Epigraphical splitting for solving constrained convex formulations of inverse problems with proximal tools

Nelly PUSTELNIK Laboratoire de Physique, ENS Lyon – CNRS UMR 5672

Grenoble Optimization Day

November 5th, 2014

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					2/40
Collabo	ration				

- Giovanni CHIERCHIA, Béatrice PESQUET-POPESCU LTCI, Télécom ParisTech/Institut Télécom– CNRS UMR 5141
- Jean-Christophe PESQUET
 LIGM, Université Paris-Est CNRS UMR 8049

Motivation ●00000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					3/40

- $\blacktriangleright \overline{x}$: original image
- A : linear operator from $\mathbb{R}^{\overline{N}}$ to \mathbb{R}^{N}
- \mathcal{P}_{α} : effect of noise where $\alpha > 0$ is the scaling parameter
- z : degraded image of size N

Motivation ●00000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					3/40

 $\blacktriangleright \overline{x}$: original image

Assumption: sparse after some appropriate transform

- A : linear operator from $\mathbb{R}^{\overline{N}}$ to \mathbb{R}^{N}
- ▶ \mathcal{P}_{α} : effect of noise where $\alpha > 0$ is the scaling parameter
- z : degraded image of size N

Motivation ●00000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					3/40

 $\blacktriangleright \overline{x}$: original image

Assumption: sparse after some appropriate transform

- A : linear operator from $\mathbb{R}^{\overline{N}}$ to \mathbb{R}^{N}
- \mathcal{P}_{α} : effect of noise where $\alpha > 0$ is the scaling parameter
- z : degraded image of size N

Objective: recover \overline{x} from the observations z

Motivation 0●0000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					4/40
N					

Motivation 00●000	Prox. 00000	Solution 00000	Experiment 1 00000000	Experiment 2 00000000	Conclusions 0000
					5/40
Motivati	on : Exis	ting works	– Gaussian	noise	
Regula	arized appr	oach	Со	nstrained appro	bach
$\frac{\min_{x \in \mathbb{R}^N} \ A\ }{[Tik]}$	$\ x-z\ ^2 + \frac{1}{2}$	$\lambda f(x)$	[Co	$\min_{\substack{\ Ax-z\ ^2 \leq \eta}} f(x)$ mbettes, Trusse] II, 1991]

Motivation 000●00	Prox. 00000	Solution 00000	Experiment 1 00000000	Experiment 2 00000000	Conclusions 0000
					6/40
Motivatio	on : Exis	ting works	– Gaussiar	1 noise	
Regulari	ized appro	ach	Cons	trained approad	:h
$\frac{\min_{x \in \mathbb{R}^{\overline{N}}} \ Ax}{[Tikh]}$	$ z ^2 + \lambda$ onov, 1963	f(x)		$\min_{f(x)\leq\eta} \ Ax-z\ ^2$]

Motivation 0000●0	Prox. 00000	Solution 00000	Experiment 1 00000000	Experiment 2 00000000	Conclusions 0000
					7/40
Motivat	ion : Exis	ting work	s – Poisson	noise	
Regular	ized approa	nch		Constrained a	pproach

Motivation 00000●	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					8/40

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^{\overline{N}}} \sum_{r=1}^{R} g_r(T_r x) \quad \text{s.t.} \quad \begin{cases} h_1(H_1 x) \leq \eta_1 \\ \vdots \\ h_5(H_5 x) \leq \eta_5 \end{cases},$$

▶ $(\forall s \in \{1, \dots, S\}), H_r: \mathbb{R}^{\overline{N}} \to \mathbb{R}^{M_s}$ is a linear operator,

►
$$(\forall s \in \{1, \ldots, S\}), h_s \in \Gamma_0(\mathbb{R}^{M_s}),$$

▶ $(\forall r \in \{1, ..., R\})$, $T_r: \mathbb{R}^{\overline{N}} \to \mathbb{R}^{N_r}$ is a linear operator,

►
$$(\forall r \in \{1, \ldots, R\}), g_r \in \Gamma_0(\mathbb{R}^{N_r}).$$

 $\Rightarrow \text{ Any closed convex subset } C_s \text{ of } \mathbb{R}^{M_s} \text{ can be expressed in this way} \\ \text{by setting} \quad \eta_s = 0, \ L = 1 \text{ and } h_s = d_{C_s} = \|\cdot - P_{C_s}\| \\ \end{cases}$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					9/40
Problem					

- ▶ $(\forall s \in \{1, \dots, S\}), H_r: \mathbb{R}^{\overline{N}} \to \mathbb{R}^{M_s}$ is a bounded linear operator,
- ▶ $(\forall s \in \{1, ..., S\})$, C_s is a nonempty closed convex subset of \mathbb{R}^{M_s} ,
- ▶ $(\forall r \in \{1, ..., R\})$, $T_r: \mathbb{R}^{\overline{N}} \to \mathbb{R}^{N_r}$ is a bounded linear operator,
- $(\forall r \in \{1, \ldots, R\}), g_r \in \Gamma_0(\mathbb{R}^{N_r}).$

Motivation 000000	Prox. o●ooo	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					10/40
Problem					

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^{\overline{N}}} \sum_{r=1}^{R} g_r(T_r x) \quad \text{s.t.} \quad \begin{cases} H_1 x \in C_1, \\ \vdots \\ H_S x \in C_S, \end{cases}$$

Forward-Backward [Combettes,Wajs,2005]

 $\rightarrow \min_{x} g_1(T_1x) + g_2(x)$ with g_1 gradient Lipschitz function

Motivation 000000	Prox. o●ooo	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					10/40

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^{\overline{N}}} \sum_{r=1}^{R} g_r(T_r x) \quad \text{s.t.} \quad \begin{cases} H_1 x \in C_1, \\ \vdots \\ H_S x \in C_S, \end{cases}$$

Forward-Backward [Combettes,Wajs,2005]

 $\rightarrow \min_{x} g_1(T_1x) + g_2(x)$ with g_1 gradient Lipschitz function

► Douglas-Rachford [Combettes, Pesquet, 2007] → min_x $g_1(x) + g_2(x)$

Motivation 000000	Prox. 0●000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					10/40

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^{\overline{N}}} \sum_{r=1}^{R} g_r(T_r x) \quad \text{s.t.} \quad \begin{cases} H_1 x \in C_1, \\ \vdots \\ H_S x \in C_S, \end{cases}$$

Forward-Backward [Combettes,Wajs,2005]

 $\rightarrow \min_{x} g_1(T_1x) + g_2(x)$ with g_1 gradient Lipschitz function

► Douglas-Rachford [Combettes, Pesquet, 2007] → min_x $g_1(x) + g_2(x)$

Motivation 000000	Prox. oo●oo	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					11/40

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^{\overline{N}}} \sum_{r=1}^{R} g_r(T_r x) \quad \text{s.t.} \quad \begin{cases} H_1 x \in C_1, \\ \vdots \\ H_S x \in C_S, \end{cases}$$

► PPXA + [Pesquet,Pustelnik,2012] / ADMM [Setzer,Steidl,Teuber,2009] → min_x $\sum_{r=1}^{R} g_r(T_r x) + \sum_{s=1}^{S} \iota_{C_s}(H_s x)$ → $\sum_{r=1}^{R} T_r^* T_r + \sum_{s=1}^{S} H_s^* H_s$ invertible

Motivation 000000	Prox. 00●00	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					11/40

$$\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^{\overline{N}}} \sum_{r=1}^{R} g_r(T_r x) \quad \text{s.t.} \quad \begin{cases} H_1 x \in C_1, \\ \vdots \\ H_S x \in C_S, \end{cases}$$

 $\begin{array}{l} \blacktriangleright \quad \mathsf{PPXA} + \left[\mathsf{Pesquet},\mathsf{Pustelnik},2012\right] / \quad \mathsf{ADMM} \quad [\mathsf{Setzer},\mathsf{Steidl},\mathsf{Teuber},2009] \\ \rightarrow \min_{x} \sum_{r=1}^{R} g_{r}(T_{r}x) + \sum_{s=1}^{S} \iota_{C_{s}}(H_{s}x) \\ \rightarrow \sum_{r=1}^{R} T_{r}^{*}T_{r} + \sum_{s=1}^{S} H_{s}^{*}H_{s} \text{ invertible} \end{array}$

Motivation 000000	Prox. 000●0	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					12/40

For
$$n = 0, 1, ..., R$$

$$\begin{bmatrix} x^{[n]}_{l} = \sum_{r=1}^{R} \omega_{r} u_{r}^{[n]} + \sum_{s=1}^{S} \omega_{s} \overline{u}_{s}^{[n]} & \longleftarrow \text{ Under technical assumptions, } (x^{[n]})_{n \in \mathbb{N}} \text{ generated by} \\ \text{For } r = 1, ..., R & \text{M+SFBF [Combettes, Briceño-Arias, 2011] converges to } \hat{x} \\ \begin{bmatrix} w^{[n]}_{1,r} = u^{[n]}_{r} - \gamma_{\ell} T_{r}^{*} v_{r}^{[n]} \\ w^{[n]}_{2,r} = v^{[n]}_{r} + \gamma_{\ell} \tau_{r} u_{r}^{[n]} \\ \overline{v}_{2,r}^{[n]} = \overline{u}_{s}^{[n]} - \gamma_{n} H_{s}^{*} \overline{v}_{s}^{[n]} \\ \overline{w}_{2,r}^{[n]} = \overline{u}_{s}^{[n]} + \gamma_{n} H_{s}^{*} \overline{u}_{s}^{[n]} \\ p^{[n]}_{2,r} = \overline{u}_{s}^{[n]} + \gamma_{n} H_{s}^{*} \overline{u}_{s}^{[n]} \\ p^{[n]}_{2,r} = w^{[n]}_{2,r} - \frac{\gamma_{n}}{\omega_{r}} \operatorname{prox} \omega_{r} (\frac{\omega_{r}}{\gamma_{n}} \varepsilon_{r}^{(n)} (\frac{\omega_{r}}{\gamma_{n}} w^{[n]}_{2,r}) \\ q^{[n]}_{2,r} = p^{[n]}_{2,r} - \gamma_{n} (T_{r}^{*} p^{[n]}_{2,r}) \\ q^{[n]}_{2,r} = p^{[n]}_{2,r} - \gamma_{n} (T_{r}^{*} p^{[n]}_{2,r}) \\ \text{Update } u^{[n+1]}_{1} \text{ and } v^{[n+1]}_{1} \\ \text{For } s = 1, \dots, S \\ \begin{bmatrix} \overline{p}^{[n]}_{2,s} = \overline{w}^{[n]}_{2,r} - \frac{\gamma_{n}}{\omega_{s}} P_{c_{s}} (\frac{\omega_{s}}{\gamma_{n}} w^{[n]}_{2,r}) \\ \overline{q}^{[n]}_{2,s} = \overline{w}^{[n]}_{2,r} - \gamma_{n} (H_{s}^{*} \overline{p}^{[n]}_{2,s}) \\ \overline{q}^{[n]}_{2,s} = \overline{p}^{[n]}_{1} - \gamma_{n} (H_{s}^{*} \overline{p}^{[n]}_{2,s}) \\ \overline{q}^{[n]}_{2,s} = \overline{p}^{[n]}_{2,s} + \gamma_{n} (H_{s} \overline{p}^{[n]}_{1}) \\ Update \overline{q}^{[n+1]}_{1} and \overline{q}^{[n+1]}_{1} \end{bmatrix}$$

Motivation 000000	Prox. 0000●	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					13/40

Definition [Moreau, 1965] Let $f \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of f at point $u \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_f u$ such that

$$(\forall u \in \mathcal{H})$$
 prox_f $u = \arg\min_{v \in \mathcal{H}} f(v) + \frac{1}{2} ||u - v||^{4}$

Motivation 000000	Prox. 0000●	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					13/40

Definition [Moreau,1965] Let $f \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of f at point $u \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_f u$ such that $(\forall u \in \mathcal{H}) \qquad \operatorname{prox}_f u = \arg\min_{v \in \mathcal{H}} f(v) + \frac{1}{2} ||u - v||^2$

Examples: closed form

▶ $prox_{\chi \parallel \cdot \parallel_1}$: soft-thresholding with a fixed threshold $\chi > 0$

Motivation 000000	Prox. 0000●	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					13/40

Definition [Moreau,1965] Let $f \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of f at point $u \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_f u$ such that $(\forall u \in \mathcal{H}) \qquad \operatorname{prox}_f u = \arg\min_{v \in \mathcal{H}} f(v) + \frac{1}{2} ||u - v||^2$

Examples: closed form

- ▶ $prox_{\chi \parallel \cdot \parallel_1}$: soft-thresholding with a fixed threshold $\chi > 0$
- ▶ prox_{||.||1,2}[Peyré,Fadili,2011].
- prox_{DKL}[Chaux,Combettes,Pesquet,Wajs,2005].

▶
$$\operatorname{prox}_{\iota_{C}} = P_{C}$$
: projection onto the convex set *C*.

Motivation 000000	Prox. 0000●	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					13/40

Definition [Moreau,1965] Let $f \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of f at point $u \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_f u$ such that $(\forall u \in \mathcal{H}) \qquad \operatorname{prox}_f u = \arg\min_{v \in \mathcal{H}} f(v) + \frac{1}{2} ||u - v||^2$

Examples: closed form

- ▶ $prox_{\chi \|\cdot\|_1}$: soft-thresholding with a fixed threshold $\chi > 0$
- ▶ prox_{||.||1,2}[Peyré,Fadili,2011].
- prox_{DKL}[Chaux,Combettes,Pesquet,Wajs,2005].
- $\operatorname{prox}_{\iota_{\mathcal{C}}} = P_{\mathcal{C}}$: projection onto the convex set \mathcal{C} .
 - \rightarrow range constraint: hypercube projection,
 - \rightarrow closed half-space: half-space projection,

Motivation 000000	Prox. 0000●	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					13/40

Definition [Moreau,1965] Let $f \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of f at point $u \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_f u$ such that $(\forall u \in \mathcal{H}) \qquad \operatorname{prox}_f u = \arg\min_{v \in \mathcal{H}} f(v) + \frac{1}{2} ||u - v||^2$

Examples: NO closed form

- $\operatorname{prox}_{\iota_{\mathcal{C}}} = P_{\mathcal{C}}$: projection onto the convex set \mathcal{C} .
 - → C models a $\ell_{1,p}$ -ball constraint: iterative procedure for projection [Quattoni,Carreras,Collins,Darrell,2007] [Van Den Berg,Friedlander,2008].
 - \rightarrow constraint associated with the Kullback-Leibler divergence
 - \rightarrow constraint associated with the logistic cost function

Motivation 000000	Prox. 00000	Solution •0000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					14/40
C 1					

► Assumption: separable function For every $y = [\underbrace{(y^{(1)})^{\top}}_{\text{size } M^{(1)}}, \dots, \underbrace{(y^{(L)})^{\top}}_{\text{size } M^{(L)}}]^{\top} \in \mathbb{R}^{M}$, $y \in C \quad \Leftrightarrow \quad h(y) \leq \eta \quad \Leftrightarrow \quad \sum_{\ell=1}^{L} h^{(\ell)}(y^{(\ell)}) \leq \eta$.

Motivation 000000	Prox. 00000	Solution •0000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					14/40
C 1					

Assumption: separable function For every $y = [\underbrace{(y^{(1)})^{\top}}_{\text{size } M^{(1)}}, \dots, \underbrace{(y^{(L)})^{\top}}_{\text{size } M^{(L)}}]^{\top} \in \mathbb{R}^{M}$, $y \in C \quad \Leftrightarrow \quad h(y) \leq \eta \quad \Leftrightarrow \quad \sum_{\ell=1}^{L} h^{(\ell)}(y^{(\ell)}) \leq \eta$.

► Solution: splitting the constraint into simpler constraints by introducing the auxiliary vector $\zeta = (\zeta^{(\ell)})_{1 < \ell < L} \in \mathbb{R}^{L}$,

$$y \in \boldsymbol{C} \quad \Leftrightarrow \quad \begin{cases} \sum_{\ell=1}^{L} \boldsymbol{\zeta}^{(\ell)} \leq \eta, \\ (\forall \ell \in \{1, \dots, L\}) \qquad \boldsymbol{h}^{(\ell)}(\mathsf{y}^{(\ell)}) \leq \boldsymbol{\zeta}^{(\ell)}. \end{cases}$$

Motivation 000000	Prox. 00000	Solution •0000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					14/40
C 1					

Assumption: separable function For every $y = [\underbrace{(y^{(1)})^{\top}}_{\text{size } M^{(1)}}, \dots, \underbrace{(y^{(L)})^{\top}}_{\text{size } M^{(L)}}]^{\top} \in \mathbb{R}^{M},$ $y \in \mathcal{C} \quad \Leftrightarrow \quad h(y) \leq \eta \quad \Leftrightarrow \quad \sum_{\ell=1}^{L} h^{(\ell)}(y^{(\ell)}) \leq \eta.$

► Solution: splitting the constraint into simpler constraints by introducing the auxiliary vector $\zeta = (\zeta^{(\ell)})_{1 < \ell < L} \in \mathbb{R}^{L}$,

$$y \in \boldsymbol{C} \quad \Leftrightarrow \quad \begin{cases} \sum_{\ell=1}^{L} \zeta^{(\ell)} \leq \eta, \\ (\forall \ell \in \{1, \dots, L\}) \qquad (\mathsf{y}^{(\ell)}, \zeta^{(\ell)}) \in \mathsf{epi} \ \boldsymbol{h}^{(\ell)}. \end{cases}$$

Motivation 000000	Prox. 00000	Solution ○●○○○	Experiment 1 00000000	Experiment 2 00000000	Conclusions 0000
					15/40

$$y \in \mathcal{C} \Leftrightarrow \begin{cases} \zeta \in V \\ (y,\zeta) \in E \end{cases}$$

► V denotes a closed half-space such that:

$$V = \left\{ \boldsymbol{\zeta} \in \mathbb{R}^L \mid \mathbf{1}_L^\top \boldsymbol{\zeta} \leq \eta \right\}$$

• *E* is the closed convex set associated to the epigraphical constraint:

$$E = \left\{ (y, \zeta) \in \mathbb{R}^M \times \mathbb{R}^L \mid (\forall \ell \in \{1, \dots, L\}) \; (\mathsf{y}^{(\ell)}, \zeta^{(\ell)}) \in \mathsf{epi} \; \boldsymbol{h}^{(\ell)} \right\}$$

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					15/40

$$y \in \mathcal{C} \Leftrightarrow \begin{cases} \zeta \in V \\ (y, \zeta) \in E \end{cases}$$

► V denotes a closed half-space such that:

$$V = \left\{ \boldsymbol{\zeta} \in \mathbb{R}^L \mid \mathbf{1}_L^\top \boldsymbol{\zeta} \le \eta \right\}$$

 \rightarrow P_V has a closed form: projection onto an half-space.

► *E* is the closed convex set associated to the epigraphical constraint:

$$E = \left\{ (y, \zeta) \in \mathbb{R}^M \times \mathbb{R}^L \mid (\forall \ell \in \{1, \dots, L\}) \ (\mathsf{y}^{(\ell)}, \zeta^{(\ell)}) \in \mathsf{epi} \ \boldsymbol{h}^{(\ell)} \right\}$$

Motivation 000000	Prox. 00000	Solution ○●○○○	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					15/40

$$y \in \mathcal{C} \Leftrightarrow \begin{cases} \zeta \in V \\ (y, \zeta) \in E \end{cases}$$

► V denotes a closed half-space such that:

$$V = \left\{ \boldsymbol{\zeta} \in \mathbb{R}^L \mid \mathbf{1}_L^\top \boldsymbol{\zeta} \leq \eta \right\}$$

 \rightarrow P_V has a closed form: projection onto an half-space.

► *E* is the closed convex set associated to the epigraphical constraint:

$$E = \left\{ (y, \zeta) \in \mathbb{R}^M \times \mathbb{R}^L \mid (\forall \ell \in \{1, \dots, L\}) \ (y^{(\ell)}, \zeta^{(\ell)}) \in \mathsf{epi} \ \boldsymbol{h}^{(\ell)} \right\}$$

 $\rightarrow P_E$ has a closed form for specific choice of $h^{(\ell)}$.

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					16/40
Solution					

Euclidean norm functions defined as:

$$\left(\forall \ell \in \{1, \dots, L\}\right) \left(\forall \mathsf{y}^{(\ell)} \in \mathbb{R}^{\mathcal{M}^{(\ell)}}\right) \qquad h^{(\ell)}(\mathsf{y}^{(\ell)}) = \tau^{(\ell)} \|\mathsf{y}^{(\ell)}\|$$

where $\tau^{(\ell)} \in \]0, +\infty[.$

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					16/40
Solution					

Euclidean norm functions defined as:

$$\begin{split} & \left(\forall \ell \in \{1, \dots, L\}\right) \left(\forall \mathsf{y}^{(\ell)} \in \mathbb{R}^{M^{(\ell)}}\right) \qquad h^{(\ell)}(\mathsf{y}^{(\ell)}) = \tau^{(\ell)} \|\mathsf{y}^{(\ell)}\| \\ & \text{where } \tau^{(\ell)} \in \]0, +\infty[. \end{split}$$

• Epigraphic projection: for every $(y^{(\ell)}, \zeta^{(\ell)}) \in \mathbb{R}^{M^{(\ell)}} \times \mathbb{R}$

$$\begin{split} P_{\mathsf{epi}\,h^{(\ell)}}(\mathsf{y}^{(\ell)},\zeta^{(\ell)}) &= \begin{cases} (\mathsf{y}^{(\ell)},\zeta^{(\ell)}), & \text{if } \|\mathsf{y}^{(\ell)}\| < \frac{\zeta^{(\ell)}}{\tau^{(\ell)}}, \\ (0,0), & \text{if } \|\mathsf{y}^{(\ell)}\| < -\tau^{(\ell)}\zeta^{(\ell)}, \\ \alpha^{(\ell)}\left(\mathsf{y}^{(\ell)},\tau^{(\ell)}\|\mathsf{y}^{(\ell)}\|\right), & \text{otherwise,} \end{cases} \\ \end{split}$$
 where $\alpha^{(\ell)} &= \frac{1}{1+(\tau^{(\ell)})^2} \Big(1+\frac{\tau^{(\ell)}\zeta^{(\ell)}}{\|\mathsf{y}^{(\ell)}\|}\Big). \end{split}$
Motivation 000000	Prox. 00000	Solution 000●0	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					17/40

Solution

-

► Infinity norms defined as:

$$\left(\forall \ell \in \{1, \dots, L\}\right) \left(\forall y^{(\ell)} = (y^{(\ell,m)})_{1 \le m \le M^{(\ell)}} \in \mathbb{R}^{M^{(\ell)}}\right)$$

$$h^{(\ell)}(\mathsf{y}^{(\ell)}) = \max\left\{rac{|\mathsf{y}^{(\ell,m)}|}{ au^{(\ell,m)}} \mid 1 \leq m \leq M^{(\ell)}
ight\}$$

where
$$(au^{(\ell,m)})_{1\leq m\leq \mathcal{M}^{(\ell)}}\in \]0,+\infty[^{\mathcal{M}^{(\ell)}}.$$

Motivation 000000	Prox. 00000	Solution 0000●	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					18/40

Solution

- Epigraphic projection:
 - $(\nu^{(\ell,m)})_{1 \le m \le M^{(\ell)}}$: sequence of reals by sorting $(|\mathbf{y}^{(\ell,m)}|/\tau^{(\ell,m)})_{1 \le m \le M^{(\ell)}}$ in ascending order $(\nu^{(\ell,0)} = -\infty \text{ and } \nu^{(\ell,M^{(\ell)}+1)} = +\infty).$
 - ▶ \overline{m} is the unique integer in $\{1, \ldots, M^{(\ell)} + 1\}$ such that

$$\nu^{(\ell,\overline{m}-1)} < \frac{\zeta^{(\ell)} + \sum_{m=\overline{m}}^{M^{(\ell)}} \nu^{(\ell,m)} (\tau^{(\ell,m)})^2}{1 + \sum_{m=\overline{m}}^{M^{(\ell)}} (\tau^{(\ell,m)})^2} \le \nu^{(\ell,\overline{m})}$$

$$(\mathbf{p}^{(\ell)}, \theta^{(\ell)}) = P_{\mathsf{epi}\,h^{(\ell)}}(\mathbf{y}^{(\ell)}, \zeta^{(\ell)}) \text{ with } \mathbf{p}^{(\ell)} = (\mathbf{p}^{(\ell,m)})_{1 \le m \le M^{(\ell)}}$$

where

$$\mathsf{p}^{(\ell,m)} = \begin{cases} \mathsf{y}^{(\ell,m)}, & \text{if } |\mathsf{y}^{(\ell,m)}| \leq \tau^{(\ell,m)} \theta^{(\ell)}, \\ \tau^{(\ell,m)} \theta^{(\ell)}, & \text{if } \mathsf{y}^{(\ell,m)} > \tau^{(\ell,m)} \theta^{(\ell)}, \\ -\tau^{(\ell,m)} \theta^{(\ell)}, & \text{if } \mathsf{y}^{(\ell,m)} < -\tau^{(\ell,m)} \theta^{(\ell)}, \end{cases}$$

and

$$\theta^{(\ell)} = \frac{\max\left(\zeta^{(\ell)} + \sum_{m=\overline{m}}^{M^{(\ell)}} \nu^{(\ell,m)} (\tau^{(\ell,m)})^2, 0\right)}{1 + \sum_{m=\overline{m}}^{M^{(\ell)}} (\tau^{(\ell,m)})^2}.$$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	●00000000	00000000	0000
					19/40

- ▶ Original (multicomponent) image: $\overline{x} = (\overline{x}_1, \dots, \overline{x}_R) \in (\mathbb{R}^M)^R$
- ▶ Linear operator: $A = (A_{j,i})_{1 \le j \le S, 1 \le i \le R}$, with $A_{j,i} \in \mathbb{R}^{K \times M}$
- ▶ Zero-mean white Gaussian noise: $w \in (\mathbb{R}^K)^S$
- ▶ Degraded image: $z = (z_1, ..., z_S) \in (\mathbb{R}^K)^S$

- Component-wise Total Variation (CC-TV) [Blomgren 1998] [Zach 2007]
- Structure Tensor TV (ST-TV)

 $\rightarrow \ell_p$ matrix-norm regularization

[Di Zenzo 1986] [Sapiro 1996] [Weickert 1999] [Tschumperlé 2001] [Bresson 2008] [Duval 2009][Goldluecke 2012]

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 00000000	Experiment 2 00000000	Conclusions 0000
					21/40
RGB im	age resto	ration with r	nissing sam	ples	
	$\widehat{x} \in \operatorname{Arg}_{x \in C \subset C}$	$\min_{z \in (\mathbb{R}^M)^R} \ Ax - z\ _2^2$	subj. to	$g(x) \leq \eta$	

- Constrained approach
- ▶ Regularization by ST Non-Local TV (ST-NLTV)
 → NLTV better preserves texture, details and fine structures
 → ST better reveals features not visible in single components

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					22/40

▶ Non-Local gradient at point $\ell \in \{1, ..., M\}$

$$X^{(\ell)} = \left(\omega_{\ell,n} \left(x_i^{(\ell)} - x_i^{(n)}\right)\right)_{n \in \mathcal{N}_{\ell}, \ 1 \le i \le R} \in \mathbb{R}^{M_{\ell} \times K}$$

$$g(x) = \sum_{\ell=1}^{M} \tau_{\ell} \, \|X^{(\ell)}\|_{p} \quad \Leftrightarrow \quad g(x) = \sum_{\ell=1}^{M} \tau_{\ell} \left(\sum_{m=1}^{\min\{M_{\ell},R\}} \left(\sigma_{X^{(\ell)}}^{(m)}\right)^{p}\right)^{1/p}$$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					22/40

▶ Non-Local gradient at point $\ell \in \{1, ..., M\}$

$$X^{(\ell)} = \left(\omega_{\ell,n} \left(x_i^{(\ell)} - x_i^{(n)}\right)\right)_{n \in \mathcal{N}_{\ell}, \ 1 \le i \le R} \in \mathbb{R}^{M_{\ell} \times R}$$

- Special case: ST-TV
 - $\mathcal{N}_{\ell} \rightarrow horizontal/vertical neighbours$

•
$$\omega_{\ell,n} \equiv 1$$

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions
					23/40
RGB im	age resto	ration wit	h missing sa	mples	

$$\widehat{x} \in \underset{x \in C}{\operatorname{Argmin}} ||Ax - z||_2^2 \text{ subject to } Fx \in D$$

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions		
					23/40		
RGB ima	age restor	ation wit	th missing sa	mples			
$\widehat{x} \in \underset{x \in C}{\operatorname{Argmin}} \ Ax - z\ _2^2$ subject to $Fx \in D$							
:							
	$(\widehat{x},\widehat{\zeta}) \in \operatorname{Ar}_{(x,\zeta)}$	$\operatorname{gmin}_{0 \in C \times V} \ Ax\ $	$-z\ _2^2$ subject	to $(Fx,\zeta)\in E$	Ξ		

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 00000000	Experiment 2 000000000	Conclusions 0000
					23/40
RGB im	age resto	ration wit	h missing sa	mples	
	$\widehat{x} \in \mathcal{A}$	$\operatorname*{rgmin}_{x\in\mathcal{C}} \ Ax - Ax\ $	$ z _2^2$ subject t	to $Fx \in D$	

$$(\widehat{x},\widehat{\zeta}) \in \operatorname*{Argmin}_{(x,\zeta)\in C imes V} \|Ax-z\|_2^2$$
 subject to $(Fx,\zeta)\in E$

Collection of epigraphs

$$E = \{ (X, \zeta) \mid (X^{(\ell)}, \zeta^{(\ell)}) \in \operatorname{epi} \| \cdot \|_p \quad (\forall \ell \in \{1, \dots, M\}) \}$$

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions
					23/40
RGB im	age resto	ration wit	ch missing sa	mples	
	$\widehat{x} \in \mathcal{A}$	$\operatorname*{rgmin}_{x\in\mathcal{C}}\ Ax - a_x\ $	$ z _2^2$ subject t	to $Fx \in D$	

$$(\widehat{x},\widehat{\zeta}) \in \operatorname*{Argmin}_{(x,\zeta)\in C imes V} \|Ax-z\|_2^2$$
 subject to $(Fx,\zeta)\in E$

Collection of epigraphs

$$E = \left\{ (X,\zeta) \mid (X^{(\ell)},\zeta^{(\ell)}) \in \operatorname{epi} \| \cdot \|_{p} \quad (\forall \ell \in \{1,\ldots,M\}) \right\}$$

Closed half-space

$$V = \left\{ \zeta \in \mathbb{R}^M \mid \mathbf{1}_M^\top \zeta \le \eta \right\}$$

with $\mathbf{1}_{\textit{M}} = (1, \ldots, 1)^\top \in \mathbb{R}^{\textit{M}}$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	000000000	00000000	0000
					24/40

 P_{epi ||·||p} exists for vectorial norms with p ∈ {1, 2, +∞} [Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	000000000	00000000	0000
					24/40

▶ $P_{epi \parallel \cdot \parallel p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ [Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]

 \rightarrow can we extend these results to matrix norms?

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	000000000	00000000	0000
					24/40

 P_{epi ||·||p} exists for vectorial norms with p ∈ {1,2,+∞} [Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]
 → can we extend these results to matrix norms?
 S.V.D. : X^(ℓ) = U^(ℓ) Diag(s^(ℓ)) V^{(ℓ)^T}

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	000000000	00000000	0000
					24/40

- ▶ $P_{epi \parallel \cdot \parallel_p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ [Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012] → can we extend these results to matrix norms?
- ► S.V.D. : $X^{(\ell)} = U^{(\ell)}$ Diag(s^(\ell)) $V^{(\ell)^{\top}}$
- Proximity operator of spectral functions [Lewis 1995]

$$\operatorname{prox}_{\|\cdot\|_{p}}(X^{(\ell)}) = U^{(\ell)} \operatorname{Diag}(\operatorname{prox}_{\|\cdot\|_{p}}(s^{(\ell)})) V^{(\ell)^{\top}}$$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	000000000	00000000	0000
					24/40

▶ $P_{epi \parallel \cdot \parallel_p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ [Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]

 \rightarrow can we extend these results to matrix norms?

S.V.D. :
$$X^{(\ell)} = U^{(\ell)}$$
 Diag(s^(ℓ)) $V^{(\ell)^{\top}}$

Proximity operator of spectral functions [Lewis 1995]

$$\operatorname{prox}_{\|\cdot\|_{P}}(X^{(\ell)}) = U^{(\ell)} \operatorname{Diag}(\operatorname{prox}_{\|\cdot\|_{P}}(\mathsf{s}^{(\ell)})) V^{(\ell)^{\top}}$$

Epigraphical projection 1. $P_{\text{epi} \parallel \cdot \parallel_{P}}(X^{(\ell)}, \zeta^{(\ell)}) = \left(U^{(\ell)} \text{ Diag}(t^{(\ell)}) V^{(\ell)^{\top}}, \theta^{(\ell)}\right)$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	000000000	00000000	0000
					24/40

▶ $P_{epi \parallel \cdot \parallel p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ [Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]

 \rightarrow can we extend these results to matrix norms?

S.V.D. :
$$X^{(\ell)} = U^{(\ell)}$$
 Diag(s^(ℓ)) $V^{(\ell)}$

Proximity operator of spectral functions [Lewis 1995]

$$\operatorname{prox}_{\|\cdot\|_{P}}(X^{(\ell)}) = U^{(\ell)} \operatorname{Diag}(\operatorname{prox}_{\|\cdot\|_{P}}(\mathsf{s}^{(\ell)})) V^{(\ell)^{\top}}$$

Epigraphical projection
1.
$$P_{epi \parallel \cdot \parallel_{P}}(X^{(\ell)}, \zeta^{(\ell)}) = (U^{(\ell)} \operatorname{Diag}(t^{(\ell)}) V^{(\ell)^{\top}}, \theta^{(\ell)})$$

2. $(t^{(\ell)}, \theta^{(\ell)}) = P_{epi \parallel \cdot \parallel_{P}}(s^{(\ell)}, \zeta^{(\ell)})$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	0000000000	00000000	0000
					25/40

$$(\widehat{x},\widehat{\zeta}) \in \underset{(x,\zeta)\in C\times W}{\operatorname{Argmin}} \|Ax - z\|_2^2 \text{ subject to } (Fx,\zeta) \in E$$

- Degradation: 3 imes 3 uniform blur, 90% of decimation, AWGN with $\alpha = 10$
- Color space: RGB
 - \rightarrow pixels of z have missing colors
 - \rightarrow impossible to work into YCbCr, CIELab, \ldots
- ▶ Dynamics range constraint: $x_i^{(\ell)} \in [0, 255]$
- Weights $\omega_{\ell,n}$ estimated as in [Foi 2012]
- Choice of η based on image characteristics

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					26/40

Original

Noisy

Zoom

Motivation	Prox.	Solution	E×periment 1	Experiment 2	Conclusions
000000	00000	00000	0000000●0	00000000	0000
					26/40

 ℓ_1 -CC-TV 16.15 dB

ℓ₂-CC-TV 16.32 dB

 ℓ_∞ -CC-TV 16.05 dB

Motivation	Prox.	Solution	E×periment 1	Experiment 2	Conclusions
000000	00000	00000	0000000●0	00000000	0000
					26/40

ℓ₁-ST-TV 17.08 dB

ℓ₂-ST-TV 16.84 dB

 ℓ_∞ -ST-TV 16.43 dB

Motivation	Prox.	Solution	E×periment 1	Experiment 2	Conclusions
000000	00000	00000	0000000●0	00000000	0000
					26/40

ℓ₁-CC-NLTV 16.87 dB

ℓ₂-CC-NLTV 17.20 dB

 ℓ_{∞} -CC-NLTV 17.22 dB

Motivation	Prox.	Solution	E×periment 1	Experiment 2	Conclusions
000000	00000	00000	0000000●0	00000000	0000
					26/40

ℓ₁-**ST-NLTV** 18.20 dB

ℓ₂-ST-NLTV 17.46 dB

 ℓ_∞ -ST-NLTV 16.67

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					27/40

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	●00000000	0000
					28/40

$$\underset{x \in \mathbb{R}^{\overline{N}}}{\text{minimize}} \sum_{b \in \mathbb{L}} \|B_b F x\| \quad \text{subject to} \quad \begin{cases} x \in C \\ g(Ax, z) \leq \eta. \end{cases}$$

For computational reasons, it will be assumed that there exists a partition of L in S subsets (L_s)_{1≤s≤S} such that $\sum_{b \in \mathbb{L}} \|B_b \cdot\| = \sum_{s=1}^{S} \sum_{b \in \mathbb{L}_s} \|B_b \cdot\| \text{ (i.e. grouped into S sets of non-overlapping blocks).}$

Particular case : S = 1, L = L₁ = K and, for every b ∈ L, B_b selects one element (i.e. one pixel) → the classical ℓ¹-norm is obtained.

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	●00000000	0000
					28/40

$$\underset{x \in \mathbb{R}^{\overline{N}}}{\text{minimize}} \sum_{s=1}^{S} \sum_{b \in \mathbb{L}_{s}} \|B_{b}Fx\| \text{ subject to } \begin{cases} x \in C \\ g(Ax, z) \leq \eta. \end{cases}$$

For computational reasons, it will be assumed that there exists a partition of L in S subsets (L_s)_{1≤s≤S} such that ∑_{b∈L} ||B_b · || = ∑_{s=1}^S ∑_{b∈L_s} ||B_b · || (i.e. grouped into S sets of non-overlapping blocks).

▶ <u>Particular case</u> : S = 1, $\mathbb{L} = \mathbb{L}_1 = \mathbb{K}$ and, for every $b \in \mathbb{L}$, B_b selects one element (i.e. one pixel) → the classical ℓ^1 -norm is obtained.

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					29/40

$$\underset{x \in \mathbb{R}^{\overline{N}}}{\text{minimize}} \sum_{s=1}^{S} \sum_{b \in \mathbb{L}_{s}} \|B_{b}Fx\| \quad \text{subject to} \quad \begin{cases} x \in \mathcal{C} \\ g(Ax,z) \leq \eta. \end{cases}$$

that is equivalent to

$$\underset{x \in \mathbb{R}^{\overline{N}}}{\text{minimize}} \sum_{s=1}^{S} \sum_{b \in \mathbb{L}_{s}} \|B_{b}Fx\| \quad \text{subject to} \quad \begin{cases} x \in C \\ Ax \in D \end{cases}$$

with $D = \{ u \in \mathbb{R}^K \mid g(u, z) \leq \eta \} = \operatorname{lev}_{\leq \eta} g(\cdot, z).$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					29/40

$$\underset{x \in \mathbb{R}^{\overline{N}}}{\text{minimize}} \sum_{s=1}^{S} \sum_{b \in \mathbb{L}_{s}} \|B_{b}Fx\| \quad \text{subject to} \quad \begin{cases} x \in \mathcal{C} \\ g(Ax,z) \leq \eta. \end{cases}$$

that is equivalent to

$$\underset{x \in \mathbb{R}^{\overline{N}}}{\text{minimize}} \sum_{s=1}^{S} \sum_{b \in \mathbb{L}_{s}} \|B_{b}Fx\| \quad \text{subject to} \quad \begin{cases} x \in C \\ Ax \in D \end{cases}$$

with $D = \{ u \in \mathbb{R}^K \mid g(u, z) \leq \eta \} = \operatorname{lev}_{\leq \eta} g(\cdot, z).$

Projection onto D

- \rightarrow Closed form if $g(\cdot, z) = \| \cdot z \|^2$ [Rockafellar, 1969].
- \rightarrow NO closed form in a general context .

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					30/40

Explicit form of the projection operator associated with :

$$h_\ell(\mathsf{v}^{\ell)}) = \max\{\mathsf{v}^{(\ell,j)} + \eta^{(\ell,j)} \mid 1 \le j \le M^{(\ell)}\}$$

where

$$\begin{array}{l} \rightarrow \ \mathsf{v}^{(\ell)} = (\mathsf{v}^{(\ell,1)}, \dots, \mathsf{v}^{(\ell,M^{(\ell)})})^\top \in \mathbb{R}^{M^{(\ell)}} \\ \rightarrow \ \ell \in \{1, \dots, L\} \ \mathsf{and} \ (\eta^{(\ell,1)}, \dots, \eta^{(\ell,M^{(\ell)})})^\top \in \mathbb{R}^{M^{(\ell)}} \end{array}$$

Example for L = 1 and $M^{(1)} = 3$:

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					30/40

Explicit form of the projection operator associated with :

$$h_\ell(\mathsf{v}^{\ell)}) = \max\{\mathsf{v}^{(\ell,j)} + \eta^{(\ell,j)} \mid 1 \le j \le M^{(\ell)}\}$$

where

$$\begin{array}{l} \rightarrow \ \mathsf{v}^{(\ell)} = (\mathsf{v}^{(\ell,1)}, \dots, \mathsf{v}^{(\ell,M^{(\ell)})})^\top \in \mathbb{R}^{M^{(\ell)}} \\ \rightarrow \ \ell \in \{1, \dots, L\} \text{ and } (\eta^{(\ell,1)}, \dots, \eta^{(\ell,M^{(\ell)})})^\top \in \mathbb{R}^{M^{(\ell)}} \end{array}$$

Example for L = 1 and $M^{(1)} = 3$:

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					31/40

$$g(u,z) = \sum_{\ell=1}^{L} g_{\ell}(u^{(\ell)}, z^{(\ell)}) \simeq \sum_{\ell=1}^{L} h_{\ell}(\Delta^{(\ell)} u^{(\ell)})$$

$$\begin{aligned} & h_{\ell}(\mathbf{v}^{(\ell)}) = \max\{\mathbf{v}^{(\ell,j)} + \eta^{(\ell,j)} \mid 1 \leq j \leq M^{(\ell)}\}, \\ & \eta^{(\ell,j)} = g_{\ell}(a_j^{(\ell)}, z^{(\ell)}) - \delta_j^{(\ell)} a_j^{(\ell)}, \\ & \delta_j^{(\ell)} \in \mathbb{R} \text{ is any subgradient of } g_r(\cdot, z_{\ell}) \text{ at } a_j^{(\ell)}, \\ & \Delta^{(\ell)} = [\delta_1^{(\ell)}, \dots, \delta_{M^{(\ell)}}^{(\ell)}]^\top. \end{aligned}$$

 \rightarrow The approximation can be as close as desired by choosing $M^{(\ell)}$ large enough.

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					31/40

$$g(u,z) = \sum_{\ell=1}^{L} g_{\ell}(u^{(\ell)}, z^{(\ell)}) \simeq \sum_{\ell=1}^{L} h_{\ell}(\Delta^{(\ell)} u^{(\ell)})$$

$$\begin{aligned} & h_{\ell}(\mathbf{v}^{(\ell)}) = \max\{\mathbf{v}^{(\ell,j)} + \eta^{(\ell,j)} \mid 1 \leq j \leq M^{(\ell)}\}, \\ & \eta^{(\ell,j)} = g_{\ell}(a_j^{(\ell)}, z^{(\ell)}) - \delta_j^{(\ell)} a_j^{(\ell)}, \\ & \delta_j^{(\ell)} \in \mathbb{R} \text{ is any subgradient of } g_r(\cdot, z_{\ell}) \text{ at } a_j^{(\ell)}, \\ & \Delta^{(\ell)} = [\delta_1^{(\ell)}, \dots, \delta_{M^{(\ell)}}^{(\ell)}]^\top. \end{aligned}$$

 \rightarrow The approximation can be as close as desired by choosing $M^{(\ell)}$ large enough.

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	0000
					32/40

$$\underset{x \in \mathbb{R}^{\overline{N}}}{\text{minimize}} \sum_{s=1}^{S} \sum_{b \in \mathbb{L}_{s}} \|B_{b}Fx\| \quad \text{subject to} \quad \begin{cases} x \in C \\ Ax \in D \end{cases}$$

 \Rightarrow Approximated criterion :

.

$$\underset{(x,\zeta)\in\mathbb{R}^{\overline{N}}\times\mathbb{R}^{L}}{\text{minimize}} \sum_{s=1}^{S} \sum_{b\in\mathbb{L}_{s}} \|B_{b}Fx\| \text{ subject to } \begin{cases} (x,\zeta)\in C\times V\\ \Delta Ax\in E \end{cases}$$

where

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	000000000	0000
					33/40

- Electron microscopy image of size $\overline{N} = 128 \times 128$,
- ► T denotes a randomly decimated blur : uniform blur of size 3×3 and approximately 60% of missing data, that leads to L = 9834,
- ▶ Poisson noise with scaling parameter 0.5.

Original

Degraded

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	0000000000	0000
					34/40

Choice of the criterion :

- Data fidelity : approximation of the Poisson likelihood,
 - Influence of $M \equiv M^{(\ell)}$,
- $\triangleright \quad C = [0, 255]^{\overline{N}},$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	0000000000	0000
					34/40

Choice of the criterion :

- Data fidelity : approximation of the Poisson likelihood,
 - Influence of $M \equiv M^{(\ell)}$,
- $\triangleright \quad C = [0, 255]^{\overline{N}},$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	000000000	0000
					34/40

- Data fidelity : approximation of the Poisson likelihood,
 - Influence of $M \equiv M^{(\ell)}$,
- $\triangleright \quad C = [0, 255]^{\overline{N}},$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,
 - Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	000000000	0000
					34/40

- Data fidelity : approximation of the Poisson likelihood,
 - Influence of $M \equiv M^{(\ell)}$,
- $\triangleright \quad C = [0, 255]^{\overline{N}},$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,
 - Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - Block_4Pixel_overlap : spatially overlapping blocks of size 2 × 2 are employed for each tree (primal or dual) separately.

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	000000000	0000
					34/40

- Data fidelity : approximation of the Poisson likelihood,
 - Influence of $M \equiv M^{(\ell)}$,
- $\triangleright \quad C = [0, 255]^{\overline{N}},$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,
 - Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - Block_4Pixel_overlap : spatially overlapping blocks of size 2 × 2 are employed for each tree (primal or dual) separately.

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	000000000	0000
					34/40

- Data fidelity : approximation of the Poisson likelihood,
 - Influence of $M \equiv M^{(\ell)}$,
- $\triangleright \quad C = [0, 255]^{\overline{N}},$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,
 - Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - Block_4Pixel_overlap : spatially overlapping blocks of size 2 × 2 are employed for each tree (primal or dual) separately.

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	000000000	0000
					34/40

- Data fidelity : approximation of the Poisson likelihood,
 - Influence of $M \equiv M^{(\ell)}$,
- $\triangleright \quad C = [0, 255]^{\overline{N}},$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,
 - Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - Block_4Pixel_overlap : spatially overlapping blocks of size 2 × 2 are employed for each tree (primal or dual) separately.

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					35/40
Poisson	based res	toration			

▶ Impact of *M* and of the regularization term.

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 00000000	Experiment 2 00000000	Conclusions
					36/40

- ► *M* = 7,
- Impact of the regularization term.

 $\frac{\text{Block_PrimalDual}}{\text{SNR} = 16.5 \text{ dB}}$

 $\frac{\text{Block}_{4}\text{Pixel}_{overlap}}{\text{SNR}} = 16.6 \text{ dB}$

Motivation	Prox.	Solution	Experiment 1	Experiment 2	Conclusions
000000	00000	00000	00000000	00000000	●000
					37/40

А

$$\operatorname{Argmin}_{x} \sum_{r=1}^{R} g_{r}(T_{r}x) \quad \text{s.t.} \quad \begin{cases} \sum_{\ell=1}^{L} h_{1}^{(\ell)}((H_{1}x)^{(\ell)}) \leq \eta_{1} \\ H_{2}x \in C_{2} \\ \vdots \\ H_{5}x \in C_{5} \end{cases}$$

$$\operatorname{rgmin}_{x,\zeta} \sum_{r=1}^{R} g_{r}(T_{r}x) \quad \text{s.t.} \quad \begin{cases} (\forall \ell \in \{1, \dots, L\}) \quad h_{1}^{(\ell)}((H_{1}x)^{(\ell)}) \leq \zeta^{(\ell)} \\ \sum_{\ell=1}^{L} \zeta^{(\ell)} \leq \eta_{1} \\ H_{2}x \in C_{2} \\ \vdots \\ H_{5}x \in C_{5} \end{cases}$$

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions •000
					37/40

Α

$$\operatorname{Argmin}_{x} \sum_{r=1}^{R} g_{r}(T_{r}x) \quad \text{s.t.} \quad \begin{cases} \sum_{\ell=1}^{L} h_{1}^{(\ell)}((H_{1}x)^{(\ell)}) \leq \eta_{1} \\ H_{2}x \in C_{2} \\ \vdots \\ H_{5}x \in C_{5} \end{cases}$$

$$\operatorname{rgmin}_{x,\zeta} \sum_{r=1}^{R} g_{r}(T_{r}x) \quad \text{s.t.} \quad \begin{cases} (\forall \ell \in \{1, \dots, L\}) \quad h_{1}^{(\ell)}((H_{1}x)^{(\ell)}) \leq \zeta^{(\ell)} \\ \sum_{\ell=1}^{L} \zeta^{(\ell)} \leq \eta_{1} \\ H_{2}x \in C_{2} \\ \vdots \\ H_{5}x \in C_{5} \end{cases}$$

 $\rightarrow P_{epi h_1^{(\ell)}}$: closed form when $h_1^{(\ell)}$ models a Euclidean or infinity norm.

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					38/40

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					38/40

\rightarrow Faster than direct methods

[Quattoni,Carreras,Collins,Darrell,2007] [Van Den Berg,Friedlander,2008] .

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 00●0
					39/40

$\rightarrow~$ Links with bundle methods?

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 00000000	Experiment 2 00000000	Conclusions 00●0
					39/40
с I					

$\rightarrow~$ Links with bundle methods?

Motivation 000000	Prox. 00000	Solution 00000	Experiment 1 000000000	Experiment 2 00000000	Conclusions 0000
					40/40
Reference	ces				

- G. Chierchia, N. Pustelnik, J.-C. Pesquet, B. Pesquet-Popescu, "Epigraphical splitting for solving constrained convex formulations of inverse problems with proximal tools," Signal, Image and Video Processing, to appear, 2014.
- G. Cherchia, N. Pustelnik, B. Pesquet-Popescu, J.-C. Pesquet, "A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems," IEEE Trans. Image processing, to appear 2014
- G. Cherchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu, "Epigraphic proximal projection for sparse Multiclass SVM," IEEE ICASSP, Florence, Italy, May 4-9, 2014