

Correlation and causation
Correlating epigenetic outcomes with genomic sequence
features can yield important hypotheses and significant
findings. But statistical analyses of epigenomic data are
challenging (BOX 1), partly due to the complexity of the
data sets themselves, involving, for example, internal
correlations and sample size. Further problems arise
when a statistically significant correlation is found, at
which time the problem becomes how to determine the
manner in which the descriptive (genomic) variable is
biologically related to the functional (epigenetic) out-
come. If the goal is to use the result predictively (as
opposed to descriptively) — to identify further loci that
might undergo similar epigenetic regulation based on
discriminatory sequence features — then some of the

cytogenetic level of resolution, different sequence fea-
tures segregate to distinct genomic regions (FIG. 2). The
use of isochore samples in these in situ hybridization
experiments links base composition (and all of the cor-
related features described above) with genomic function
and with genomic organization on the scale of hun-
dreds of kilobases. Transposable elements of specific
types accumulate preferentially within certain genomic
‘compartments’of similar sequence features.Whether the
constraints on the accumulation of transposable ele-
ments reflected by higher-order patterning genome-wide
are mechanistically related to the unusual accumulation
of transposable elements in epigenetically-distinctive
regions remains to be seen.

So, what is known about transposable element accu-
mulation? Transposable elements have managed to
populate ~45% of the human genome81, but surpris-
ingly little is known about how their further accumula-
tion is controlled. They can certainly be targeted by
cytosine methylation82,83 and silenced as a consequence,
but during germ-cell development — a crucial time for
their continued accumulation — this methylation pro-
tection fails for Alu SINEs84, whereas the L1 LINE pro-
tein products are produced during spermatogenesis85.
The potential for further accumulation exists in every
generation, but for some reason this potential is obvi-
ously not being realized.

The L1 LINEs and Alu SINEs are the more abundant
transposable elements in the human genome and are
heterogeneously distributed in the human genome with
respect to (G+C) content81. This distribution could be a
result of non-random insertion or specific exclusion of
these elements from some genomic regions. Genomic
distribution of the L1 LINE endonuclease cleavage site86

does not by itself explain non-random accumulation of

a Biased insertion

b Preferential deletion

c Effects on gene expression and fitness

Figure 3 | Models to explain the non-random distribution of transposable elements in the
mammalian genome. Transposable elements accumulate heterogeneously in the mammalian
genome for reasons that are unknown. We suggest three possible mechanisms that might be
occurring. a | Transposable elements insert into certain genomic environments (represented by
lighter shading of the target DNA) less readily. As younger retro-elements in the human genome are
randomly dispersed throughout the genome81, this is an unlikely general mechanism, although the
exclusion of young and old Alu SINEs from imprinted regions64 indicates that it might be influential at
certain loci. b | A biased tendency to deletion from certain regions is a possibility that is very difficult
to test bioinformatically. c | If transposable elements are non-neutral and influence gene expression
when they accumulate to excess in the vicinity of a gene, the effect might be to reduce organismal
fitness and loss of that genotype from the population. The emerging correlations between
transposable element accumulation and epigenetic regulation lend support to a cis-effect model.
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GIEMSA (G) BANDS

The chromosomal bands that
are resistant to protease
treatment (relative to reverse (R)
bands), allowing them to stain
more darkly with Giemsa stain.
In chromosomal ideograms, the
G bands are indicated by
black/grey regions, the R bands
by white regions.

HIERARCHICAL CLUSTERING 

An unsupervised clustering
technique. Each data point
initially forms a separate cluster
and then clusters are merged
sequentially based on similarity,
reducing the number of clusters
at each step until only one
cluster is left.

K-MEANS CLUSTERING 

An unsupervised clustering
technique. Data points are
partitioned into a
predetermined number of
non-hierarchical clusters 
based on similarity.

LOGISTIC REGRESSION 

A statistical model that is used
when the outcome is binary in
nature. Relates the log odds of
Pr(event) to a linear
combination of predictor
variables.

TREE-BASED CART MODELS 

A statistical tool that is used for
identifying structure in data that
uses binary recursive
partitioning to obtain a tree
classifier.

DISCRIMINANT FUNCTION

ANALYSIS 

A statistical method that is used
to determine which variables
and function best maximize the
distance between two groups.
Similar to logistic regression
computationally, but generally
less flexible in its assumptions.

mediator of inactivation. In the interpretation of even the
most stringent epigenomic studies, the issue of a separate,
correlated but untested variable has to be considered.

Another issue is that of cause and effect. As an
example, consider meiotic recombination and L1 LINE
accumulation. Cytogenetic studies in human and mouse
gametes have long recognized that in GIEMSA (G) BANDS,
which are enriched in L1 LINEs, meiotic recombination
is less frequent99, a finding confirmed using bioinfor-
matic approaches51. A study that mapped full-length 
L1 LINEs in the human genome found their relative
preservation only in regions of low recombination on
chromosome 21 and on the sex chromosomes, prompt-
ing the authors to suggest that they were being lost
through meiotic recombination by purifying selection89.
Meiotic recombination might avoid L1-LINE-enriched
regions, or deplete L1 LINE content in the regions that it
does target. Only in the former case would L1 LINEs be
influential in directing meiotic recombination, but a
bioinformatics study would show the negative correlation
in either case.

An epigenomic study therefore has to be carefully
analysed at every stage, paying attention to the possibility
that the correlated DNA sequence feature might have no
direct influence on the outcome, but might physically co-
segregate in the genome with the mechanistically impor-
tant sequence feature that was not analysed. In addition,
the functional ‘outcome’might not be caused by the cor-
related DNA sequence, but might instead be causing the
DNA sequence to accumulate in these regions. Finally,
epigenetic effects on genome composition could be
subject to evolutionary selection. When a descriptive
epigenomic study has been accomplished and significant

problems are circumvented. For example, new imprinted
genes can be predicted in this way. There are only several
dozen known imprinted genes in humans and mice64,
whereas hundreds are believed to exist92. A test to pre-
dict new imprinted genes would be very valuable,
especially given the increasing number of human dis-
eases with parent-of-origin effects on their inheri-
tance93–97 and the technical difficulty inherent in proving
that a given gene is imprinted98. To be able to rank genes
in a region of interest by likelihood of imprinting, based
on similarities to known imprinted genes, should make
the prediction much more efficient.

There is also, of course, the descriptive aspect to
epigenomics — the identification of sequence charac-
teristics that could be involved in the mechanism or
reflect the evolution of the epigenetic process. The
authors (ourselves included) of epigenomics studies of
monoallelically-expressed genes described earlier made
an implicit assumption that the correlated DNA
sequence feature is directly involved in the functional
outcome. For example, the L1 LINE enrichment on the
mammalian X chromosome was postulated to directly
mediate the spreading of X-chromosome inactivation54.
But L1 LINE enrichment occurs in the genome in
regions that are also distinctive for other reasons (FIG. 2).
The L1 LINE enrichment might be statistically signifi-
cant on the X chromosome but it might have nothing to
do with X-chromosome inactivation, and accumulate for
independent reasons or accumulate in the same regions
as the actual mechanistic mediator of X inactivation.
An enrichment of L1 LINEs could therefore be a valid
statistical result, but on a biological level merely indicative
of a separate sequence that is the actual mechanistic

Box 1 | Statistics and epigenomics: analytical techniques in sequence analysis

Epigenetic studies often involve bioinformatic and statistical analysis and can be generally subdivided into three
broad categories: class discovery, comparison and prediction. Class discovery is often called an ‘unsupervised’
analysis as it is performed without reference to the outcome or group labels, such as gene type or imprinting status.
Cluster analysis is commonly used in discovery. Allen68, for example, used cluster analysis to examine heterogeneity in
monoallelic genes with respect to sequence features. Feltus102 used hierarchical clustering to assess similarity between
cell lines that overexpress DNMT1 on the basis of methylation profiles of the clones. There are many forms of
clustering, including HIERARCHICAL and K-MEANS, but the primary goal of each is the separation of observations into
distinct groups, the members of which are as similar to each other as possible while maximizing the differences
between clusters. Central to this method is the notion of similarity. Similarity is often measured by Euclidean distance
(connecting observations with a straight line in Euclidean space) or correlations (angles between the observation
vectors). The choice of similarity measure (algorithm that is used) and the number of resulting clusters are subjective,
and sensitivity of final clusters to each should be examined.

Comparison is a supervised form of analysis in which features of known gene types or classes are compared. Typically,
each feature is examined in a univariate way using t-tests or a non-parametric equivalent. Greally64 compared several
sequence features of imprinted compared with non-imprinted genes. Bailey55 compared the mean repeat contents of
X-inactivated genes with those that escape inactivation. Permutation and simulation allow p values to be generated
when standard large-sample approximation is invalid. Comparison studies are descriptive in nature — the emphasis is
on understanding relevant features of the data and on obtaining an idea of the magnitude and direction of the effect.

Prediction is similar to comparison, but its main goal is to predict group membership in a new set of genes or
observations. The complexity of epigenetic events requires the use of a multivariable model to generate accurate
predictions. Model selection methods are often required to avoid overfitting the data. The most common models used
for prediction are LOGISTIC REGRESSION MODELS, TREE-BASED (CART) MODELS and DISCRIMINANT FUNCTION ANALYSIS. Ke103 uses a
discriminant function to identify genes as candidates for imprinting. A set of important sequence features was identified
through the use of information theoretic approaches and model-based prediction scores were implemented across the
genome, identifying genes with the highest likelihood of imprinting.
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BOOTSTRAP METHODS

Computer-intensive methods
for statistical analysis. Treats the
observed sample as the
population and resamples from
this population.

to this issue. If threshold effects of groups of transpos-
able elements rather than of individual elements are
functionally more critical, the experiments to demon-
strate cis effects of transposable elements will be very
difficult to design and interpret.

The most important immediate issue in epige-
nomics will not involve data generation but data analy-
sis (BOX 2). The number of ways in which a locus can be
described in terms of its local and flanking DNA
sequence characteristics is potentially immense. Add to
this the increasing number of histone-tail modifications
and transcription factors that can be immunoprecipi-
tated from chromatin, the ability to quantify the amount
of cytosine methylation at many loci and the ability to
reproduce these molecular assays in a plethora of cell
types, and the scope of the problem of data manage-
ment and analysis becomes apparent. We have pointed
out how correlations between descriptive variables com-
plicate data analysis and how a variable subset selection
approach might be the best way of addressing these ana-
lytical issues. The goal remains worthwhile; identifica-
tion of DNA sequences that determine where epigenetic
processes are targeted is central to our understanding of
diverse phenomena that range from position effects to
genome evolution and to neoplasia.

correlations have been identified, these caveats have to be
considered when interpreting the data.

Conclusions
We are entering a period during which epigenomic
research will generate copious amounts of data, both
from DNA sequence mining and from direct molecular
assays. Although progress is being made using whole-
genome cytosine methylation and ChIP assays, even
more ambitious aims should be established. Currently, it
is not at all easy to test the methylation state of every
CpG dinucleotide in the genome, especially when they
are located in repetitive DNA or in sites other than
those recognized by methylation-sensitive restriction
enzymes. We need to aim to develop techniques that can
be used by individual investigators to determine the
methylation of every cytosine at CpG dinucleotides (or
CpNpG trinucleotides100) in the genome if we want to
define the full extent of the methylome or epigenome.

The intriguing observations regarding transposable
element accumulation in regions of distinctive epige-
netic regulation strongly indicate that the possible cis
effects of these elements need to be explored further.
The development of mouse models of active, tagged
retroelements101 might be the most powerful approach
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