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Motivation

x ∈ R
N Ax ∈ R

N z = Pα(Ax)

◮ x : original image

◮ A : linear operator from R
N to R

N

◮ Pα : effect of noise where α > 0 is the scaling parameter
◮ z : degraded image of size N
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Motivation

x ∈ R
N Ax ∈ R

N z = Pα(Ax)

◮ x : original image

Assumption: sparse after some appropriate transform
◮ A : linear operator from R

N to R
N

◮ Pα : effect of noise where α > 0 is the scaling parameter
◮ z : degraded image of size N

Objective: recover x from the observations z
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Motivation

x̂ ∈ Argmin
x∈RN

g(Ax , z)︸ ︷︷ ︸
Data fidelity term

g(A·,z)∈Γ0(RN )

+ λ f (x)︸︷︷︸
Regularization term

f ∈Γ0(RN )

where λ > 0
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Motivation : Existing works – Gaussian noise

Regularized approach Constrained approach

min
x∈RN

‖Ax − z‖2 + λf (x) min
‖Ax−z‖2≤η

f (x)

[Tikhonov, 1963] [Combettes, Trussell, 1991]
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If f = ‖F · ‖2

→ Gradient-based methods → POCS [Trussell, Civanlar, 1984]
→ Subgradient projections

[Luo, Combettes, 1999]
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Regularized approach Constrained approach

min
x∈RN

‖Ax − z‖2 + λf (x) min
‖Ax−z‖2≤η

f (x)

[Tikhonov, 1963] [Combettes, Trussell, 1991]

If f = ‖F · ‖2

→ Gradient-based methods → POCS [Trussell, Civanlar, 1984]
→ Subgradient projections

[Luo, Combettes, 1999]

If f (x) =
∑

i

|(Fx)(i)|1

(where F is a wavelet transform, a frame)
→ Proximal methods → Proximal methods

[Combettes, Pesquet, 2011] [Combettes, Pesquet, 2011]



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

6/40

Motivation : Existing works – Gaussian noise

Regularized approach Constrained approach

min
x∈RN

‖Ax − z‖2 + λf (x) min
f (x)≤η

‖Ax − z‖2

[Tikhonov, 1963]



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

6/40

Motivation : Existing works – Gaussian noise

Regularized approach Constrained approach

min
x∈RN

‖Ax − z‖2 + λf (x) min
f (x)≤η

‖Ax − z‖2

[Tikhonov, 1963]

If f = ‖ · ‖1,p =
∑

b∈L

‖Bb · ‖ with p ≥ 1

→ block sparsity measure :
for every b ∈ L ⊂ K, Bb is a
block selection transform.
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Motivation : Existing works – Gaussian noise

Regularized approach Constrained approach

min
x∈RN

‖Ax − z‖2 + λf (x) min
f (x)≤η

‖Ax − z‖2

[Tikhonov, 1963]

If f = ‖ · ‖1,p =
∑

b∈L

‖Bb · ‖ with p ≥ 1

→ block sparsity measure :
for every b ∈ L ⊂ K, Bb is a
block selection transform.

→ Proximal methods → Inner iterations, ?

[Combettes, Pesquet, 2011] [Van Den Berg,Friedlander,2008]
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Motivation : Existing works – Poisson noise

Regularized approach Constrained approach

min
x∈H

DKL(Tx , z) + λf (x) min
DKL(Tx ,z)≤η

f (x)
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Motivation : Existing works – Poisson noise

Regularized approach Constrained approach

min
x∈H

DKL(Tx , z) + λf (x) min
DKL(Tx ,z)≤η

f (x)

If f = ‖F · ‖2

→ Cross-Entropy minimization → ?

[Byrne, 1993]
→ Barrier function optimization
[Chouzenoux et al., 2011]
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Regularized approach Constrained approach

min
x∈H

DKL(Tx , z) + λf (x) min
DKL(Tx ,z)≤η

f (x)

If f = ‖F · ‖2

→ Cross-Entropy minimization → ?

[Byrne, 1993]
→ Barrier function optimization
[Chouzenoux et al., 2011]

If f (x) =
∑

i

|(Fx)(i)|1

(where F can denote a gradient filter, a wavelet transform, a frame)
→ Proximal methods → ?

[Combettes, Pesquet, 2011]
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Problem

x̂ ∈ Argmin
x∈RN

R∑

r=1

gr (Trx) s.t.





h1(H1x) ≤ η1 ,
...

hS (HSx) ≤ ηS ,

◮ (∀s ∈ {1, . . . ,S}), Hr: R
N → R

Ms is a linear operator,

◮ (∀s ∈ {1, . . . ,S}), hs ∈ Γ0(R
Ms ),

◮ (∀r ∈ {1, . . . ,R}), Tr: R
N → R

Nr is a linear operator,

◮ (∀r ∈ {1, . . . ,R}), gr ∈ Γ0(R
Nr ).

⇒ Any closed convex subset Cs of RMs can be expressed in this way
by setting ηs = 0, L = 1 and hs = dCs

= ‖ · −PCs
‖
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Problem

x̂ ∈ Argmin
x∈RN

R∑

r=1

gr (Trx) s.t.





H1x ∈ C1 ,
...

HSx ∈ CS ,

◮ (∀s ∈ {1, . . . ,S}), Hr: R
N → R

Ms is a bounded linear operator,

◮ (∀s ∈ {1, . . . ,S}), Cs is a nonempty closed convex subset of RMs ,

◮ (∀r ∈ {1, . . . ,R}), Tr: R
N → R

Nr is a bounded linear operator,

◮ (∀r ∈ {1, . . . ,R}), gr ∈ Γ0(R
Nr ).
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Problem

x̂ ∈ Argmin
x∈RN

R∑

r=1

gr (Trx) s.t.





H1x ∈ C1,
...

HSx ∈ CS ,

◮ Forward-Backward [Combettes,Wajs,2005]

→ minx g1(T1x) + g2(x) with g1 gradient Lipschitz function
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...

HSx ∈ CS ,

◮ Forward-Backward [Combettes,Wajs,2005]

→ minx g1(T1x) + g2(x) with g1 gradient Lipschitz function

◮ Douglas-Rachford [Combettes,Pesquet,2007]

→ minx g1(x) + g2(x)
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Problem

x̂ ∈ Argmin
x∈RN

R∑

r=1

gr (Trx) s.t.





H1x ∈ C1,
...

HSx ∈ CS ,

◮ Forward-Backward [Combettes,Wajs,2005]

→ minx g1(T1x) + g2(x) with g1 gradient Lipschitz function

◮ Douglas-Rachford [Combettes,Pesquet,2007]

→ minx g1(x) + g2(x)

◮ PPXA [Combettes,Pesquet,2008]

→ minx
∑R

r=1 gr (x) +
∑S

s=1 ιCs
(x)
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Problem

x̂ ∈ Argmin
x∈RN

R∑

r=1

gr (Trx) s.t.





H1x ∈ C1,
...

HSx ∈ CS ,

◮ PPXA + [Pesquet,Pustelnik,2012] / ADMM [Setzer,Steidl,Teuber,2009]

→ minx
∑R

r=1 gr (Trx) +
∑S

s=1 ιCs
(Hsx)

→
∑R

r=1 T
∗
r Tr +

∑S
s=1 H

∗
s Hs invertible



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

11/40

Problem

x̂ ∈ Argmin
x∈RN

R∑

r=1

gr (Trx) s.t.





H1x ∈ C1,
...

HSx ∈ CS ,

◮ PPXA + [Pesquet,Pustelnik,2012] / ADMM [Setzer,Steidl,Teuber,2009]

→ minx
∑R

r=1 gr (Trx) +
∑S

s=1 ιCs
(Hsx)

→
∑R

r=1 T
∗
r Tr +

∑S
s=1 H

∗
s Hs invertible

◮ M+SFBF [Briceño-Arias,Combettes,2011]

M+LFBF [Combettes,Pesquet,2012] and others [Vũ,2013][Condat,2013]

→ minx
∑R

r=1 gr (Trx) +
∑S

s=1 ιCs
(Hsx)
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Problem

For n = 0, 1, . . .










































































































x [n] =
∑R

r=1 ωru
[n]
r +

∑S
s=1 ωsu

[n]
s ←− Under technical assumptions, (x [n])n∈N generated by

For r = 1, . . . , R M+SFBF [Combettes,Briceño-Arias,2011] converges to x̂
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←− Proximity operator computation
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Proximity operator

Definition [Moreau,1965] Let f ∈ Γ0(H) where H denotes a real Hilbert space. The
proximity operator of f at point u ∈ H is the unique point denoted by proxf u such that

(∀u ∈ H) proxf u = arg min
v∈H

f (v) +
1

2
‖u − v‖2
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Definition [Moreau,1965] Let f ∈ Γ0(H) where H denotes a real Hilbert space. The
proximity operator of f at point u ∈ H is the unique point denoted by proxf u such that

(∀u ∈ H) proxf u = arg min
v∈H

f (v) +
1

2
‖u − v‖2

Examples: closed form

◮ proxχ‖·‖1 : soft-thresholding with a fixed threshold χ > 0

−2 −1 0 1 2
−1

−0.5

0

0.5
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Definition [Moreau,1965] Let f ∈ Γ0(H) where H denotes a real Hilbert space. The
proximity operator of f at point u ∈ H is the unique point denoted by proxf u such that

(∀u ∈ H) proxf u = arg min
v∈H

f (v) +
1

2
‖u − v‖2

Examples: closed form

◮ proxχ‖·‖1 : soft-thresholding with a fixed threshold χ > 0

◮ prox‖·‖1,2 [Peyré,Fadili,2011].

◮ proxDKL
[Chaux,Combettes,Pesquet,Wajs,2005].

◮ proxιC = PC : projection onto the convex set C .
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Definition [Moreau,1965] Let f ∈ Γ0(H) where H denotes a real Hilbert space. The
proximity operator of f at point u ∈ H is the unique point denoted by proxf u such that

(∀u ∈ H) proxf u = arg min
v∈H

f (v) +
1

2
‖u − v‖2

Examples: closed form

◮ proxχ‖·‖1 : soft-thresholding with a fixed threshold χ > 0

◮ prox‖·‖1,2 [Peyré,Fadili,2011].

◮ proxDKL
[Chaux,Combettes,Pesquet,Wajs,2005].

◮ proxιC = PC : projection onto the convex set C .
→ range constraint: hypercube projection,
→ closed half-space: half-space projection,
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Proximity operator

Definition [Moreau,1965] Let f ∈ Γ0(H) where H denotes a real Hilbert space. The
proximity operator of f at point u ∈ H is the unique point denoted by proxf u such that

(∀u ∈ H) proxf u = arg min
v∈H

f (v) +
1

2
‖u − v‖2

Examples: NO closed form

◮ proxιC = PC : projection onto the convex set C .

→ C models a ℓ1,p-ball constraint: iterative procedure for projection
[Quattoni,Carreras,Collins,Darrell,2007] [Van Den Berg,Friedlander,2008].

→ constraint associated with the Kullback-Leibler divergence

→ constraint associated with the logistic cost function
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Solution

◮ Assumption: separable function

For every y = [(y(1))⊤︸ ︷︷ ︸
sizeM(1)

, . . . , (y(L))⊤︸ ︷︷ ︸
sizeM(L)

]⊤ ∈ R
M ,

y ∈ C ⇔ h(y) ≤ η ⇔
L∑

ℓ=1

h(ℓ)(y (ℓ)) ≤ η.
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For every y = [(y(1))⊤︸ ︷︷ ︸
sizeM(1)

, . . . , (y(L))⊤︸ ︷︷ ︸
sizeM(L)

]⊤ ∈ R
M ,

y ∈ C ⇔ h(y) ≤ η ⇔
L∑

ℓ=1

h(ℓ)(y (ℓ)) ≤ η.

◮ Solution: splitting the constraint into simpler constraints by

introducing the auxiliary vector ζ =
(
ζ(ℓ)

)
1≤ℓ≤L

∈ R
L,

y ∈ C ⇔

{∑L
ℓ=1 ζ

(ℓ) ≤ η,

(∀ℓ ∈ {1, . . . , L}) h(ℓ)(y(ℓ)) ≤ ζ(ℓ).
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◮ Assumption: separable function

For every y = [(y(1))⊤︸ ︷︷ ︸
sizeM(1)

, . . . , (y(L))⊤︸ ︷︷ ︸
sizeM(L)

]⊤ ∈ R
M ,

y ∈ C ⇔ h(y) ≤ η ⇔
L∑

ℓ=1

h(ℓ)(y (ℓ)) ≤ η.

◮ Solution: splitting the constraint into simpler constraints by

introducing the auxiliary vector ζ =
(
ζ(ℓ)

)
1≤ℓ≤L

∈ R
L,

y ∈ C ⇔

{∑L
ℓ=1 ζ

(ℓ) ≤ η,

(∀ℓ ∈ {1, . . . , L}) (y(ℓ), ζ(ℓ)) ∈ epi h(ℓ).
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Solution

y ∈ C ⇔

{
ζ ∈ V

(y , ζ) ∈ E

◮ V denotes a closed half-space such that:

V =
{
ζ ∈ R

L
∣∣ 1⊤L ζ ≤ η

}

◮ E is the closed convex set associated to the epigraphical constraint:

E =
{
(y , ζ) ∈ R

M × R
L
∣∣ (∀ℓ ∈ {1, . . . , L}) (y(ℓ), ζ(ℓ)) ∈ epi h(ℓ)

}
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y ∈ C ⇔

{
ζ ∈ V

(y , ζ) ∈ E

◮ V denotes a closed half-space such that:

V =
{
ζ ∈ R

L
∣∣ 1⊤L ζ ≤ η

}

→ PV has a closed form: projection onto an half-space.

◮ E is the closed convex set associated to the epigraphical constraint:

E =
{
(y , ζ) ∈ R

M × R
L
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Solution

y ∈ C ⇔

{
ζ ∈ V

(y , ζ) ∈ E

◮ V denotes a closed half-space such that:

V =
{
ζ ∈ R

L
∣∣ 1⊤L ζ ≤ η

}

→ PV has a closed form: projection onto an half-space.

◮ E is the closed convex set associated to the epigraphical constraint:

E =
{
(y , ζ) ∈ R

M × R
L
∣∣ (∀ℓ ∈ {1, . . . , L}) (y(ℓ), ζ(ℓ)) ∈ epi h(ℓ)

}

→ PE has a closed form for specific choice of h(ℓ).
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Solution

◮ Euclidean norm functions defined as:

(
∀ℓ ∈ {1, . . . , L}

)(
∀y(ℓ) ∈ R

M(ℓ))
h(ℓ)(y(ℓ)) = τ (ℓ)‖y(ℓ)‖

where τ (ℓ) ∈ ]0,+∞[.
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Solution

◮ Euclidean norm functions defined as:

(
∀ℓ ∈ {1, . . . , L}

)(
∀y(ℓ) ∈ R

M(ℓ))
h(ℓ)(y(ℓ)) = τ (ℓ)‖y(ℓ)‖

where τ (ℓ) ∈ ]0,+∞[.

◮ Epigraphic projection: for every (y(ℓ), ζ(ℓ)) ∈ R
M(ℓ)

× R

Pepi h(ℓ)(y
(ℓ), ζ(ℓ)) =





(y(ℓ), ζ(ℓ)), if ‖y(ℓ)‖ < ζ(ℓ)

τ (ℓ)
,

(0, 0), if ‖y(ℓ)‖ < −τ (ℓ)ζ(ℓ),

α(ℓ)
(
y(ℓ), τ (ℓ)‖y(ℓ)‖

)
, otherwise,

where α(ℓ) =
1

1 + (τ (ℓ))2

(
1 +

τ (ℓ)ζ(ℓ)

‖y(ℓ)‖

)
.
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Solution

◮ Infinity norms defined as:(
∀ℓ ∈ {1, . . . , L}

)(
∀y(ℓ) = (y(ℓ,m))1≤m≤M(ℓ) ∈ R

M(ℓ)
)

h(ℓ)(y(ℓ)) = max

{
|y(ℓ,m)|

τ (ℓ,m)
| 1 ≤ m ≤ M(ℓ)

}

where (τ (ℓ,m))1≤m≤M(ℓ) ∈ ]0,+∞[M
(ℓ)

.
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Solution

◮ Epigraphic projection:
◮ (ν(ℓ,m))1≤m≤M(ℓ) : sequence of reals by sorting (|y(ℓ,m)|/τ (ℓ,m))1≤m≤M(ℓ)

in ascending order (ν(ℓ,0) = −∞ and ν(ℓ,M
(ℓ)+1) = +∞).

◮ m is the unique integer in {1, . . . ,M (ℓ) + 1} such that

ν(ℓ,m−1) <
ζ(ℓ) +

∑M(ℓ)

m=m ν(ℓ,m)(τ (ℓ,m))2

1 +
∑M(ℓ)

m=m(τ
(ℓ,m))2

≤ ν(ℓ,m).

◮ (p(ℓ), θ(ℓ)) = Pepi h(ℓ)(y
(ℓ), ζ(ℓ)) with p(ℓ) = (p(ℓ,m))1≤m≤M(ℓ),

where

p(ℓ,m) =











y(ℓ,m), if |y(ℓ,m)| ≤ τ (ℓ,m)θ(ℓ),

τ (ℓ,m)θ(ℓ), if y(ℓ,m) > τ (ℓ,m)θ(ℓ),

−τ (ℓ,m)θ(ℓ), if y(ℓ,m) < −τ (ℓ,m)θ(ℓ),

and

θ
(ℓ) =

max
(

ζ(ℓ) +
∑M(ℓ)

m=m
ν(ℓ,m)(τ (ℓ,m))2, 0

)

1 +
∑M(ℓ)

m=m
(τ (ℓ,m))2

.
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RGB image restoration with missing samples

Original Degraded
x z = A x + w

◮ Original (multicomponent) image: x = (x1, . . . , xR) ∈ (RM)R

◮ Linear operator: A = (Aj ,i)1≤j≤S,1≤i≤R , with Aj ,i ∈ R
K×M

◮ Zero-mean white Gaussian noise: w ∈ (RK )S

◮ Degraded image: z = (z1, . . . , zS) ∈ (RK )S



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

20/40

RGB image restoration with missing samples

x̂ ∈ Argmin
x∈(RM)R

‖Ax − z‖22︸ ︷︷ ︸
Data fidelity term

+ λ g(x)︸︷︷︸
Regularization term

◮ Component-wise Total Variation (CC-TV)

[Blomgren 1998] [Zach 2007]

◮ Structure Tensor TV (ST-TV)

→ ℓp matrix-norm regularization

[Di Zenzo 1986] [Sapiro 1996] [Weickert 1999] [Tschumperlé 2001]
[Bresson 2008] [Duval 2009][Goldluecke 2012]
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RGB image restoration with missing samples

x̂ ∈ Argmin
x∈C⊂(RM)R

‖Ax − z‖22 subj. to g(x) ≤ η

◮ Constrained approach

◮ Regularization by ST Non-Local TV (ST-NLTV)

→ NLTV better preserves texture, details and fine structures

→ ST better reveals features not visible in single components
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RGB image restoration with missing samples

◮ Non-Local gradient at point ℓ ∈ {1, . . . ,M}

X (ℓ) =
(
ωℓ,n (x

(ℓ)
i − x

(n)
i )

)
n∈Nℓ, 1≤i≤R

∈ R
Mℓ×R

x
(ℓ)
3 x

(ℓ)
2 x

(ℓ)
1

X (ℓ) =









X
(ℓ,1)
1 X

(ℓ,1)
2 X

(ℓ,1)
3

...
...

...

X
(ℓ,Mℓ)
1 X

(ℓ,Mℓ)
2 X

(ℓ,Mℓ)
3









◮ ST-NLTV

g(x) =

M∑

ℓ=1

τℓ ‖X
(ℓ)‖p ⇔ g(x) =

M∑

ℓ=1

τℓ




min{Mℓ,R}∑

m=1

(
σ
(m)

X (ℓ)

)p



1/p



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

22/40

RGB image restoration with missing samples

◮ Non-Local gradient at point ℓ ∈ {1, . . . ,M}

X (ℓ) =
(
ωℓ,n (x

(ℓ)
i − x

(n)
i )

)
n∈Nℓ, 1≤i≤R

∈ R
Mℓ×R

x
(ℓ)
3 x

(ℓ)
2 x

(ℓ)
1

X (ℓ) =









X
(ℓ,1)
1 X

(ℓ,1)
2 X

(ℓ,1)
3

...
...

...

X
(ℓ,Mℓ)
1 X

(ℓ,Mℓ)
2 X

(ℓ,Mℓ)
3









◮ Special case: ST-TV
◮ Nℓ → horizontal/vertical neighbours
◮ ωℓ,n ≡ 1



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

23/40

RGB image restoration with missing samples

x̂ ∈ Argmin
x∈C

‖Ax − z‖22 subject to Fx ∈ D



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

23/40

RGB image restoration with missing samples

x̂ ∈ Argmin
x∈C

‖Ax − z‖22 subject to Fx ∈ D

•
•
•

(
x̂ , ζ̂

)
∈ Argmin

(x ,ζ)∈C×V

‖Ax − z‖22 subject to (Fx , ζ) ∈ E



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

23/40

RGB image restoration with missing samples

x̂ ∈ Argmin
x∈C

‖Ax − z‖22 subject to Fx ∈ D

•
•
•

(
x̂ , ζ̂

)
∈ Argmin

(x ,ζ)∈C×V

‖Ax − z‖22 subject to (Fx , ζ) ∈ E

◮ Collection of epigraphs

E =
{
(X , ζ)

∣∣ (X (ℓ), ζ(ℓ)) ∈ epi ‖ · ‖p (∀ℓ ∈ {1, . . . ,M})}



Motivation Prox. Solution Experiment 1 Experiment 2 Conclusions

23/40

RGB image restoration with missing samples

x̂ ∈ Argmin
x∈C
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•
•
•

(
x̂ , ζ̂

)
∈ Argmin

(x ,ζ)∈C×V

‖Ax − z‖22 subject to (Fx , ζ) ∈ E

◮ Collection of epigraphs

E =
{
(X , ζ)

∣∣ (X (ℓ), ζ(ℓ)) ∈ epi ‖ · ‖p (∀ℓ ∈ {1, . . . ,M})}

◮ Closed half-space

V =
{
ζ ∈ R

M
∣∣ 1⊤M ζ ≤ η

}

with 1M = (1, . . . , 1)⊤ ∈ R
M
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◮ Pepi ‖·‖p exists for vectorial norms with p ∈ {1, 2,+∞}

[Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]
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→ can we extend these results to matrix norms ?

◮ S.V.D. : X (ℓ) = U(ℓ) Diag(s(ℓ)) V (ℓ)⊤

◮ Proximity operator of spectral functions [Lewis 1995]

prox‖·‖p (X
(ℓ)) = U(ℓ) Diag(prox‖·‖p(s

(ℓ))) V (ℓ)⊤

Epigraphical projection

1. Pepi ‖·‖p (X
(ℓ), ζ(ℓ)) =

(
U(ℓ) Diag(t(ℓ)) V (ℓ)⊤, θ(ℓ)

)

2. (t(ℓ), θ(ℓ)) = Pepi ‖·‖p(s
(ℓ), ζ(ℓ))
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RGB image restoration with missing samples

(
x̂ , ζ̂

)
∈ Argmin

(x ,ζ)∈C×W

‖Ax − z‖22 subject to (Fx , ζ) ∈ E

◮ Degradation: 3× 3 uniform blur, 90% of decimation, AWGN with α = 10

◮ Color space: RGB

→ pixels of z have missing colors

→ impossible to work into YCbCr, CIELab, . . .

◮ Dynamics range constraint: x
(ℓ)
i ∈ [0, 255]

◮ Weights ωℓ,n estimated as in [Foi 2012]

◮ Choice of η based on image characteristics
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RGB image restoration with missing samples

Original Noisy Zoom
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RGB image restoration with missing samples

ℓ1-CC-TV ℓ2-CC-TV ℓ∞-CC-TV
16.15 dB 16.32 dB 16.05 dB
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RGB image restoration with missing samples

ℓ1-ST-TV ℓ2-ST-TV ℓ∞-ST-TV
17.08 dB 16.84 dB 16.43 dB
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RGB image restoration with missing samples

ℓ1-CC-NLTV ℓ2-CC-NLTV ℓ∞-CC-NLTV
16.87 dB 17.20 dB 17.22 dB
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RGB image restoration with missing samples

ℓ1-ST-NLTV ℓ2-ST-NLTV ℓ∞-ST-NLTV
18.20 dB 17.46 dB 16.67
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RGB image restoration with missing samples
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Poisson based restoration

minimize
x∈RN

∑

b∈L

‖BbFx‖ subject to

{
x ∈ C

g(Ax , z) ≤ η.

◮ For computational reasons, it will be assumed that there exists a
partition of L in S subsets (Ls)1≤s≤S such that∑

b∈L ‖Bb · ‖ =
∑S

s=1

∑
b∈Ls

‖Bb · ‖ (i.e. grouped into S sets of
non-overlapping blocks).

(S = 2)
◮ Particular case : S = 1, L = L1 = K and, for every b ∈ L, Bb selects one

element (i.e. one pixel) → the classical ℓ1-norm is obtained.
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Poisson based restoration

minimize
x∈RN

S∑

s=1

∑

b∈Ls

‖BbFx‖ subject to

{
x ∈ C

g(Ax , z) ≤ η.

that is equivalent to

minimize
x∈RN

S∑

s=1

∑

b∈Ls

‖BbFx‖ subject to

{
x ∈ C

Ax ∈ D

with D =
{
u ∈ R

K
∣∣ g(u, z) ≤ η

}
= lev≤η g(·, z).
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Poisson based restoration

minimize
x∈RN

S∑

s=1

∑

b∈Ls

‖BbFx‖ subject to

{
x ∈ C

g(Ax , z) ≤ η.

that is equivalent to

minimize
x∈RN

S∑

s=1

∑

b∈Ls

‖BbFx‖ subject to

{
x ∈ C

Ax ∈ D

with D =
{
u ∈ R

K
∣∣ g(u, z) ≤ η

}
= lev≤η g(·, z).

◮ Projection onto D

→ Closed form if g(·, z) = ‖ · −z‖2 [Rockafellar, 1969].

→ NO closed form in a general context .
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Poisson based restoration

Explicit form of the projection operator associated with :

hℓ(v
ℓ)) = max{v(ℓ,j) + η(ℓ,j) | 1 ≤ j ≤ M(ℓ)}

where

→ v(ℓ) = (v(ℓ,1), . . . , v(ℓ,M
(ℓ)))⊤ ∈ R

M(ℓ)

→ ℓ ∈ {1, . . . , L} and (η(ℓ,1), . . . , η(ℓ,M
(ℓ)))⊤ ∈ R

M(ℓ)

Example for L = 1 and M(1) = 3 :
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Poisson based restoration

g(u, z) =

L∑

ℓ=1

gℓ(u
(ℓ), z (ℓ)) ≃

L∑

ℓ=1

hℓ(∆
(ℓ)u(ℓ))

◮ hℓ(v
(ℓ)) = max{v(ℓ,j) + η(ℓ,j) | 1 ≤ j ≤ M(ℓ)},

◮ η(ℓ,j) = gℓ(a
(ℓ)
j , z (ℓ))− δ

(ℓ)
j a

(ℓ)
j ,

◮ δ
(ℓ)
j ∈ R is any subgradient of gr (·, zℓ) at a

(ℓ)
j ,

◮ ∆(ℓ) = [δ
(ℓ)
1 , . . . , δ

(ℓ)

M(ℓ) ]
⊤.

→ The approximation can be as close
as desired by choosing M(ℓ) large en-
ough.

a
(1)
2 a

(1)
3

h1 ◦ ∆(1)

a
(1)
1

g1

u(1)
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j ∈ R is any subgradient of gr (·, zℓ) at a
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j ,

◮ ∆(ℓ) = [δ
(ℓ)
1 , . . . , δ

(ℓ)

M(ℓ) ]
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→ The approximation can be as close
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h1 ◦ ∆(1)
g1

a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(1)
5

u(1)
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Poisson based restoration

minimize
x∈RN

S∑

s=1

∑

b∈Ls

‖BbFx‖ subject to

{
x ∈ C

Ax ∈ D

⇒ Approximated criterion :

minimize
(x ,ζ)∈RN×RL

S∑

s=1

∑

b∈Ls

‖BbFx‖ subject to

{
(x , ζ) ∈ C × V

∆Ax ∈ E

where

◮ D =
{
u ∈ R

L
∣∣ g(u, z) ≤ η

}
,

◮ V =
{
ζ ∈ R

L
∣∣ 1⊤L ζ ≤ η

}
,

◮ E = {(v , ζ) ∈ R
M ×R

L | (∀ℓ ∈ {1, . . . , L}) (v(ℓ), ζ(ℓ)) ∈ epi hℓ},
◮ For every u ∈ R

L, g(u, z) =
∑L

ℓ=1 gℓ(u
(ℓ), z (ℓ)) ≃

∑L
ℓ=1 hℓ(∆

(ℓ)u(ℓ)).
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Poisson based restoration

◮ Electron microscopy image of size N = 128 × 128,

◮ T denotes a randomly decimated blur : uniform blur of size 3× 3 and
approximately 60% of missing data, that leads to L = 9834,

◮ Poisson noise with scaling parameter 0.5.

Original Degraded
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Poisson based restoration

Choice of the criterion :
◮ Data fidelity : approximation of the Poisson likelihood,

◮ Influence of M ≡ M (ℓ),
◮ C = [0, 255]N ,
◮ F : Dual-Tree Transform (DTT) – symmlet 6, 2 levels,
◮ Blocks :

◮ ℓ1-reg : Classical ℓ1 cost function,
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Poisson based restoration

◮ Impact of M and of the regularization term.
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Poisson based restoration

◮ M = 7,

◮ Impact of the regularization term.

ℓ1-reg Block PrimalDual Block 4Pixel overlap
SNR = 16.3 dB SNR = 16.5 dB SNR = 16.6 dB
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Conclusions

Argmin
x

R∑

r=1

gr (Trx) s.t.





∑L
ℓ=1 h

(ℓ)
1

(
(H1x)

(ℓ)
)
≤ η1

H2x ∈ C2

...

HSx ∈ CS

•
•
•

Argmin
x ,ζ

R∑

r=1

gr (Trx) s.t.





(∀ℓ ∈ {1, . . . , L}) h
(ℓ)
1

(
(H1x)

(ℓ)
)
≤ ζ(ℓ)

∑L
ℓ=1 ζ

(ℓ) ≤ η1

H2x ∈ C2

...

HSx ∈ CS
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Argmin
x

R∑

r=1

gr (Trx) s.t.





∑L
ℓ=1 h

(ℓ)
1

(
(H1x)

(ℓ)
)
≤ η1

H2x ∈ C2

...

HSx ∈ CS

•
•
•

Argmin
x ,ζ

R∑

r=1

gr (Trx) s.t.





(∀ℓ ∈ {1, . . . , L}) h
(ℓ)
1

(
(H1x)

(ℓ)
)
≤ ζ(ℓ)

∑L
ℓ=1 ζ

(ℓ) ≤ η1

H2x ∈ C2

...

HSx ∈ CS

→ P
epi h

(ℓ)
1

: closed form when h
(ℓ)
1 models a Euclidean or infinity norm.
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→ Faster than direct methods
[Quattoni,Carreras,Collins,Darrell,2007] [Van Den Berg,Friedlander,2008] .
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a
(1)
2 a

(1)
3

h1 ◦ ∆(1)

a
(1)
1

g1

u(1)

→ Links with bundle methods ?
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