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Abstract 

Background: Epilepsy is one of the most common neurological disorders associated 
with disruption of brain activity. In the classification and detection of epileptic seizures, 
electroencephalography (EEG) measurements, which record the electrical activities of 
the brain, are frequently used. Empirical mode decomposition (EMD) and its derivative, 
ensemble EMD (EEMD) are recently developed methods used to decompose non-
stationary and nonlinear signals such as EEG into a finite number of oscillations called 
intrinsic mode functions (IMFs). Our main objective in this study is to present a hybrid 
IMF selection method combining four different approaches (energy, correlation, power 
spectral distance, and statistical significance measures), and investigate the effect of 
selected IMFs extracted by EMD and EEMD on the classification. We have applied the 
proposed IMF selection approach on the classification of EEG signals recorded from 
epilepsy patients who are under treatment at our collaborator hospital. Multichannel 
EEG signals collected from epilepsy patients are decomposed into IMFs, and then IMF 
selection was performed. Finally, time- and spectral-domain, and nonlinear features are 
extracted and feature sets are created for the classification.

Results: The maximum classification accuracies obtained using various combinations 
of IMFs were 94.56%, 95.63%, 96.8%, and 96.25% for SVM, KNN, naive Bayes, and logistic 
regression classifiers, respectively, by using EMD analysis; whereas, the EEMD approach 
has provided maximum classification accuracies of 96.06%, 97%, 97%, and 96.25% for 
SVM, KNN, naive Bayes, and logistic regression, respectively. Classification performance 
with the same features obtained using direct EEG signals instead of the decomposed 
IMFs was worse than the aforementioned 2 approaches for every combination.

Conclusion: Simulation results demonstrate that the proposed IMF selection 
approach affects the classification results. Also, EEMD provides a robust method for fea-
ture extraction from EEG signals in order to classify pre-seizure and seizure segments.

Keywords: Electroencephalogram (EEG), Epilepsy, Epileptic seizure classification, 
Empirical mode decomposition, Ensemble empirical mode decomposition, Intrinsic 
mode function selection
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Background

Epilepsy is one of the neurological disorders associated with disruption of brain 

activity that affects approximately 50 million people of the world’s population [1, 

2]. Detection of epileptic seizures is performed by neurologists by a visual examina-

tion of long-term electroencephalogram (EEG) signals. However, this method is very 

time-consuming and generally yields incorrect results. On the other hand, epileptic 

seizures are initiated in different brain lobes of different individuals, so it is not pos-

sible to determine a standard focus center for the studies. �erefore long-term EEG 

recordings are needed to detect epileptic seizures and determine focus center [2–5]. 

Since visual examination of long-term EEG data makes it difficult to diagnose the dis-

ease, automatic seizure detection has become a very popular research area and vari-

ous signal processing methods have been applied to solve this problem [2, 5, 6].

Many types of seizure detection and classification algorithms have been proposed 

in the literature [5]. �ese studies will be briefly discussed in  "Related studies" sec-

tion. In this present study, empirical mode decomposition (EMD) and its derivative, 

ensemble EMD (EEMD) based classification model for epileptic EEG data is intro-

duced. Our aim is to distinguish pre-seizure and seizure epileptic EEG signals by clas-

sifying the features extracted from selected IMFs of EMD, or EEMD. Simulations are 

performed to evaluate the effectiveness of selecting the IMFs based on some metrics 

as opposed to using first several IMFs for the classification.

�e rest of the paper is organized as follows. �e review of some of the previous 

related work is given in "Related studies" section. Experimental results of the pro-

posed method are shown in "Results" section. Discussion of the results is reported 

in "Discussion" section. �e description of the data set, EMD algorithm, EEMD algo-

rithm and the details of the proposed methodology are discussed in "Materials and 

methods" section.

Related studies

Epileptic seizure detection and classification studies have been reported frequently in 

the literature using various signal processing and classification methods. A variety of 

features such as temporal, spectral, statistical and nonlinear features are exploited to 

improve the detection and classification performance.

Several methods have been presented for the detection and classification of seizure 

and seizure-free EEG segments by using time and frequency domain features such as 

energy [7], exponential energy [8], matrix determinant [2], spectral power of Hjorth’s 

mobility components [9], cross-correlation, power spectral density [10], subband 

spectral powers [11], average value, maximum value, and minimum value [5]. Fur-

thermore, several studies may be found in the literature using the wavelet transform 

and its derivative approaches [6, 12].

Weighted multiscale Renyi permutation entropy (WMRPE), weighted permu-

tation entropy (WPE), fuzzy entropy (FuzzyEn), a sigmoid entropy, approximate 

entropy (ApEn) based methods have also been frequently applied to this problem 

[13–15]. Additionally, nonlinear parameters such as fractal dimension, scaling expo-

nent obtained with detrended fluctuation analysis (DFA), Hurst’s exponent have been 
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utilized in many studies and successful results have been obtained for the detection 

and classification of seizure and seizure-free epileptic EEG signals [16, 17].

Time–frequency analysis methods such as EMD, EEMD, multivariate empirical mode 

decomposition (MEMD), complete ensemble empirical mode decomposition (CEEMD) 

which are developed for the analysis of nonlinear and non-stationary signals, have been 

successfully applied into detection or classification of seizure and seizure-free epilep-

tic EEG signals in many studies [1, 18–28]. �ese methods decompose a given signal 

into a finite number of zero–mean oscillations called intrinsic mode functions (IMFs). 

One of the major problems while using EMD and other similar decomposition methods 

is how to choose which IMFs to be used in the classification algorithms. In most stud-

ies, the first several IMFs, known to have high-frequency oscillations, are automatically 

selected for feature extraction [19–22]. It may be discussed that there is a lack of meth-

ods in the literature for the selection of best IMFs while using EMD and other similar 

decompositions.

After a brief investigation, it may be observed that successful classification results have 

been obtained by using classification algorithms such as support vector machine (SVM) 

[5, 13–15, 17, 19, 21, 27], Artificial Neural Networks (ANN) [12, 20, 24], K-nearest 

neighbor (KNN) algorithm [26], Extreme Learning Machine (ELM) [6, 16], Multilayer 

Perceptron Neural Network (MLPNN) [25], etc.

Results

EEG signals including pre-seizure and seizure segments obtained from 10-channel EEG 

recordings of 16 epilepsy patients who are under treatment at Izmir Katip Celebi Uni-

versity School of Medicine, Department of Neurology, were analyzed using EMD, and 

EEMD approaches and various classifiers. �e hybrid IMF selection process including 

energy, correlation, power spectral distance, and statistical significance measures was 

carried out for EMD and EEMD approaches in order to identify the IMFs that best rep-

resent the original signal as described in "Selection of intrinsic mode functions (IMFs)" 

section. After the IMF selection process, time-domain (energy, mean value, skewness, 

and kurtosis) and spectral-domain (total power, spectral entropy, 1st, 2nd, and 3rd 

moments), and nonlinear (Hurst exponent and Higuchi fractal dimension) feature-sets 

were created using the selected three IMFs (IMF1, IMF3, IMF2) obtained by EMD, and 

EEMD approaches, and the EEG signal itself. In addition, we also performed simulations 

to compare the performance of our proposed approach with that of Discrete Wavelet 

Transforms (DWT). Since three selected IMFs of EMD and EEMD approaches are used 

for feature extraction and classification, three-level decomposition is used for DWT 

utilizing Daubechies4 (db4) mother wavelet function [23]. Finally, SVM, KNN, naive 

Bayes, and logistic regression classifiers are used for the classification, and the results are 

evaluated.

Performance evaluation results of our proposed approach are given in Tables 1, 2, 

3, 4. In these tables IMF1, IMF2, or IMF3; show that the features for classifications 

are calculated by using the corresponding IMF; IMF 1–3 denotes that the features are 

extracted using all three IMFs. On the other hand IMF1– IMF2 shows that the fea-

tures are extracted from IMF1 and IMF2. Additionally, AC+DC1-3 show that the fea-

tures are extracted from approximation coefficient (AC) and 3 detail coefficients (DC) 
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Table 1 Performance results (%) for pre-seizure and seizure EEG signal classi�cation using 

the time-domain feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC F-score ACC F-score ACC F-score ACC F-score

EMD IMF1 55.81 43.64 94.56 94.45 91.56 91.24 94.69 94.94

IMF2 77.75 79.54 93.50 93.40 91.44 91.06 94.38 94.19

IMF3 86.19 87.75 93.88 93.75 93.38 93.24 94.69 94.60

IMF1–IMF2 94.63 94.72 96 95.94 92.25 92.02 93.44 93.42

IMF1–IMF3 96.12 96.14 95.25 95.19 94.94 94.86 97.18  97.14

IMF2–IMF3 78.63 73.11 94.69 94.60 93 92.84 94.38 94.30

IMF1–3 74.44 69.07 95.75 95.71 94.19 94.08 96.88 96.88

IMF1–4 78.88 75.24 95.63 95.54 93.50 93.39 91.56 91.03

EEMD IMF1 91.38 91.28 95.19 95.20 92.69 92.52 95.31 95.27

IMF2 62.44 60.80 90.94 90.63 90.63 90.14 92.81 92.60

IMF3 71.44 69.75 94.44 94.34 93.63 93.55 94.38 94.27

IMF1–IMF2 96.06 96.04 95.06 95.06 91.75 91.56 95.31 95.30

IMF1–IMF3 95.50 95.22 96.31 96.28 93.56 93.50 98.13 98.13

IMF2–IMF3 92.75 92.33 94.50 94.39 92.38 92.24 94.38 94.30

IMF1–3 73.44 64.36 96.63 96.61 93.81 93.73 90.94 90.61

IMF1–4 73.13 68.00 96.50 96.43 92.81 92.71 90.63 90.51

DWT AC+DC1-3 71.38 60.51 94.25 94.31 93.50 93.39 92.09 92.06

EEG All EEG 53.94 45.26 89.75 89.96 78.94 75.38 87.81 87.21

Table 2 Performance results (%) for pre-seizure and seizure EEG signal classi�cation using 

the spectral feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC F-score ACC F-score ACC F-score ACC F-score

EMD IMF1 94.12 94 94.38 94.35 94.56 94.28 85 82.73

IMF2 94.06 93.81 92.94 92.77 93.75 93.42 94.06 93.97

IMF3 93.63 93.60 94.75 94.59 95.81 95.66 77.19 80

IMF1–IMF2 94.69 94.53 93.25 93.15 94.94 94.70 83.13 84.75

IMF1–IMF3 85.50 86.56 95.44 95.35 96.88 96.77 94.69 94.50

IMF2–IMF3 93.34 93.77 94.81 94.66 96.13 95.99 83.44 82.03

IMF1–3 93 93.31 94.88 94.80 96.19 96.06 82.50 82.93

IMF1–4 93.81 94.03 94.66 94.59 95.75 95.62 84.38 83.77

EEMD IMF1 96.06 96.02 95.06 95.05 94.44 94.26 96.25 96.25

IMF2 92.13 91.90 91.94 91.88 93 92.56 92.50 92.31

IMF3 94.56 94.48 94.25 94.20 95.56 95.39 96.88 96.86

IMF1–IMF2 94.38 94.26 94.94 94.88 94.81 94.61 81.88 81.29

IMF1–IMF3 74.31 73.80 95.31 95.26 96.75 96.6 79.69 78.83

IMF2–IMF3 94.94 94.83 93.75 93.74 95.69 95.52 96.88 96.89

IMF1–3 95.12 94.84 96.69 96.66 96.06 95.93 88.13 88.34

IMF1–4 91.25 90.64 96.31 96.29 96.81 96.68 90.31 89.42

DWT AC+DC1-3 81.25 77.56 93.31 93.24 95 94.87 88.75 88.82

EEG All EEG 72.06 67.29 93.31 93.37 77.37 71.59 89.06 88.14
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Table 3 Performance results (%) for pre-seizure and seizure EEG signal classi�cation using 

the nonlinear feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC F-score ACC F-score ACC F-score ACC F-score

EMD IMF1 80.50 79.17 83.13 82.82 82.69 82.05 83.13 82.80

IMF2 81.38 80.11 83.31 83.15 86.19 86.79 85.63 85.80

IMF3 84.75 85.05 81.81 81.52 86.06 86.46 86.25 86.34

IMF1–IMF2 84.19 83.23 87.31 87.27 88.94 89.18 87.81 87.93

IMF1–IMF3 88.87 87.85 89.31 89.32 90.75 91.02 89.69 89.72

IMF2–IMF3 88.19 88.21 86.88 86.93 92 92.32 87.5 87.5

IMF1–3 90.37 90.15 90.44 90.39 91.81 92.17 90.94 90.97

IMF1–4  95 95.01 93.94 93.86 92.38 92.61 94.38 94.41

EEMD IMF1 55.88 42.68 59.63 59.05 63.75 56.97 55.63 50

IMF2 69.73 61.66 79.38 79.47 82.88 84.07 81.25 81.82

IMF3 70.31 67.75 73.88 73.58 79.88 79.80 77.81 78.15

IMF1–IMF2 70.06 62.49 77.87 77.63 84.50 84.99 87.50 87.58

IMF1–IMF3 70.19 66.94 74.19 74.08 80.25 79.65 81.88 81.65

IMF2–IMF3 77.31 75.39 78.38 78.20 84.50 85.10 83.44 83.28

IMF1–3 76.69 74.32 78.63 77.69 85.56 85.77 89.06 88.89

IMF1–4 92.94 92.90 91.50 91.35 90.69 90.74 91.25 91.19

DWT AC+DC1-3 64.63 58.12 68.88 67.53 84.50 84.22  87.50 87.42

EEG all EEG 58.19 64.84 67.31 65.83 69.38 68.95 62.81 65.51

Table 4 Performance results (%) for pre-seizure and seizure EEG signal classi�cation using 

the combined feature-set

Approach Components SVM KNN Naive Bayes Logistic 
regression

ACC F-score ACC F-score ACC F-score ACC F-score

EMD IMF1 94.31 94.16 94.38 94.31 94.31 94.03 86.25 87.06

IMF2 94.12 93.85 92.62 92.48 93.13 92.79 94.06 94.22

IMF3 93.38 93.36 94.63 94.45 95.63 95.48 87.50 86.58

IMF1–IMF2 94.56 94.40 93.81 93.70 94.56 94.33 92.5 92.31

IMF1–IMF3 92.06 92.38 95.63 95.53 96.88 96.77 96.25 96.23

IMF2–IMF3 94.50 94.35 94.81 94.66 95.88 95.74 89.69 89.39

IMF1–3 90 90.99 94.88 94.81 96.19 96.07 93.75 93.59

IMF1–4 87.38 85.90 94.63 94.59 96 95.89 92.81 92.55

EEMD IMF1 96.06 96.04 94.44 94.43 93.75 93.60 96.25 96.30

IMF2 92.44 92.19 91.81 91.69 93.50 93.12 87.19 86.38

IMF3 94.50 94.42 94.06 94.02 95.44 95.27 92.19 91.80

IMF1–IMF2 94.94 94.86 94.81 94.76 94.12 93.91 92.50 92.68

IMF1–IMF3 81.69 80.29 95.94 95.90  97 96.91 84.38 84.66

IMF2–IMF3 94.44 94.32 94.25 94.21 95.38 95.18 91.25 91.36

IMF1–3 94.19 94.39 97 96.97 95.75 95.62 90.31 90.22

IMF1–4 93.56 93.30 96.19 96.17 96.88 96.77 93.13 92.86

DWT AC+DC1-3 80.81 76.83 93.44 93.38 94.56 94.43 90.94 90.97

EEG All EEG 59.75 66.33 93.25 93.35 78.94 74.41 88.44 87.46
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of DWT. Furthermore, the italicized numbers in table cells indicate the best perfor-

mance in accuracy for each approach (Tables 1, 2, 3) and classifier (Table 4).

Table 1 summarizes the performance evaluation of time-domain features used for 

classification. Using the time-domain features calculated from the IMF1–IMF3 (the 

most favorable two IMFs) of EMD, we obtain 97.18% classification accuracy and 

97.14% F-score using the logistic regression classifier. While the logistic regression 

algorithm yields the highest accuracy (98.13%) and F-score (98.13%) values by using 

the time-domain features calculated from IMF1–IMF3 of EEMD, the SVM algorithm 

performs the worst (ACC: 62.44%, F1-score: 60.80%) for the same features calculated 

from IMF2. When the same features calculated from the subbands obtained using 

DWT, we achieved 94.25% accuracy and 94.31% F-score for the KNN classifier. To 

reveal the effect of decomposition, we analyzed the EEG signal itself and repeated 

the above feature extractions and classification. Using the time-domain features and 

KNN classifier, we obtain 89.75% accuracy and 89.96% F-score, where the SVM per-

formed very poorly (ACC: 53.94% and F-score: 45.26%). Results of all classification 

using time-domain features are provided in Table 1.

We give the performance metrics for spectral features used in classification for dif-

ferent IMF combinations in Table  2. We observe that naive Bayes provides 96.88% 

accuracy and 96.77% F-score using spectral features calculated from IMF1–IMF3 of 

EMD. However, higher classification performance is obtained by the same features 

calculated from IMF2–IMF3 of EEMD with logistic regression. While 95% accuracy 

and 94.87% F-score were obtained from the spectral feature of DWT using naive 

Bayes classifier; 93.31% accuracy and 93.37% F-score were achieved using the same 

feature obtained from EEG signals itself.

Classification results using nonlinear features are given in Table  3. �e results 

suggest that the nonlinear features extracted from IMF1–4 of EMD provided clas-

sification performance with 95% accuracy and 95.01% F-score using KNN and SVM. 

However, EEMD approach provided 92.94% accuracy and 92.90% F-score using the 

same features with SVM. Using the features obtained from the EEG signal itself, accu-

racy and F-score are obtained 69.38% and 68.95%, respectively, with KNN. On the 

other hand, 87.50% accuracy and 87.42% F-score were obtained using the nonlinear 

feature of the DWT approach by the logistic regression classifier.

In order to determine the effect of IMF selection on the classification performance 

and to compare the approaches, the classification is performed with the combina-

tion of time, spectral, and nonlinear features. �e classification results are shown in 

Table 4. In EMD approach, the SVM provided the maximum classification accuracy 

(94.56%) using combined features of IMF1–IMF2. However, KNN (95.63%), naive 

Bayes (96.88%), and logistic regression (96.25%) classifiers resulted in the highest 

accuracies using combined features of IMF1–IMF3.

On the other hand, in the EEMD approach SVM (96.06%) and logistic regression 

(96.25%) classifiers provided the highest classification accuracy for the combined fea-

tures of IMF1. While KNN (97.06 %) achieves the best performance using combined 

features of IMF1–3, naive Bayes (97%) yielded maximum classification accuracy using 

the combined feature of IMF1–IMF3.



Page 7 of 22Karabiber Cura et al. BioMed Eng OnLine           (2020) 19:10  

DWT approach provided maximum classification accuracy of 94.56% with naive Bayes 

classifier for the combined features of subbands. Notice that by using the same features 

extracted from the EEG signal (the last row), KNN (93.25%) provides the best classifi-

cation performance. We also observed that the classification performance of the com-

bined feature-set created by using the EEG signal is worse than the EMD and EEMD 

approaches. Furthermore, the highest classification performance for all classifiers is 

achieved using features extracted by EEMD approach. Apart from the selected first 3 

IMF, the success of the classification was not improved when the features obtained using 

the 4th IMF were included in the classification process.

In order to investigate the channel-based performance of our approaches, the classifi-

cation is performed for 10 channels separately using total features of IMF1–3. �e aver-

age mean classification accuracies for the channels in the left (Fp1–F7, F7–T1, T1–T3, 

T3–T5, Fp1–F3 channels) and right (Fp2–F8, F8–T2, T2–T4, T4–T6, Fp2–F4 channels) 

hemispheres are calculated. �e classification accuracy of EEMD- and EEG-signal based 

approaches are higher in the left hemisphere for all four classifiers (shown in Fig.  1b, 

c). �ese results are supported by the clinical information about epileptic focus areas of 

patients in our study, shown in Table 5. However, in the EMD-based approach, the clas-

sification accuracy is higher for the left hemisphere only for KNN and naive Bayes classi-

fier (shown in Fig. 1a).

Discussion

In our proposed study, the main objective is to present a hybrid IMF selection method 

and explore the effect of selected IMFs extracted by EMD and EEMD, on the classifi-

cation performance. Our approach investigates the advantage of using EEMD, where 

noise-added versions of the signal are decomposed to eliminate the well-known, 

mode-mixing problem of EMD. �e problem of mode mixing can be described as the 

Fig. 1 Hemisphere-based mean classification accuracy for a EMD approach, b EEMD approach, and c EEG 
signals. Here, left and right hemispheres were represented with blue and red, respectively
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occurrence of very different oscillations in one mode, or very similar oscillations in 

different modes. EEMD method has been developed to overcome this shortcoming 

of EMD. As such, in our experiments we included EEMD as well as EMD to compare 

their classification performance.

We have applied the proposed IMF selection approach on the classification of EEG 

signals recorded from epilepsy patients who are under treatment at our collaborator 

hospital. We have used 10-channel EEG signals recorded from 16 patients, provid-

ing a total of 160 pre-seizure, and 160 seizure (320 total) EEG segments. In addition, 

4 time-domain, 5 frequency domain, and 2 nonlinear features are extracted from 

each selected IMF of those EEG segments. �e time-domain, spectral-domain, and 

nonlinear features obtained from the selected three IMFs (IMF1, IMF3 and IMF2; 

in this order) were classified using support vector machine (SVM), K-nearest neigh-

bor (KNN), naive Bayes, and logistic regression classifiers, and the performances of 

EMD and EEMD approaches were compared. �en by using this selection approach, 

we explore the advantages of IMF selection in either EMD or EEMD approaches as 

opposed to using first several IMFs (IMF1–4). In order to reveal the advantages of 

using EMD or EEMD approaches, the same features were extracted from the EEG 

signal itself, and the subbands obtained by the DWT approach, and classification pro-

cesses is repeated.

Performance of SVM classifier with time feature-set was found to be poor for both 

approaches. When nonlinear feature-set was used, the success of four classifiers was 

found to be low in both approaches. Using the spectral feature-set, we obtain higher 

accuracies for all classifiers except logistic regression. �is suggests that epileptic 

seizures cause distinctive changes in the frequency domain. In addition, when IMF-

based classification results were evaluated, we notice that the success of classification 

performed only by the features obtained from the combination of selected IMFs was 

Table 5 Summary of the EEG data set used in the proposed study

F female, M male, LTemp left temporal, RTemp right temporal, RFron.-Temp right fronto-temporal

Subjects Gender Epileptic focus areas Age-duration

Patient 1 F LTemp

Patient 2 F LTemp

Patient 3 F LTemp

Patient 4 F LTemp

Patient 5 F LTemp

Patient 6 M LTemp

Patient 7 M LTemp

Patient 8 M RFron.-Temp Age: 37.3∓7

Patient 9 M RFron.-Temp Duration: 1 min

Patient 10 M L.Temp

Patient 11 M L.Temp

Patient 12 M R.Temp

Patient 13 M R.Temp

Patient 14 M L.Temp

Patient 15 M L.Temp.

Patient 16 M L.Temp
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higher or similar to randomly selected first 4 IMFs (except nonlinear feature set). �is 

shows that the IMF selection process helps improve the classification performance 

as selected IMFs carry the most useful information for the discrimination between 

the seizure and pre-seizure segments of EEG signals. �e classification accuracy 

obtained using EMD or EEMD approaches using each feature-set is higher than that 

of the features obtained directly from EEG signals, and subbands of DWT, for all four 

classifiers. �e computational complexity of EMD and its derivative, over classical 

approaches such as DWT, and fast Fourier transform (FFT) is generally considered as 

a disadvantage. Contrary to common knowledge, if the number of sifting steps in the 

EMD algorithm is equal to 10, the computational complexity is given as O(N logN ), 

which is same as the computational complexity of FFT, where O denotes the order 

of computation, and N shows the signal sample size. In addition to EMD, the num-

ber of ensembles is added to the computational complexity in the EEMD approach 

[29]. �erefore, in signal processing applications, EMD-based approaches may be pre-

ferred considering the trade-off between the performance and computational cost.

Evaluating the channel-based classification performances, the classification suc-

cess of the features obtained by EEMD approach was found to be higher than other 

approaches for all 4 classifiers (shown in Fig. 1).

�e innovative contributions of our study can be highlighted as follows:

• We propose a hybrid IMF selection method considering different approaches such 

us energy, correlation, power spectral distance, and statistical significance test.

• We demonstrate the advantages of using selected IMFs by the proposed approach 

of either EMD or EEMD approaches as opposed to randomly selecting first several 

IMFs.

• We investigate the performance improvement by using ensemble EMD in the clas-

sification of epileptic seizures as compared to traditional EMD, the EEG signal 

itself, and DWT-based approaches.

Conclusion

�ere are many studies in the literature for the detection and classification of epilep-

tic seizures. Many studies have been performed in this field by using EMD and deriv-

ative approaches used in our study [1, 18–28]. EMD and its extensions (ensemble, 

multivariate and other) are suitable for the analysis of nonlinear and non-stationary 

signals such as EEG. In these methods, EEG signals are decomposed into IMFs which 

are zero–mean oscillations. Determining which of these IMFs contain useful informa-

tion is vital for the success of the analysis. In most of the previous studies, the first 5 

IMFs [19, 22] or first 4 IMFs [1, 17, 20, 25] have been selected, because they contain 

high-frequency information. In other words, no IMF selection process was performed 

in the initial stage of these studies. On the other hand, there are several IMF selection 

procedures presented in the literature based on energy, correlation coefficient, power 

spectrum, and statistical significance [24, 30–33]. If the signal to be analyzed contains 

noise, the energy and correlation coefficient of the IMFs where the noise component 
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is dominant, will be high and misleading [30]. �erefore, the use of these IMF selec-

tion methods alone is not sufficient to determine the appropriate IMFs.

In our study, we propose a hybrid IMF selection approach considering energy, cor-

relation, power spectral distance, and statistical significance measures. We explore 

the advantages of the proposed IMF selection in either EMD or EEMD approaches as 

opposed to using randomly selected IMFs. In our epileptic EEG classification experi-

ments, the proposed EMD- and EEMD-based approaches outperformed the EEG-based 

and DWT-based approaches for all classifiers and feature sets we used. �e selection 

algorithm for both EMD and EEMD suggests IMF1, IMF3 and IMF2 in this order. We 

use these IMFs separately and their combinations for feature extraction and evaluate the 

classification performance. �e classification performance of selected IMFs and their 

combinations was generally higher than the classification success of randomly selected 

IMF1–4. It is obvious that in another signal processing problem, the selection algo-

rithm may yield a completely different set of IMFs. Hence the use of first k IMFs in the 

classification process, as generally done in previous studies, is not the best approach. 

In our simulations, highest classification accuracies were obtained by using the EEMD 

approach where the discriminative information about epileptic seizures in the channels 

may be revealed more clearly (shown in Fig. 1). Note that, working with 3 or more IMFs 

increases both the computational load and processing time. It may be concluded that 

performing an IMF selection procedure before obtaining the features directly affects the 

success and computational load of the study.

Materials and methods

Proposed approach

In this study, we present a method for pre-seizure and seizure classification algorithm 

using EMD- and EEMD-based feature extraction methods and various classifiers as 

depicted in Fig. 2. EEG data recorded from diagnosed epilepsy patients are labeled by 

physicians, and divided into pre-seizure and seizure sections. �ese EEG segments are 

decomposed into intrinsic mode functions (IMFs) using both EMD and EEMD methods 

for each EEG channel separately. Subsequently, optimum IMFs that best represent the 

signal are selected by combining several selection approaches. Following the IMF selec-

tion process, temporal, spectral, statistical and nonlinear features were calculated from 

the selected IMFs. Finally, the extracted features were classified by using naive Bayes, 

K-nearest neighbor (KNN), support vector machine (SVM), and logistic regression 

methods.

Data set

Epileptic EEG data of 16 epilepsy patients recorded using surface electrodes in Izmir 

Katip Celebi University, School of Medicine, Neurology Department were used in this 

study. EEG data were recorded using the Neurofax EEG device, from 18 different chan-

nels and a sampling frequency of 100 Hz. Surface EEG data were recorded from, Fp1–

F7, F7–T1, T1–T3, T3–T5, T5–O1, Fp1–F3, F3–C3, C3–P3, P3–O1, Fp2–F8, F8–T2, 

T2–T4, T4–T6, T6–O2, Fp2–F4, F4–C4, C4–P4, P4–O2, electrode positions, accord-

ing to the International 10–20 electrode placement system. In order to use this EEG 

data within the scope of our study, Izmir Katip Celebi University Non-Invasive Clinical 
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Research Ethics Committee was applied and Ethical Approval dated 08.08.2019 and 

numbered 296 was obtained. As discussed in [34], EEG signals recorded from the tem-

poral and frontal lobe-weighted 10 channels (Fp1–F7, F7–T1, T1–T3, T3–T5, Fp1–F3, 

Fp2–F8, F8–T2, T2–T4, T4–T6, Fp2–F4) are used in the study.

One-minute pre-seizure and seizure epochs were marked by neurologist in the epi-

leptic EEG signals recorded from selected channels. A total of 2 EEG epochs, one pre-

seizure, and one seizure EEG epoch were used for each patient for our study. �us, a 

total of 32 EEG epochs (containing 10 channels, for 1 min) were analyzed. Summary of 

the EEG data set used in the proposed study is presented in Table 5.

Analysis of EEG signals using EMD and EEMD methods

We applied empirical mode decomposition (EMD) and ensemble EMD methods for the 

analysis of EEG signals in our study. In the following, we present a brief introduction to 

these decomposition methods.

Empirical mode decomposition (EMD)

Empirical mode decomposition which produces a collection of intrinsic mode functions 

(IMF) with zero–mean oscillations, is used as an adaptive time–frequency signal analysis 

method. In nonlinear and non-stationary processes, it is applied as a feature extraction 

and noise reduction method in signal processing applications. It is the most important 

Fig. 2 Block diagram of the proposed method
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rule of the EMD method that the sum of these obtained IMFs give the original signal. 

It is essential for the IMF to satisfy two conditions: (1) the number of zero crossing and 

extrema should be equal or it varies with one, (2) the mean value of the upper and lower 

envelopes should be zero. �e process of the EMD algorithm is to extract IMF, also 

called Sifting, can be performed as shown in Algorithm 1 [19, 24]. 

Ensemble empirical mode decomposition (EEMD)

Although the standard EMD algorithm provides successful results in signal process-

ing applications as a time–frequency analysis method, it suffers from a problem called 

“mode mixing”. �e problem of mode mixing can be described as the occurrence of very 

different oscillations in one mode, or very similar oscillations in different modes. �e 

ensemble empirical mode decomposition (EEMD) method has been developed to over-

come this problem. In the EEMD method, Gaussian white noise is added to the signal to 

be analyzed and the signal is decomposed into the intrinsic mode functions (IMF) using 

the EMD method. Due to the statistical properties of Gaussian white noise, the continu-

ity of the signal is obtained in different frequency regions, so that the problem of mode 

mixing is reduced. �e process of the EEMD algorithm is demonstrated in Algorithm 2 

[28].
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In the proposed method, we had a 10-channel and two-epoch EEG signal for each 

patient (total number of patients is 16). Hence the size of the pre-seizure and seizure 

EEG data set was 16 × 10. Maximum numbers of obtained IMFs after applying the 

EMD and EEMD were 16 and 15, respectively. �erefore, since it would be time-con-

suming and meaningless to obtain features from all IMFs, IMF selection process was 

performed before the feature extraction.

Discrete wavelet transforms (DWT) has widely been used for the analysis of non-sta-

tionary signals [23]. In our study, we use the DWT-based approach for feature extraction 

and classification of epileptic EEG segments to investigate the advantages of proposed 

EMD- and EEMD-based approaches. DWT decomposes a given signal x[n] into detail 

and approximation coefficients by using a set of mother wavelet function [23, 35]. In our 

study, Daubechies4 (db4) mother wavelet and 3-level subband decomposition are used.

Selection of intrinsic mode functions (IMFs)

In this study, we propose a hybrid IMF selection method by using energy-based, correla-

tion-based, PSD distance-based, and t-test-based approaches. Pre-seizures and seizures 

epileptic EEG data of 16 patients recorded from 10 channels were decomposed into the 

IMFs using both EMD and EEMD approaches (example signals are shown in Fig. 3), then 

the proposed IMF selection procedure in the following described is executed.

Fig. 3 a Surface pre-seizure EEG signal and its first three IMF obtained using EMD; b surface seizure EEG 
signal and its first three IMF obtained using EMD; c surface pre-seizure EEG signal and its first three IMF 
obtained using EEMD; d surface seizure EEG signal and its first three IMF obtained using EEMD
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Energy-based selection method

�e energies of each IMFs are calculated as shown in Eq. (1). Since the higher-energy 

IMF is considered to be the best representative of the original signal, the IMFs were 

ranked from the high to the low energy IMF [30].

Here, IMFi is the ith IMF and EIMFi
 is the energy of this IMF.

The correlation-based selection method

�e correlation coefficient of each IMFs are calculated as shown in Eq. (2). Since the 

IMF with high correlation coefficient is considered to be a good representative IMF of 

the original signal, the IMFs are ranked from the high to low correlation coefficient IMF 

[31].

Here, Cx,IMFi is the cross-covariance of the original signal and ith IMF , σx , and σIMFi
 are 

the standard deviations of the original signal and IMFi, respectively, andρ denotes the 

correlation coefficient.

The PSD distance-based selection method

Another IMF selection method, based on power spectral densities (PSD) was also uti-

lized by using the power spectral densities of the original signal and IMFs. �e distances 

between the estimated PSDs are calculated using the Kullback Liebler distance (KLD) 

method as shown in Eq. (3). If the distance between the PSDs of original signal and an 

IMF is minimum, that IMF is considered to be the best representative IMF of the origi-

nal signal. Hence, the IMFs are ranked from the low to the high PSD distance IMF [32, 

33].

where Sx(.) is the power spectrum of the original signal, SIMFi
(.) is the power spectrum 

of the ith IMF , the disKLD(x, IMFi) shows the KLD between the power spectra of the 

ith IMF and that of the original signal.

Statistical signi�cance-based selection method

We also use the t-test statistical significance measure for the selection of best IMFs. �e 

t-test is based on the principle of generating a null hypothesis that a single sample data 

set comes from a normal distribution. In this statistical significance test, test statistic val-

ues; h-value and p-value are calculated. Here, the h-value indicates whether the distribu-

tion of data is normal, and the p-value indicates the statistical significance of the data. If 

a p-value greater than the specified threshold of α (often chosen as 0.05 or 5% in the liter-

ature), the distribution of data can be interpreted as normal (null hypothesis is satisfied, 

(1)EIMFi =

N−1∑

n=0

|IMFi[n]|2, i = 1, . . . , L.

(2)ρx,IMFi =

Cx,IMFi

σxσIMFi

.

(3)disKLD(x, IMFi) =

N−1∑

n=0

log
Sx(ωk)

SIMFi(ωk)
, ωk =

2π

N
k ,



Page 15 of 22Karabiber Cura et al. BioMed Eng OnLine           (2020) 19:10  

h-value = 0). Otherwise, if this p-value is less than that threshold, the distribution of 

data may not be interpreted as normal (null hypothesis is not satisfied, h-value = 1). �e 

p-values of the data whose distribution is known to be normal (h-value = 0) can be used 

as a statistical significance measure. It has previously been recommended to select the 

IMFs with high p-values in order to create a feature set with improved classification per-

formance [24]. As such, we calculate the p-value for every IMFs by applying the t-test. 

Since the p-value obtained here shows the statistical significance of IMFs, the IMFs are 

ranked from the high to low p-value IMF.

Table 6 shows the results of the above four selection approaches for one of the patients 

and one EEG channel.

�ese procedures were applied to the pre-seizure and seizure EEG data of 10 different 

channels of each patient separately. Finally, 40 metrics for 10 channels are calculated for 

each patient. All ranking matrices were combined and a 1280 × 16 -dimensional rank-

ing matrix for all pre-seizure and seizure EEG data was obtained. To determine the first 

Table 6 Example of IMF ranking matrix

Here, 7th IMF has the highest energy while 12th IMF has the lowest energy.

7th IMF has the highest correlation coe�cient while 2nd IMF has the lowest correlation coe�cient.

1st IMF has the lowest PSD distance while 12th IMF has the highest PSD distance.

3rd IMF has the highest p value while 12th IMF has the lowest p value.

Each row shows the ranking of the obtained IMFs according to that features

Component Order of IMF

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Energy 7 6 8 5 9 10 4 1 3 2 11 12

Correlation coefficient 7 6 8 9 5 4 10 3 11 12 1 2

PSD distance 1 2 3 4 5 6 7 8 9 10 11 12

p value 3 2 1 7 4 9 5 6 10 8 11 12

Fig. 4 Histogram of first priority selected IMFs
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priority selected IMFs for all signals, the histogram of the 1st column of the ranking 

matrix was calculated. �e resulting histogram is shown in Fig. 4.

Examining the histogram shown in Fig. 4, we observe that the IMF1 is the first prior-

ity selected IMF, IMF2 is the third, and IMF3 is the second priority selected IMF. In our 

simulation, we choose these three IMFs (IMF1, IMF3, IMF2) for feature extraction.

�e histogram shown in Fig. 4 suggests IMF1, IMF3 and IMF2 in this order.

Classi�cation of pre-seizure and seizure EEG segments

In this section, we present a method to classify the pre-seizure and seizure segment of 

EEG signals collected from epilepsy patients. �ese EEG signals are detailed introduced 

in "Data set" section. We use the selected best IMFs represented the EEG signals, we 

extract a set of feature.

Feature extraction

Time-domain, spectral, and nonlinear features were obtained using the selected IMFs 

and original EEG signals to obtain feature sets.

• Time-domain feature set: after the IMF selection process was carried out, the time-

domain feature data set was created, using directly the EEG signals, using the first 

three of the IMFs obtained by EMD and EEMD methods, and using the subbands of 

DWT. Energy, mean value, skewness, and kurtosis values were calculated for 3 IMFs, 

DWT subbands, and EEG signals in the time-domain [8, 23].

In the above equations, X[n] indicates the EEG signal or IMFs, N is the size of the signal 

or IMFs. E denotes the energy, µ is the mean value; S indicates the skewness, K is the 

kurtosis value.

In the EMD- and EEMD-based approaches a total of 320 × 12 size, and DWT -based 

approach a total of 320 × 16 size feature sets were obtained. Applying the same proce-

dure to the EEG signal itself, a total of 320 × 14 size feature set for pre-seizure and sei-

zure EEG data was obtained.

(4)E =

N−1∑

n=0

|X[n]|2

(5)µ =
1

N

N−1∑

n=0

X[n]

(6)
S =

1

N

∑

N−1

n=0
(X[n] − µ)3

(

√

1

N

∑

N−1

n=0
([n] − µ)2

)3

(7)K =

1

N

∑

N−1

n=0
(X[n] − µ)4

(

1

N

∑

N−1

n=0
(X[n] − µ)2

)2
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• Spectral-domain feature set: to generate this feature data set, the spectrum of the 

signal or IMF calculated by the periodogram method was used. Total power, spec-

tral entropy, 1st, 2nd, and 3rd moments were calculated using the spectrum of 

signals [10, 26].

Here, in Eqs. (8) and (9), S(ωk) denotes the power spectral density of the signal esti-

mated by periodogram method, X(ωk) is the discrete Fourier transform of the signal 

x[n] [10], and ST is the total power. In addition, N indicates the size of the corre-

sponding signal and ωk =
2π

N
k ; Mj given in Eq. (10), indicate the higher order spec-

tral moments of the corresponding signal. H shown in Eq. (11) denotes the spectral 

entropy of the signal, and P(ωk) =

S(ωk )

ST
 indicates the normalized power spectral dis-

tribution [26].

In the EMD- and EEMD-based approaches a total of 320 × 15 size, and DWT 

-based approach a total of 320 × 20 size feature sets were obtained. Applying the same 

procedure to the EEG signal itself, a total of 320 × 5 size feature set for pre-seizure 

and seizure EEG data was obtained.

• Nonlinear feature set: nonlinear features such as the Hurst exponent and Higuchi 

fractal dimension were computed to obtain this feature data set. �ese nonlinear fea-

tures are used to analyze the complexity and self-similarity of brain recordings and 

other biological signals. Calculation of Hurst exponent and Higuchi fractal dimen-

sion were given in Eqs. (12), (13), (14), and (15); (16), (17), and (18), respectively.

(8)S(ωk) =
1

N
|X(ωk)|

2

(9)ST =

N−1∑

k=0

S(ωk)

(10)Mj =

N−1∑

k=0

(ωk)
jS(ωk), j = 1, 2, 3

(11)H = −

N−1∑

k=0

P(ωk) log2 P(ωk)

(12)X[n] = {X[1],X[2], . . . ,X[N ]}

(13)XA[n] =

n∑

i=1

X[i] − µ, n = 1, . . . ,N

(14)

R[m] = max({XA[1],XA[2], . . . ,XA[m]}) − min({XA[1],XA[2], . . . ,XA[m]}),

S[m] =

√

√

√

√

1

m

m
∑

k=1

(X[k] − X̄m)2, m = 1, . . . ,N



Page 18 of 22Karabiber Cura et al. BioMed Eng OnLine           (2020) 19:10 

where X[n] given in Eq. (12) shows the EEG signal or the IMFs to be analyzed and 

µ indicates the mean value of this signal. �e XA[n] shown in Eq. (13) indicates the 

accumulated deviation value of X[n]. Equations (14) shows the range series R[m] and 

the standard deviation S[m] of the time-series X[n], and X̄m is the mean value from 

X[1] to X[m]. In Eq. (15), LN shows the logarithmic value. �e Hurst exponent is cal-

culated as the slope of the line where LN is plotted with respect to ln(k).

�e value of Hurst Exponent (HE) ranges from 0 to 1. If there is no correlation in the 

time-series, HE = 0.5 ; if time-series has long-range anti-correlations, 0 < HE < 0.5 

and if there is long-range correlations in the time-series, 0.5 < HE < 1 [16].

Higuchi fractal dimension (HFD) used to calculate the fractal dimension (FD) 

directly from time-series signals. �e most important parameter that must be deter-

mined for the calculation of Higuchi fractal dimension is k(max) . �e HFD values 

calculated in a given k(max) range are plotted against this range in order to deter-

mine the optimal value for the k(max) parameter. �e k value that the obtained curve 

reaches the saturation point is determined as k(max) [17, 36].

In Eq. (16) , X indicates the one-dimensional time-series EEG signal or the IMFs and 

Xk
m indicates the new time-series. Here, k and m are integers and the int(.) operation 

indicates the integer part of the (N − m)/k value, N is the length of the original signal. 

�e L[m, k] calculated in Eq. (17) indicates the the size of the new time-series signals. 

�e L[k] calculated by using the average of the L(m, k) values in Eq. (18) indicates the 

length of the curve for the k new time interval. HFD is calculated as the slope of the line 

where L[k] is plotted with respect to ln[1/k], k = 1, 2, . . . , kmax.

In our study, HFD values calculated against different k (max) values were plotted 

and a graph was obtained. It was observed that this graph reached saturation point 

when kmax = 30.

In the EMD- and EEMD-based approaches a total of 320 × 6 size, and DWT 

-based approach a total of 320 × 8 size feature sets were obtained. Applying the same 

(15)LN = ln
R(k)

S(k)
, k = 1, . . . ,N ,

(16)

X = {X[1],X[2], . . . ,X[N ]}

Xk
m =

{

X[m],X[m + k],X[m + 2k], . . . ,X

[

m + int

(

N − M

k

)

∗ k

]}

,

m = 1, 2, . . . , k .

(17)

L[m, k] =

















int

�

N−M

k

�

�

i=1

�

�X[m + ik] − X[m + (i − 1)k]
�

�







N−1

int

�

N−M

k
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k

(18)L[k] =
1

k

k∑

m=1

L[m, k], m = 1, 2, . . . , k .
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procedure to the EEG signal itself, a total of 320 × 2 size feature set for pre-seizure 

and seizure EEG data was obtained.

Classi�cation

Features extracted from the selected IMFs of the EEG signals are used to discriminate 

the pre-seizure and seizure segments of the EEG by using the support vector machines 

(SVM), K-nearest neighbor (KNN), and naive Bayes classifiers. In the following, we pre-

sent the fundamentals of these classification methods.

• Support vector machine (SVM): support vector machine (SVM), a supervised 

machine learning algorithm, is a successful algorithm that is frequently used in both 

classification and regression studies. In this algorithm, the elements of the data set 

containing n features are placed as elements of the coordinate system in an n-dimen-

sional space. �en, the classification is performed by finding the hyperplane that 

separates the classes best. �ere are many possible hyperplanes that can separate 

the two classes. What is important here is to choose the hyperplane from which the 

highest classification performance may be achieved.

Let (xk , yk) be given as a separable sample example. Here, k indicates the size of the fea-

ture set and y ∈ {−1, 1} indicates the class label. �ence, separating hyperplane can be 

formulated with f (x) = �wx + c. Here, �w indicates the hyperplane parameters and c indi-

cates the offset. �e hyperplanes that can separate the two classes from each other with 

minimum error provide yk [(�wxk) + c] − 1 ≥ 0, k = 1, 2, . . . , n condition. �e main pur-

pose here is to achieve the maximum margin. Here, the margin is the distance between 

the support vectors belonging to two different class. Finally, the data falling on different 

sides of the hyperplane is assigned as an element of a different class [13, 14, 18, 19, 26].

• K-nearest neighbor (KNN): it is one of the learning-based pattern recognition meth-

ods. �e data set is divided into two parts as training and tests then the learning 

process is performed according to the data in the training set. First, the distance 

between the sample to be classified and all the data in the training set is calculated. 

�en, the K-nearest neighbors that have minimum distance is determined. Finally, 

the most common class among these K-nearest neighbors is selected as the class of 

the new sample. Various distance measurement methods such as Euclidean, Manhat-

tan, Minkowski, and Hamming can be used for distance calculation [26, 35, 37]. In 

our study, the most commonly used Euclidean distance calculation method is used 

[shown in Eq. (19)] and k value is chosen as 5.

• Naive Bayes: it is one of the probabilistic classifier based on Bayes theorem in which 

classification is performed according to probability basics. �e classification process 

is performed by calculating the membership probability of a sample to all classes in 

the data set.

(19)ED =

√

√

√

√

n
∑

m=1

(xm − ym)2
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Let X = {x1, x2, . . . , xn} be given. Here, n is the number of features, X indicates the 

sample in the feature-set. In addition, {M1,M2, . . . ,Mm} represents classes, here m is 

the number of classes. �e probability that each X data in the data set is a member of 

the Mi class is calculated as given in Eq. (20):

�en the X data is assigned to the class in which class membership is highest. Here, X 

data is assigned to the Mi class, where P(Mi) indicates the class prior probabilities, P(X) 

indicates the prior probability of sample X, P(X/Mi) indicates the probability of X con-

ditioned on Mi and P(Mi/X) indicates the probability of Mi conditioned on X [35, 37].

• Logistic regression: logistic regression (LR) is a frequently used statistical classi-

fication technique in which the probability (P1), of dichotomous outcome event 

limited to two values such as yes/no, on/off, or 1/0, is related to a set of independ-

ent variables, and given in Eq. (21):

Here, β0 is the intercept and {β1X1 + · · · + βnXn} are the coefficients associated 

with the independent variable {X1,X2, . . . ,Xn} . Generally, in the logistic regression 

method, the maximum likelihood estimation (MLE) method is used to calculate the 

coefficients {β1X1 + · · · + βnXn}.

�e probability of an event existing as a function of the independent variables is 

nonlinear as extracted from Eq. (22) [38]:

Here, P1 ∈ {0, 1} indicates the probability value.

If the result of our Eq. (22) is −∞ , the probability is 0 ( P1 = 0 ), and if the result of 

this equation is ∞ , our probability is 1.

Performance evaluation

In this study, accuracy (ACC), sensitivity (SEN), selectivity (SPE), and precision (PRE) 

expressed as the performance criteria and F-score values that is the combination of 

previous parameters were used for performance evaluation. Fivefold cross-validation 

(CV) method has been used to establish the performances of the classifiers.

�e feature set used in the k-fold CV method is randomly separated into k differ-

ent folds with the same size. Of these k folds, (k − 1) folds are used for training and 

the other one (1) fold is used for testing. No fold is used for validation processes. �is 

process is repeated k times and the accuracy value is calculated separately for each 

iteration. After k iterations, the average accuracy value is obtained. �is average accu-

racy obtained is accepted as CV accuracy [21, 23].

(20)
P(Mi/X) =

P(X/Mi)P(Mi)

P(X)

if; P(Mi/X) > P(Mj/X), 1 ≤ j ≤ m, j �= i.

(21)logit(P1) = ln

(

P1

1 − P1

)

= β0 + β1X1 + . . . + βnXn.

(22)P1(X) =
P1

1 + e−logit(P1(X))
.
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In Eq. 23 , false-positive (FP) indicates the number of samples for class 0, but is mistaken 

for class 1 by the algorithm. False-negative (FN) denotes the number of samples for class 

1, but is mistaken for class 0 by the algorithm. True-positive (TP) (the number of sam-

ples for class 1) and true-negative (TN) (the number of samples for class 0) indicate the 

numbers of samples that are exactly classified by the algorithm [13, 14].
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