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ABSTRACT

Motivation: Hundreds of genome-wide association studies have
been performed over the last decade, but as single nucleotide
polymorphism (SNP) chip density has increased so has the
computational burden to search for epistasis [for n SNPs the
computational time resource is O(n(n-1)/2)]. While the theoretical
contribution of epistasis toward phenotypes of medical and
economic importance is widely discussed, empirical evidence is
conspicuously absent because its analysis is often computationally
prohibitive. To facilitate resolution in this field, tools must be made
available that can render the search for epistasis universally viable in
terms of hardware availability, cost and computational time.
Results: By partitioning the 2D search grid across the multicore
architecture of a modern consumer graphics processing unit
(GPU), we report a 92× increase in the speed of an exhaustive
pairwise epistasis scan for a quantitative phenotype, and we expect
the speed to increase as graphics cards continue to improve.
To achieve a comparable computational improvement without a
graphics card would require a large compute-cluster, an option
that is often financially non-viable. The implementation presented
uses OpenCL—an open-source library designed to run on any
commercially available GPU and on any operating system.
Availability: The software is free, open-source, platform-
independent and GPU-vendor independent. It can be downloaded
from http://sourceforge.net/projects/epigpu/.
Contact: gib.hemani@roslin.ed.ac.uk
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1 INTRODUCTION
The importance of epistasis (gene–gene interactions) in complex
trait analysis is largely unknown, and computational difficulties
have rendered this topic difficult to explore. Yet, efforts to identify
the genetic factors that underlie traits of economic or medical
importance have accelerated over the last decade. Indeed, in the first
half of 2010 alone genome-wide association studies (GWASs) for
165 traits were published (http://www.genome.gov/gwastudies/, last
accessed date October 12, 2010). Despite the scale of these studies,
the proportion of genetic variance explained has been disappointing,
and so has emerged the enigma of the missing heritability (Manolio
et al., 2009). But even with the availability of these data, the search
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for epistasis has been largely neglected (Carlborg and Haley, 2004;
Phillips, 1998).

Phenotypic variance can be partitioned into several components:

Vphenotypic =Vadd +Vdom +Vepistatic +Venv +··· (1)

However, in the context of linkage mapping or GWAS, heritability
estimates are generally limited to the narrow-sense, thus reducing
the search to only independent additive genetic effects (Visscher
et al., 2008). In human and animal genetics in particular, estimation
of genetic variance beyond the scope of purely additive effects
(i.e. broad-sense heritability) is intractable in most cases, and so
the overall contribution of epistasis remains unknown. There has
been a lively debate for several years concerning the importance of
the broad-sense heritability in complex traits, and in particular the
contribution of epistasis (Frankel and Schork, 1996; Hill et al., 2008;
Moore, 2005), but there is still an absence of empirical results.

Epistasis is a recurring candidate for explaining the missing
heritability, but in fact most epistatic patterns are unlikely to be
detectable through marginal effects alone (Evans et al., 2006). On
the contrary, if epistasis was found to be prevalent in complex traits
the major implication would be that significant genetic control exists
beyond the extant estimates of narrow-sense heritability. Should
it be the case that the phenotypic effect of one locus depends on
the genotype at another locus, the impact upon such endeavours as
personalized medicine, disease risk prediction, animal breeding and
evolutionary genetics could be significant.

Several obstacles exist that make epistatic searches difficult.
When searching for independent additive effects, each SNP is tested
for association with the phenotype; but in order to most powerfully
identify epistatic effects, the search must be increased to two
dimensions (Evans et al., 2006; Marchini et al., 2005), testing each
SNP against all other SNPs. For example, a 300k SNP chip would
require 300000×299999/2≈4.5×1010 independent tests, which is
a massive computational undertaking. Currently, the cheapest way to
run this type of analysis, using a desktop computer, could take weeks.
However, the parallel decomposition of this problem is relatively
straightforward, and the mainstream availability of multicore GPUs
has paved the way for an efficient and inexpensive alternative. We
provide software that dramatically reduces the computational time of
an exhaustive search for two-locus epistasis on large-scale SNP data
for continuous traits. We evaluate the performance of the software
running on several types of GPUs against optimized software that
runs serially on desktop computers, and against parallelized versions
for multicore CPUs and large compute clusters.
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2 METHODS

2.1 Statistical tests
The program performs an exhaustive scan for pairwise interactions, such that
each SNP is tested against all other SNPs for statistical association with the
phenotype. Two different tests can be performed using the software, either
treating the pairwise genotype classes as factor effects or parameterizing the
class means to exclude any marginal effects thus testing for only interaction
terms.

There are nine possible genotypes resulting from combining a pair of
SNPs. By treating the genotype classes as a fixed effect, an 8 d.f. F-test can
be performed that tests the following hypotheses:

H0 :
3∑

i=1

3∑

j=1

(x̄ij −µ)2 =0; (2)

H1 :
3∑

i=1

3∑

j=1

(x̄ij −µ)2 >0; (3)

where µ is the phenotype mean and x̄ij is the pairwise genotype class mean
for genotype i at locus A and genotype j at locus B. This type of statistical test
does not parameterize for specific types of epistasis, rather it tests for the joint
genetic effect at two loci, this having been demonstrated to be statistically
more efficient when searching for a wide range of epistatic patterns (Evans
et al., 2006; Millstein et al., 2006).

The software is, however, capable of reducing the test to 4 d.f.,
parameterizing for interaction terms only (Cordell, 2002). This is achieved
by removing the marginal additive and dominance effects from each locus,
testing the following hypotheses:

H0 :
3∑

i=1

3∑

j=1

(x̄ij − x̄i − x̄j +µ)2 =0; (4)

H1 :
3∑

i=1

3∑

j=1

(x̄ij − x̄i − x̄j +µ)2 >0; (5)

where x̄i (x̄j) is the marginal class mean for genotype i (j) at locus A (B).
For efficiency, the program does not fit additional factors or covariates

during analysis, instead it requires the normalized residual from the
phenotype adjusted for other parameters to be used as the response variable,
as in the GRAMMAR method for example (Aulchenko et al., 2007). As in
other implementations for specific epistatic parameterizations (Schüpbach
et al., 2010), the interaction parameterization assumes independence between
SNPs for computational efficiency. Missing genotype values are ignored in
the analysis, such that the denominator degrees of freedom is representative
of the number of observed genotypes. The program is also capable of
performing permutations, a potentially important function for generating
thresholds (Churchill and Doerge, 1994).

2.2 OpenCL and general purpose graphics processing
Because the analysis problem can be managed with the single instruction
multiple data (SIMD) model, the massively multicore architecture of
consumer level graphics cards offers a viable option for searching for
epistasis. While other architectures exist that may also be potentially viable,
such as Cell or FPGA, we have focused on GPUs because of their commercial
accessibility and increasing availability on HPC clusters.

Over the last few years, GPU devices have become programmable
for non-graphics oriented applications through the CUDA API, but
this has been restricted to Nvidia hardware only. OpenCL is a more
recent API that is designed to be vendor independent, thus allowing
software to run on any modern graphics card, including ATI/AMD
(http://www.khronos.org/opencl/). We have opted to use OpenCL for its
cross-vendor capability.

While most graphics cards have hundreds of cores, performance does
not necessarily scale proportionally, and not all algorithms will benefit from

GPU parallelization (e.g. Davis et al., 2011). The main performance limiting
factor is the I/O bandwidth between processing cores and video memory. The
computational kernel that runs on the GPU cores restructures the regression
algorithm, making efficient use of the video memory hierarchies and this
was necessary for achieving significant speed improvements. Several steps
were necessary to limit the kernel I/O operations, including converting naive
sum of squares algorithms to on-line algorithms (Welford, 1962), storing
frequently accessed genotype class means in local memory, vectorizing
phenotype reads and delivery of genotypes to the kernel in bitpacked form.

The program uses a command line interface, and allows the analysis to
be stopped and resumed by the user. The scale of the search space is such
that storing all results would be impossible. Instead, only results that exceed
a user-defined threshold are saved.

2.3 Performance testing
Exhaustive pairwise scans for epistasis were performed on a dataset
comprising 300 000 SNPs, evenly spaced across 20 chromosomes, with 1%
missing values and 1000 individuals, for association with a random normally
distributed phenotype. Analyses were performed using the full 8 d.f. test,
although the speed with the 4 d.f. test is almost identical. Other parameters,
such as the ‘iteration size’ were chosen as recommended in the software
documentation. All timings reported refer to user time.

epiGPU is adapted from a CPU version that performs the same analysis,
episcan (Hemani,G. and Wei,W. 2010, unpublished data, software). As with
epiGPU, the CPU version is written in C, and compiled using GCC version
4.3.4 with -O2 optimization. To test the efficiency of episcan, we compared
its performance against the FastEpistasis module in PLINK (Schüpbach
et al., 2010). On an Intel i7 970 3.2 GHz processor (using a single core),
episcan performs ∼128 201 tests per second, which is over 3.5x faster than
FastEpistasis (∼36 180 tests per second as reported in Schüpbach et al.,
2010).

In addition to running serially, episcan can also parallelize across
multicore CPUs. It uses the OpenMP API, and when hyperthreading is
enabled it achieves near linear speed improvements with the number of
processing cores. For multinode compute clusters, an extended version of
the software called epiMPI was used (Hemani,G. 2010, unpublished data,
software). It geometrically parallelizes the search space using the OpenMPI
API (Gabriel et al., 2004), also achieving almost linear scaling with the
number of nodes.

All CPU implementations use single precision floating point operations.
When compared with double precision the speed was identical, as were F
value calculations to five decimal places. The GPU version also uses single
precision, and maintained precision to four decimal places.

Open source code is available for both CPU implementations at
https://sourceforge.net/projects/epigpu/files/misc/.

3 RESULTS
We produced software that geometrically parallelizes exhaustive
searches for pairwise epistatic associations with quantitative traits.
We performed large-scale analyses, typical of those that would be
expected based on GWASs already published, on several different
software and hardware systems. Our tests show that against the
baseline system (serial code running on a modern CPU) graphics
cards can perform the same analysis almost two orders of magnitude
faster and at minimal expense (Table 1), such that an analysis that
would take over 4 days could be performed in just over an hour by
using software utilizing a graphics card. It is demonstrable that to
achieve comparable speeds using CPU cores would require a large
compute cluster, for which the cost to acquire and administer could
be prohibitively expensive.
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Table 1. Performance and cost comparison

Parallelization Hardware Cost Time Relative Cost
/ £a / minb speedc benefitd

None Baseline CPUe − 5860 1 −

Multicore 6-core CPUf 760 986 5.9 1.6
CPU 8-core CPUg 1600 763 7.7 1.0

CPU clusterg 16-core cluster − 398 14.7 −
32-core cluster − 195 30.0 −
64-core cluster − 96 61.0 −

GPU Nv Fermi GTX580 367 63 91.6 51.9
ATI Radeon 6970 300 86 68.1 47.2
Nv Tesla S1070 960 146 40.1 9.0
Nv GTX285 230 145 40.1 36.2
Nv 8800GT 72 613 9.6 27.7

aApproximate cost for equipment above baseline. Cost estimates for large compute
clusters are too subjective for realistic comparisons; bTotal user time to complete
the analysis (300 000 SNPs, 1000 individuals); cTime relative to baseline time; dCost
benefit calculated as speed/cost, figures shown are adjusted relative to the cost of the
best-performing desktop CPU alternative (8-cores); eBaseline equipment, Intel i7 970
3.2 GHz, running in serial; f Intel i7 970 3.2 GHz; gDual Intel Xeon E5472 3.0 GHz.

Fig. 1. Incremental improvements in performance by incorporating different
GPU optimization methods. For reference, the CPU speeds are shown as
vertical lines (serial and parallelized on Dual socket Intel Xeon E5472).
Speeds are for calculating 8 d.f. F-tests with 1000 individuals.

The use of graphics cards as a tool for scientific research
is a rapidly emerging industry that has manifested staggering
improvements in performance over the last few years. However
it is still in its infancy, and as reflected in Figure 1, the level of
manual optimization required by developers to harness this power
is considerable. Furthermore, while a very heterogeneous array of
devices can be used for OpenCL applications, differences in their
architectures inevitably results in different responses to optimization
strategies. Figure 1 shows that without careful optimization, even
the most recent GPUs will appear to offer little to no advantage over
CPU implementations.

4 CONCLUSION
Quantitative genetics has long been occupied with the theoretical
contribution of genetic variants to complex traits. The last decade
has seen a global effort to start investigating this empirically on
a large scale, yet epistasis remains largely unexplored. Computing
exhaustive pairwise epistatic scans is an important step in making
tractable the understanding of non-additive genetic effects in
complex traits. We show that this can be achieved efficiently by
using consumer level graphics cards, an established technology that
is cheap and widely available. In its current implementation, epiGPU
is limited to performing linear regression on quantitative traits, but
the parallel decomposition framework is sufficiently generic to allow
its extension to other pairwise statistical analyses relatively easily,
such as chi-square testing for case–control data.

Another central problem with epistasis scans is the heavy multiple
testing penalty incurred by stringent significance thresholds.
Computationally straightforward methods such as the Bonferroni
correction are likely to penalize for an overestimated number of
independent tests, and this is particularly problematic with epistasis
where the dimensionality of the search is increased. However, with
the growing availability of GPU clusters (Fan et al., 2004), it is
now becoming feasible to perform 2D genome-wide permutation
analyses to generate more accurate estimates of family-wise false
discovery rates (Churchill and Doerge, 1994), a potentially critical
step toward understanding the contribution of epistasis toward
complex traits.
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