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ABSTRACT
Epilepsy is a serious neurological condition caused by a sudden abnormality of brain neurons. An accurate epilepsy detection based on elec-
troencephalogram (EEG) signals can provide vital information for diagnosis and treatment. In this study, we propose a lightweight automatic
epilepsy detection system with artificial neural network based on our as-fabricated neuromorphic chip. The proposed system utilizes a neural
network model to achieve high-accuracy detection without the need for epilepsy-related prior knowledge. The model uses a filter module
and a convolutional neural network to preprocess the raw EEG signal and uses a long short-term memory recurrent neural network and a
fully connected network as the classifier. In the examination, the classification accuracy of the normal cases and seizures approaches 99.10%,
and the accuracy of the normal cases, and interictal and seizure cases can reach 94.46%. This design provides possible epilepsy detection in
wearable or portable devices.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0075761

I. INTRODUCTION

At the present time, artificial intelligence (AI) technology has
achieved breakthrough development and has been applied to many
fields, especially in biomedicine.1–7 In the field of mathematics, AI
technology can be used to solve problems of linear fractional order
ordinary differential equations.6,7 AI technology can also be applied
to the field of devices: memristor-based neural network systems can
realize the discriminative task.4 In the field of biomedicine, AI tech-
nology can assist doctors in diagnosing diseases. Epilepsy is a serious
neurological condition caused by a sudden abnormality of brain
neurons, and it has affected nearly 1% of the world population. Elec-
troencephalogram (EEG) contains temporal and spatial information
of brain and is widely used for clinical detection of epilepsy. Even for
experienced neurologists, the visual assessment of the EEG record-
ings is tedious and cumbersome. Therefore, advanced, accurate, and

automatic detection methods may have a significant impact on the
prediction and treatment of epilepsy, especially wearable or portable
epilepsy detection equipment. In recent years, some research stud-
ies implemented the automatic epileptic seizure detection using
machine learning algorithms and artificial intelligent algorithms.8–10

These algorithms include classification methods, such as support
vector machines (SVM),11–15 K nearest neighbor (K-NN),16,17 neural
networks,18,19 and decision tree (DT),20 and feature extraction meth-
ods, such as convolutional neural network (CNN)18–22 and Wavelet
packet decomposition (WPD).12

WPD and local detrended fluctuation analysis (L-DFA) is pro-
posed to analyze and diagnose a variety of epilepsies automatically,
and finally, EEG signals are classified by SVM.12 The pyramid of dif-
ference of Gaussian filtered signals is used to detect the key points
at multiple scales in the EEG signals, and the local binary pattern
(LBP) of these key points is calculated and treated as a feature
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set.11 Finally, the feature set is classified by the SVM classifier, and
the classification accuracy (Acc) of the normal, interictal, and ictal
cases can reach 98.8%. The Taylor–Fourier filter (TFF) is used to
extract features from the EEG signals. The classifiers, such as K-NN
and least square SVM, are employed for the classification of nor-
mal, seizure-free, and seizure, with an accuracy rate of 94.88%.15

Lahmiri and Shmuel calculated the Hurst exponent of the EEG sig-
nal on different scales to obtain the generalized Hurst exponent
(GHE) as the feature of the EEG signal and uses K-NN for clas-
sification.16 The accuracy of the binary classification between the
interictal and ictal cases reaches 100%. The system proposed in
Ref. 17 uses a feature extraction network based on a local graph
structure (LGS), and then the EEG signals are classified using dis-
crete wavelet transform (DWT) and K-NN methods, achieving
97.2% binary classification accuracy rate. Most epilepsy detection
systems designed based on traditional machine learning require
experienced designers to manually design the EEG signal features.
Compared with the former traditional machine learning method, the
neural network algorithm has better fault tolerance and robustness
to process the actual epileptic seizure signals, and it is easier to real-
ize the hardware requirements of energy saving and portability.18–22

The system proposed uses a four-layer CNN to extract EEG features
and a DT as the classifier.20 The accuracy of the two classifications
is 98.65%, and the network parameter is 78.8k. Li et al. proposed
a channel embedding spectrum time squeezing and excitation net-
work (CE-stSENet) for the feature extraction of the EEG signals,
which is mainly composed of CNN, fully connected (FC), and max-
polling.21 Finally, the features are sent to the exponential linear unit
(ELU) for classification. The network structure of the system is com-
plex, the amount of parameters is huge, and the accuracy of the
three classifications can reach 99.36%. The algorithms mentioned
above are all implemented in software, and there are also some arti-
cles on the hardware of the epilepsy automatic detection system. A
novel bit-serial data processing unit (DPU) is proposed and used
to simulate neurons to design a low-power and low-cost neural
network processor for epilepsy seizure diagnosis.23 Both Applica-
tion Specific Integrated Circuit (ASIC) and Field-Programmable
Gate Array (FPGA) are used to implement the epileptic seizure
prediction system. The EEG signal is sent to the Finite Impulse
Response (FIR) band pass filter for preprocessing and is classified
using the Extreme Learning Machine (ELM) classifier.24 The epilep-
tic seizure detection algorithm is implemented in FPGA. The total
on-chip power of the algorithm is 0.16 W, and the dynamic power is
1 mW. The system classification accuracy rate can reach 98.5%.
A low power SVM training, feature extraction, and classification
algorithms are hardware implemented in a neural seizure detection
application, and sequential minimal optimization (SMO) algorithm
is used as the training algorithm, and the total power consump-
tion of the ASIC is 14.91 mW (including SMO, feature extraction,

and classifier).13 The system achieves up to 96.77% sensitivity and
90.36% accuracy.

The design of automatic epilepsy detection systems based
on traditional machine learning mostly requires relevant epilepsy
knowledge and artificial identification of the EEG signal features.
In this work, we propose an artificial neural network model for
epilepsy detection using our as-fabricated neuromorphic chip plat-
form. This experiment uses different band combinations of the EEG
signals as input for epilepsy detection. It provides evidence for judg-
ing whether each band signal has a strong correlation with epilepsy
and provides conditions for further reducing the network scale and
hardware cost. The proposed lightweight neural network system
has a small amount of parameters and achieves a high classifica-
tion accuracy. The neuromorphic chip was fabricated with a 55
nm CMOS technology. The classification accuracy for the normal
cases and seizures can approach up to 99.10%, and the accuracy
of the normal cases, interictal, and seizure cases can reach 94.46%.
The system proposed in this paper performs the task of epilepsy
detection excellently without prior knowledge of the epilepsy dis-
ease. This design provides possible epilepsy detection in wearable or
portable devices.

II. METHOD
As shown in Fig. 1, the system utilizes the filter in MNE

library25 and the two dimensional CNN (2D-CNN) to preprocess
the raw EEG signals and extract features. Then, the bidirectional
long short-term memory (Bi-LSTM) and FC layer are realized in the
as-fabricated chip for classification.

Bonn University dataset26 is used to verify the epilepsy detec-
tion system. The dataset samples the EEG signal at a frequency of
173.6 Hz, and the recording time for each single-channel EEG seg-
ment is 23.6 s, containing 4097 data points. The frequency ranges
from 0.53 to 40 Hz, including the low frequency signals related to
epilepsy. Bonn University dataset contains three categories: normal
(set A, set B), interictal (set C, set D), and ictal (set E). In order to
improve the robustness and the training accuracy, we expand the
dataset. The method is to divide each group of single-channel data
into seven groups with a 5.9 s time window. There is an overlap of
2.95 s between each two sets of adjacent data. 2450 sets of data are
used for training, 700 sets of data are used for verification, and 350
sets of data are used for examination.

As shown in Fig. 2, the system for detecting epilepsy mainly
includes three parts: the first part is the preprocessing module, where
the MNE filter is used to divide the single-channel raw data (size
= 1 × 1024) into five frequency bands (5 × 1024).

The second part is used for feature pre-extraction of the
EEG waveforms. As shown in Fig. 2(a), the CNN layer is used to
pre-extract the high-dimensional features of the EEG signal while

FIG. 1. Block diagram of the automatic
epilepsy detection system.

AIP Advances 12, 035106 (2022); doi: 10.1063/5.0075761 12, 035106-2

© Author(s) 2022

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 2. The network structure in the automatic epilepsy detection system: (a) schematic of CNN structure and (b) schematic of LSTM and FC.

TABLE I. List of the proposed neural network parameters.

Layer Type Input size Kernel size Output size

1 Conv2D+max-pooling 1 × 5 × 1024 1 × 5 × 5 × 5 (conv) 3 × 1 (pooling) 5 × 1 × 254
2 Conv2D+max-pooling 1 × 5 × 254 1 × 10 × 5 × 5 (conv) 3 × 1 (pooling) 10 × 1 × 62
3 Conv2D 1 × 10 × 62 1 × 20 × 5 × 5 20 × 1 × 29
4 Bi-LSTM 20 × 29 ⋅ ⋅ ⋅ 1 × 160
5 FC 1 × 160 ⋅ ⋅ ⋅ 1 × 3

preserving the timing information. It is also for shortening the
length of the EEG signal in the time dimension, reducing the model
parameters of the classification layer and the training time. After
preprocessing, the data dimension is reduced from 5 × 1024 to 20
× 29. The third part is the classification layer composed of one layer
of Bi-LSTM and one layer of FC, as shown in Fig. 2(b). EEG high-
dimensional features containing timing information are input to the
Bi-LSTM layer, and finally, the fully connected layer outputs in the
form of determination. The neural network model parameters used
in this paper are given in Table I.

The neural network model used in this article is programmed
and trained under the python-based PyTorchTM framework. The
training algorithm is based on adaptive moment estimation and uses
the CrossEntropyLoss as the loss function. For optimization, we
employ dynamic learning rate and early stop in training. The net-
work parameters of the CNN, Bi-LSTM, and FC layers are quantized
into eight-bit integers. Then, the model is mapped to the hardware
to carry out classification. Figure 3 shows the illustration of the pro-
cessing element (PE) array in the neural network. Input data can
be transmitted horizontally, and weight data (“Weight”) are trans-
mitted vertically. The calculation results support both vertical and
diagonal transmission.

In order to ensure the consistency of the internal data format in
the operation of the neural network, the upper and lower saturation
data truncation method is adopted. The control module manages the
data flow according to the flag bit and generates a handshake signal
for data communication between PEs. The PE array is connected to

a row of multiplexers (DMUX). The input of DMUX comes from
the calculation result of the PE unit.

The design of PE unit is shown in Fig. 4. The PE array has two
working modes: matrix (vector) multiplication and matrix (vector)
dot product. In matrix (vector) multiplication mode, PE alone serves
as a multiplying and accumulating unit, and the result is output by
the “Mulout” port. For the second working mode, each PE is used
as an independent multiplication unit and completes the multiplica-
tion operation of an input feature (“Xin”) and a weight (“Weight”)
without accumulation, and the result is output by the “Sumout” port.
“Diagin” and “Colin” represent the results from the diagonal and
vertical PE, respectively.

The operators in the above two working modes of the PE
array and the non-linear mapping functions, such as Sigmoid,
Tanh, and hardware-softmax provided by the non-linear activation
function module, are used to complete the acceleration operation
of the LSTM and FC layers in the epilepsy automatic detection
system.

III. EXPERIMENT AND RESULT
The examination utilizes the filtering module in the MNE

library to filter the EEG data raw into five bands of δ (0–3 Hz), θ
(4–7 Hz), α (8–13 Hz), β (14–30 Hz), and γ (above 30 Hz) band.
The waveforms of different frequency bands are input to CNN for
feature pre-extraction. In order to achieve better classification accu-
racy, one-dimensional CNN (1D-CNN) and two-dimensional CNN
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FIG. 3. Architecture of processing element array.

FIG. 4. Schematic illustration of the processing element.

(2D-CNN) are used to extract features for each frequency data,
respectively. In order to improve the robustness of the system, all
examinations utilizes the tenfold cross-validation method to obtain
the classification accuracy. Figure 5 shows the accuracy of the sys-
tem for 2D-CNN and 1D-CNN to preprocess the EEG signal. It can
be observed that both 1D-CNN and 2D-CNN methods can achieve
100% accuracy in the two classification tasks (set A/E). However,
the accuracy of using 2D-CNN to preprocess the EEG signal in
other classification tasks is significantly better than 1D-CNN. The
2D-CNN-based model can achieve 100% accuracy in the two classi-
fication tasks (set A/E and set B/E) and an accuracy of 99.095% in
the three classification tasks (set A/D/E).

In order to reduce the network size, this design uses different
frequency bands as input, and the system classification accuracies
are presented in Fig. 6. As can be observed, the data of three/four
frequency bands as input to carry out the three-classification of set
A/D/E is discussed in Fig. 5. As shown in Fig. 6, the EEG signals
in the δ, α, and β bands contain more epilepsy-related information.
When using only EEG data in the three frequency bands of δ, α, and
β as input, the accuracy of the three classifications can also reach
98.38%. The accuracy is comparable to or even better that using four
input bands.

When using the data of three frequency bands (δ, α, and β)
as input, the network size can be further reduced. The system net-
work parameters are dynamically quantized into eight-bit signed
integer, and the network parameters of the Bi-LSTM and FC layer
are mapped to the as-fabricated chip. As presented in Table II, the
system is quantized and partially mapped on the as-fabricated chip.
The accuracy of the system drops slightly. The accuracy of the two
classifications is still above 99.10%. The accuracy of the three classi-
fications of the system can reach 95.86% (set A/D/E) and 94.46% (set
AB/CD/E), respectively.

A summary of epileptic seizure prediction by researchers is pre-
sented in Table III. As can be observed, the proposed system takes

FIG. 5. Comparison of classification accuracy of system using 1D-CNN and
2D-CNN.
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FIG. 6. Comparison of system classification accuracy with different frequency band
data as input.

TABLE II. Classification accuracy of the measured system.

Task Accuracy (%) Sensitivity (%) Specificity (%)

Set A/E 99.86 99.72 100
Set AB/E 99.10 98.66 100
Set A/D/E 95.86 95.00 99.00
Set AB/CD/E 94.46 95.29 98.38

advantages of a good accuracy both in two classifications and three
classifications. The proposed neural network is constructed using
a small amount of parameters of only 61.2 K. Furthermore, as the
network can be mapped on the as-fabricated chip, the system has
potential to be realized as a wearable or portable epilepsy detection
device.

IV. CONCLUSION
This paper proposes a neural network system composed of 2D-

CNN and LSTM for automatic detection of epileptic seizures based
on the EEG signals. The system parameters and EEG signals are
quantified, and part of the system parameters are mapped to the as-
fabricated chip. By selecting frequency bands and quantization, only
61.2 K parameters are necessary. In the examination, the classifica-
tion accuracy rate of the normal cases and seizures can approach
99.10%, and the classification accuracy rate of the normal, interictal,
and ictal cases can be up to 94.46%. This design provides the pos-
sibility for the realization of wearable or portable epilepsy detection
equipment.
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