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ABSTRACT The automatic and accurate determination of the epileptogenic area can assist doctors in

presurgical evaluation by providing higher security and quality of life. Visual inspection of electroencephalo-

gram (EEG) signals is expensive, time-consuming and prone to errors. Several numbers of automated seizure

detection frameworks were proposed to replace the traditional methods and to assist neurophysiologists in

identifying epileptic seizures accurately. However, these systems lagged in achieving high performance due

to the anti-noise ability of feature extraction techniques, while EEG signals are highly susceptible to noise

during acquisition. The present study put forwards a new entropy index Permutation Fuzzy Entropy (PFEN),

which may delineate between ictal and interictal state of epileptic seizure using different machine learning

classifiers. 10-fold cross-validation has been used to avoid the over-fitting of the classification model to

achieve unbiased, stable, and reliable performance. The proposed index correctly distinguishes ictal and

interictal states with an average accuracy of 98.72%, sensitivity of 98.82% and a specificity of 98.63%,

across 21 patients with six epileptic seizure origins. The proposed system manifests the fact that lower

PFEN characterizes the EEG during seizure state than in the Interictal seizure state. The study also helps us

to investigate the more profound enactment of different classifiers in term of their distance metrics, learning

rate, distance, weights, multiple scales, etc. rather than the conventional methods in the literature. Compared

to other state of art entropy-based feature extraction methods, PFEN showed its potential to be a promising

non-linear feature for achieving high accuracy and efficiency in seizure detection. It also show’s its feasibility

towards the development of a real-time EEG-based brain monitoring system for epileptic seizure detection.

INDEX TERMS Classification, electroencephalogram (EEG), machine learning, permutation fuzzy entropy

(PFEN), seizure detection.

I. INTRODUCTION

Despite the availability of drug and surgical treatment

options, epilepsy manifests 1% of the world population [1] as

mental and neurological disorder. Epilepsy stood fourth most

common neurological syndrome after migraine, spike, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Quan Zou .

Alzheimer’s disease with approximately 2.4 Million people

newly diagnosed annually in the world. Epilepsy is an acute,

chronic, and recurring neurological disorder hallmarked by

frequent unpredictable seizures. Epileptic seizure transpires

owing to the abrupt malfunctioning and synchronization

of neurons, thereby imitating the excessive and hypersyn-

chronous neuronal activity in the brain [2]. Epileptic seizures

do not strike randomly, instead, they emerge from slow
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pre- ictal variations in brain excitability, which advance over

long timescales and predispose the brain to seizure [3].

Currently, the epileptic disorder is primarily diagnosed by

non-invasive electroencephalogram (EEG), whose data is

obtained by monitoring brain electrical activity oscillations

over time, generated by neural synapses. The international

10-20 system is used to map electrode positions over the

scalp. In the past, when epilepsy was diagnosed, patient

needing surgery undergo long-term pre-surgical valuations

for locating the epileptogenic hubs in the brain. Through

the assessment phase, a massive amount of EEG recording

is acquired and later visually examined by neurologists for

recognizing epileptic seizure information. This information

was used to confine epileptogenic centers and to establish

which area of the brain needs to be resected during surgery.

However, this method was found tiresome, time taking, and

high-cost job, particularly when having a large number of

patients, making analysis unfeasible. Expert opinion’s diver-

sity over a specific pattern perceived in EEG verification

increase the diagnostic difficulty over a particular brain dis-

ease. For a similar EEG segment, several experts might

suggest different diagnoses. Even the same expert might

recommend different diagnosis on different evaluations for

the same EEG segment. Along with other issues, EEG might

contain abnormal patterns that are hard to be visualized by

amateur medical specialists. As a result, it is primarily needed

to develop automated epileptic seizure detection technique

which can eradicate the afore- mentioned issues with the

highest level of accuracy, robust- ness, and reliability [4].

Mounting attention has recently been given towards the

development of computer-aided diagnostic techniques based

on signal processing and machine learning techniques with

the aim of swift and accurate classification of seizures and

epilepsy, based on non-stationary and non- linear EEG sig-

nals [5]. These techniques assistances neuro- physiologists

towards accurate and fast detection of presence or absence

of disorder [6]. Several highly accurate and robust automatic

systems with efficient EEG signal processing have been pro-

posed by researchers to classify seizure, and non- seizure

intervals by extracting linear and non-linear features from

intracranially recorded EEG signals analysis. The hu- man

brain contains highly interconnected nerve cells which makes

the brain a non-linear system. Song et al. [7] advocate that

non-linear EEG analysis of the epileptic zone might deliver

strong seizure detection report as epileptogenic zones possess

convincing identification of non-linear determinism. There-

fore, it will be more appropriate to study brain dynamics

using non-linear theory like entropy which reflect the dis-

order of the dynamic system and help in discriminating

stages. Entropy reflects predictability and randomness, with

high entropy values refer to less system order and more

randomness. The advantage of the entropy-based system is

that it needs fewer data to get significant results. Entropy

has previously been used for quantitative analysis of EEG

signal in various brain diseases like the cognitive task, sleep

disease, and other states [8]. Several entropy measures have

previously been used for epileptic seizure detection.

Guo et al. [9] achieved classification accuracy of about

99% from the epileptic classification of epilepsy using

Ap- proximate entropy (ApEn). Ocak [10] implemented

epilepsy classifications grounded on Approximate Entropy

using wavelet, having 94.3% accuracy. Guo et al. [9] calcu-

lated Approximate entropy for epilepsy classification achiev-

ing an accuracy as high as 99%. Ocak [11] developed a

model for automatic detection using approximate entropy

feature extraction and got an accuracy of more than 96%.

Giannakakis et al. [12] proposed a technique for detection of

absence epileptic seizures employing Approximate entropy

and achieved an accuracy of 90.12%. Hussain et al. [13]

use sample entropy (SampEn) and approximate entropy to

extract nonlinear features based on the k-d (dimension) tree

algorithmic approach. Song et al. [7] augmented SampEn

for epileptic seizure classification with an accuracy of up

to 99%. Song and Liò [14] achieved an accuracy of 86%

using SampEn to analyze epileptic EEG in conjunction

with the extreme learning machine (ELM) for classification.

Shen et al. [15] achieved an accuracy of 91.18% for epilepsy

detection by combining the SampEn feature and support vec-

tor machine (SVM) classifier. Song and Zhang [16] deployed

sample entropy (SampEn) as a method for feature extrac-

tion to detect epileptic seizures with an accuracy of 95%.

Kumar et al. [17] performed the epileptic signal classification

by computing wavelet entropy (WE) to have 94.5% accuracy.

Bedeeuzzaman et al. [18] used WE to classify preictal and

interictal data with 100% sensitivity value. Using Permu-

tation Entropy (PE) and support vector machines (SVM),

Nicolaou et al. [19] was the pioneer towards performing an

epileptic seizure classification who achieved a classification

accuracy of 94.38%. Mateos et al. [20] developed a frame-

work based on Permutation Entropy to manifest different

stages EEG towards the treatment of a chronic epileptic

patient. Li textitet al. [21] predict absence seizure using

Permutation entropy in genetic absence epilepsy of rats.

Xiang et al. [22] obtained classification accuracy of 97.16%

using SampEn and 98.31% using Fuzzy entropy (FuzzyEn)

on epileptic EEG signals. Kumar et al. [23] used Fuzzy-ApEn

by decomposition in subband for the complexity measure

of EEG signal using Support Vector Machine and achieve

an accuracy of 97.38%. Distribution entropy (DistEn) was

used by Li et al. [24] for discrimination normal and interic-

tal seizure over non- overlapping segments specific to EEG

signal.

Although, number of entropy variants have been used for

detecting epileptic seizure from EEG signal and promising

results were accomplished from espousal of entropy vari-

ants. It signifies that entropy-based approaches are promising

towards EEG analysis of epilepsy. Unfortunately, most of

these entropy variants are sensitive to the underlying noise

during EEG acquisition, which compromised their classifi-

cation accuracy. Therefore, it is highly needed to develop
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FIGURE 1. A proposed framework to automatically discriminate ictal and interictal seizure from multi-channel EEG signal data.

new entropy variant which can deal with the noisy EEG

signals and can perform accurate classification. Also, in past

classifiers were just used with the few options and parameters

or used with their default values rather than using by fine-

tuning their parameter or by using an appropriate variant

of the classifier based on their weight, distance or other

metrics and their actual ability was undermined. Therefore,

the current study aims at validating the use of nonlinear index

entropy, as a diagnostic measure to discriminate individual

subject’s ictal and interictal stages of epilepsy by studying his

clinical EEG dataset. We used PFEN characterizing excellent

detection property of Fuzzy entropy along with anti-noise

improvement ability of Permutation Entropy using the most

robust machine learning techniques that outperformed the

existing classification techniques. In comparison to Permu-

tation entropy, our index gains much better improvement in

results which demonstrate that PFEN analysis of the brain

might be a promising prospect towards EEG-based evaluation

for classification of seizure. The acquired high detection

accuracy and low computational burden signify tremendous

aptitudes of the proposed technique for real-time discovery

of epileptic seizure.

II. DESCRIPTION OF EEG DATA

Our methodology has been trained, tested, and validated

on long-term invasive EEG from 21 patients suffering from

medically intractable focal epilepsy, recorded at Epilepsy

Center of the University Hospital of Freiburg, Germany. The

iEEG dataset obtained from the publicly available Freiburg

Seizure Prediction EEG database containing ictal files (the

time when seizure onsets) and interictal files (time between

seizures), which is now available through the EPILEPSIAE

project. The ictal data contains more epileptic component

and it would better suit to discriminate between seizure and

non-seizure brain activity. There were 2-5 recorded seizure

intervals for every patient lasting from few seconds to few

minutes. To achieve a better signal-to-noise ratio (SNR) and

low artifacts, EEG recordings were made during pre-surgical

epilepsy monitoring using grid, strip, and depth electrodes

positioned on the cortex of the patients or implanted in

their brain. The available data for all 21 patients with six

intracranial EEG channels were selected by certified epilep-

tologists. Out of six channels, three focal channels were

chosen from inside the epileptogenic zones exhibiting the

earliest sign of seizure activity while the remaining three

extra-focal electrodes were selected from remote locations

which were not at all involved in seizure activity during

seizure propagation. The EEG recordings were sampled at

a frequency of 256 Hz or 512 Hz and a 16-bit A/D con-

verter annotated by certified epileptologists for seizure onset

and epileptiform activities. A total of 87 seizure were ana-

lyzed, including 509 hours of interictal and 199 hours of

both pre-ictal and ictal EEG data. As the database is heavily

dominated by interictal segments, we used an equal number

of instances from both ictal and interictal recordings of all

21 patients to make a balance between both the classes.

Ictal segments among the seizure onset and seizure end

were selected which only contains seizure activity of every

patient. For interictal segments, same number of random

segments from different interictal sessions of each patient was

chosen.

III. SYSTEM ARCHITECTURE

The overall System architecture and epileptic classification

process from EEG acquisition to the resulting output are

shown as a block diagram in Fig 1.
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A. PREPROCESSING

EEG signals usually suffer from complex and low-frequency

noises which are not originating from the brain and are con-

sidered as disturbances in brain-signal measurements. These

artifacts need to preprocess EEG signals and remove noise.

To reduce the high-frequency noise and low-frequency arti-

facts on all the intracranial EEG segments, we apply the

bandpass FIR filter between 0.5Hz to 48Hz. The notch filter

was applied to eliminate the 50Hz power-line interference.

The long-term EEG of each patient was initially divided

into 5s non-overlapping windowing to be used as input to

the classifier. Each EEG segment represents a feature vector

contains time series recording of 6 EEG channels.

B. PERMUTATION FUZZY ENTROPY (PFEN)

Permutation Fuzzy Entropy (PFEN) is a novel index that

inherits the seizure detection capabilities from fuzzy entropy

and uses anti-noise capabilities of permutation entropy [25].

PFEN employs fuzzy exponential function with soft and

continuous boundaries, thus closer the neighbor vector points

are, more the similar they are. Firstly, it performs permutation

signifying on the EEG signal then it computes the fuzzy

entropy over EEG signal [26]. PFEN is calculated by using

the following steps:

(1) Assume a time series [X(i): 1 ≤ i ≤ L], where L is the

length of series X. These time series are used to construct a

matrix.




















X (1) x (1 + τ) . . . . . . x(1 + (pm− 1)τ

X (2) x (2 + τ) . . . . . . x(2 + (pm− 1)τ

X (3) x (3 + τ) . . . . . . x(3 + (pm− 1)τ

. . . . . . . . . . . . . . . . . . .

X (j) x (j+ τ) . . . . . . x(j+ (pm− 1)τ

. . . . . . . . . . . . . . . . . . .

X (k) x (k + τ) . . . . . . x(k + (pm− 1)τ





















(1)

where j = 1,2,3,,,,,,,,,,,,,,k

Where τ and pm are the embedding time delay and the

permuted dimension, respectively. K = L - (pm - 1) τ . Each

row of matrix is regarded as a reconstruction component. So,

there will be K reconstruction components in above matrix.

(2) Arrange elements in ascending order based on values.

Thus, we have a new time series constructed from the original

time series with the values between 1 and pm!

{U (i) : 1 ≤ i ≤ 1 − (pm− 1) ∗ τ } (2)

(3) Arrange elements in order to reconstruct U (phase-space

reconstruction). By considering the length of U is N. The

created m-dimensional vector is

Ymi ={u (i) , u (i+1) , . . . . . . . . . . . . . . . u (i+m− 1)} − u0(i)

(3)

where i = 1, 2, . . . ,N − m + 1, m < N - 2, and u0(i) is the

average value, which is defined in Eq. (3).

uo(i)
1

m

∑m−1

j=0
u(i+ j) (4)

(4) The distance dmij between vectors Ymi and Ymj is defined

as the largest difference between corresponding elements.

dmij = d[Ymi ,Ymj ] = max
k∈(0,m−1)

{|u (i+ k)

− u0 (i) − (u (j+ k)) − u0(j)|} (5)

where (i, j = 1 ∼ N-m, j 6= i) and the degree of similarity

dmij between vectors Ymi and Ymj is defined using a fuzzy

membership function µ (dmij , n,r).

Dmij = µ

(

dmij , n, r
)

= exp

[

−(dmij )
n

r

]

(6)

in this above expression, the fuzzy function µ (dmij , n, r) is

an exponential function. Width and gradient of the exponen-

tial function are represented by n and r respectively. Define

function

∅n (n, r) =
1

N − m

∑N−m

j=1

[

1

N − m− 1

]

∑N−m

j=1,j 6=i
Dmij

(7)

Increase the reconstruction dimension from m to m+1 and

repeat step (3) to

Generate a group of m + 1- dimensional vectors. Define

function

∅n+1 (n, r)=
1

N − m

∑N−m

i=1

[

1

N − m− 1

]

∑N−m

j=1,j 6=i
Dm+1
ij

(8)

the FuzzyEn of a given series U is defined by Eq. (9)

FuzzyEn (m, n, r)= lim
N→∞

[

ln∅m(n, r) − ln∅m+1(n, r)
]

(9)

when the length N of series U is finite, the estimated value of

the corresponding FuzzyEn is Shown in Eq. (9)

FuzzyEn (m, n, r,N ) =
[

ln∅m(n, r) − ln∅m+1(n, r)
]

(10)

where m is the dimensions of the phase space, and r is the

similarity tolerance.

The above steps from (1) to (3) signify the original time

series X(i) to U (i). Steps (4) to (10) obtain the PFuzzyEn

of the original time series X(i) by calculating the FuzzyEn

of U (i).

There are four parameters that must be chosen wisely

for the calculation of PFuzzyEn i.e. value of m, pm,

r and τ . The value of pm should be in the range

of 3 to 7 because the smaller value of pm reduces the time

complexity of the algorithm under the premise that it is sen-

sitive to changes in the system’s transient feature. But if pm is

too small the reconstructed sequence contains too few states.

Therefore, we have set pm to 4. The time delay function τ

was set to 1 in permutation signifying process, the dimension

of phase space m was used with 2 and similarity tolerance r

was set to 0.25 times the standard deviation of original time

series.
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C. FEATURE EXTRACTION

To minimize the computational time and complexity of the

proposed framework, most significant and prominent feature

need to be extracted from every patient’s ictal and interictal

files for training the classification model. We derived the

PFEN as an innovative feature from both groups of EEG

signals. Fig 2 demonstrates PFEN value for patient 12. That

ictal values of PFEN are found lower than the interictal phase

value, signifying that high regularity exists in ictal phase than

in interictal EEG time series and much randomness arises in

EEGwith non-seizure existence than the inception of seizure.

FIGURE 2. Difference in value of Ictal and Interictal phase after extracting
Permutation Fuzzy Entropy.

IV. CLASSIFICATION PROCESS

After computing permutation fuzzy entropy as a discrimi-

nating feature, the next step was to effectively classify the

unseen EEG segments into either ictal or interictal class so

as to avoid the tedious and time-consuming screening proce-

dure. The classification was conducted individually for every

patient to classify seizure in a patient-specific manner. In all

patients, seizure instances were found tremendously small

than interictal instance, which leads to unbalance data and

could results in poor classification. To avoid large interictal

class dominating the ictal class, we used all the instance

of ictal class and randomly choose same number of EEG

segments from interictal class for all patient. To avoid the

problem of over-fitting in classification, we used 10-fold

cross validation technique which is assumed to be the best

method for validating the accuracy of classifier. The process

is repeated for all the classifiers and their performances are

shown in Table I–III.

A. SUPPORT VECTOR MACHINE (SVM)

In machine learning, Support Vector Machine (SVM) is a

well-known robust supervised learning method based on

finite sample theory that maximizes the accuracy of results

by avoiding over-fitting of data. Recently SVM is used exten-

sively for binary and multiclass problem in classification

and regression majorly in the fields of medical diagnos-

tic area, machine learning, recognition, biometrics etc. and

highly suitable for non-linear and high–dimensional data.

For classifying different groups of patterns, it creates the

hyper-plane in high dimensional space to give largest mini-

mum distance to the training samples called margin in SVM

theory. Vectors over margins are known as support vectors

which formalize crucial component of training data in classi-

fication problem.

Technique for higher classification is to locate optimal

hyperplane by maximizing the distance between margin and

support vector and byminimizing the classification error. The

optimum margin is obtained for the maximized hyperplane.

SVM uses Kernel function which has the responsibility of

transformation of higher dimension space. Kernel function

used by SVM can be linear, radial base function (RBF),

polynomial or sigmoid kernel. SVM with RBF and Gaussian

kernel function has cost and sigma training parameters. Cost

function controls the overfitting of model whereas sigma

function controls the degree of non-linearity of the model.

Linear kernel has one or several hyperplanes and uses only

one parameter i.e. C which is used as a constraint of soft

margin representing cost violation constraint association with

wrong sided data points over the decision surface. SVM can

be used for both linear and non-linear separable data. The

non-linear SVM lead to more flexible decision boundary and

may have high accuracy, which map input space to higher

dimension feature space. Dot product is taken between the in-

put space and some kernel functions. For non-linear mapping

polynomial and Radial base functions (RBF) are mostly used.

The mathematical expressions of different Machine learning

kernel are expressed as below.

SVM sigmoid Kernel.

K (ai, bi) = tanh(ati , bi + 1) (11)

SVM Polynomial Kernel.

K (ai, bi) = tanh(ai, bi + 1)n (12)

SVM Gaussian (RBF) kernel.

K (ai, bi) = exp(−
||ai − bi||

2

2σ 2
). (13)

SVM Fine Gaussian (RBF) kernel

K (ai, bi) = exp(−
ai − b′

i||ai − bi||

σ 2
) (14)

Here a, b represents the vectors in input space while σ rep-

resenting width of RBF and n defines the polynomial kernel

order.

B. DECISION TREE (DT)

Decision Tree (DT) recursively check the similarities in

dataset and classify attribute into best distinctive classes by

splitting data and expanding leaf nodes until some termi-

nation criterion is met. The choice of splitting is based on

comparing impurity of leaf nodes and also on type of impu-

rity being used. Further the size of decision tree is reduced

by tree-pruning step to avoid overfitting. Pruning helps to

improve the generalization capability of DT. The process-

ing time of decision tree depends on the height of the tree.
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TABLE 1. Patient-specific classification accuracy of SVM and ANN (mean ± standard deviation) of all the 21 cases.
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TABLE 1. (Continued.) Patient-specific classification accuracy of SVM and ANN (mean ± standard deviation) of all the 21 cases.

Mathematically, decision tree uses following expression for

constructions.

A′ = {A1,A2,A3, , , , , , , , , , , , , , ,An}
t (15)

Ai = {a1, a2, a3, , , , , , , , , , , , , , , an} . (16)

B = {B1,B2,B3, , , , , , , , , , , , , , ,Bn} (17)

where n denotes the number of observations, n denotes

the number of independent variables, t represents the trans-

pose, B represents the m-dimensional vector predicted

from A′. A′ representing the ith n-dimensional component

autonomous variables a1, a2, a3. . . . . . An DT are used to

predict observations of A′ Large number of DT can be

constructed from A′ having different accuracy values but

still optimally best DT is challenging due to large dimen-

sional search space. Generally, a trade off exists between

the accuracy and its complexity. The optimized DT will be

constructed as a result of local optimal decision regarding

feature parameters used in partitioning.

C. ENSEMBLE CLASSIFIER

These are the machine learning paradigm comprising a num-

ber of individual sets of trained classifiers whose predictions

are combined together when classifying some new instances.

These classifiers are successively used in a variety of pre-

diction applications like predicting signal peptide, subcel-

lular location prediction and in making protein subcellular

location predictions. According to [28] there are several

applications where the combined classification approaches

give more accurate and more efficient classification results

than the individual classifier results. Individual classifiers are

diverse and can make several errors during the classification

process; however, in combined classification approaches the

error produced by one classifier can be compensated by

other classifier. In this way the errors can be reduced by

combining several classifiers. In ensemble classifiers indi-

vidual classification decisions are combined by weighted

or unweighted voting to classify new samples. Ensemble

methods differs to each other in term of their inter classi-

fier relationship, combining methods, diversity generation

182244 VOLUME 7, 2019
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TABLE 2. Patient specific classification accuracy of KNN and discriminant (mean ± standard deviation) of all the 21 cases.
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TABLE 2. (Continued.) Patient specific classification accuracy of KNN and discriminant (mean ± standard deviation) of all the 21 cases.

or by ensemble size. Performance of an ensemble greatly

depends on the diversity and accuracy among base learner of

ensemble [29]. In our study we have used boosted, bagged,

subspace discriminant, subspace KNN and RUSboosted Tree

ensemble.

D. K-NEAREST NEIGHBOR (KNN)

KNN is a non-parametric method based on lazy learning,

used in the field of machine learning for pattern recognition,

classification and regression etc. using similarity measure

commonly the distance functions. Here weights of neighbor

contribute more than weights of distant contributors. In KNN

model is not built immediately rather than all training samples

are saved and are awaited until all the new observations are

classified. These characteristics are totally opposite of eager

learning, which build classifier model before the classifica-

tion of new observations. These models are simple to imple-

ment and suits to the applications where data is dynamic and

needs to be changed and updated frequently. The most cru-

cial parameter is this algorithm is selection of parameter K.

For larger dataset, the value of K is kept high whereas for

smaller dataset this parameter value should be kept small. The

most commonly used distance in KNN is Euclidean distance

but we have also used cosine, cubic and weighted distance in

this study.

Euclidean Similarity

√

∑k

i=1
(xi − yi)2 (18)

Cosine Similarity

Cos ϕ ==
a.b

||a|| |b|
(19)

where and b are the attribute vectors.

Weighted KNN

F (x) =

∑k
i Wif (xi)
∑k

i Wi

(20)

(

Wi =
1

d (xd , xi)
2

)

. (21)
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TABLE 3. Patient specific classification accuracy of ensemble and tree (mean ± standard deviation) of all the 21 cases.
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TABLE 3. (Continued.) Patient specific classification accuracy of ensemble and tree (mean ± standard deviation) of all the 21 cases.

TABLE 4. Performance evaluation results to distinguish healthy ictal
subjects from interictal subjects using quadratic kernel SVM classifier
and tuning KS with different values.

E. ARTIFICIAL NEURAL NETWORK (ANN)

ANN gained huge popularity in the fields of Pattern classi-

fication problem due to its characteristics like self-learning,

robustness, adaptability and parallelism used in solving com-

plex, large-scale and nonlinear problems [30]. It constructs

connectionist classifiers by creating a mathematical model

inspired by biological neural structure. ANN is characterized

by highly interconnected processing elements called neurons.

Training of ANN depends on the gradient descent algorithms.

In our case training was done by scale gradient descent which

belongs to conjugate gradient method class. It shows super-

fast performance by avoiding time-consuming line search per

learning iteration compared to other training methods [32].

The training samples were divided into 80% training, 10%

validation and remaining 10% for testing samples. The net-

work was built up with 6 six input nodes, 10 hidden nodes

and 1 output node.

F. EVALUATION PARAMETERS

Previously the gold standard for performance evaluation of

seizure- detection algorithms remains visual annotation of

seizures by EEG experts. However, to evaluate the per-

formance of proposed EEG signal classification models to

classify an unseen data instance as either ictal or interictal,

we used accuracy, sensitivity, specificity and Area under

Curve (AUC) parameters.

Sensitivity =
TP

TP+ FN
∗ 100 (22)
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Specificity =
TN

TN + FP
∗ 100. (23)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
∗ 100 (24)

where True Positive (TP)= Correctly identified as Ictal False

Positive (FP) = Incorrectly identified as Ictal True Nega-

tive (TN) = Correctly identified as Interictal False Negative

(FN) = Incorrectly identified as Interictal.

V. RESULTS

The Freiburg database is one of the most comprehensive,

long-term datasets, which addressed a variety of classifi-

cation problems based on its recordings [38]. Since the

onset and the offset of seizure episodes are known, the

epochs between the seizure onset and offset were marked

as ‘‘ictal’’ and the rest of the epochs as ‘‘Interictal,’’ form-

ing the corresponding classes. To judge the performances

on a broader parameter, patient-specific classification per-

formance of 21 patients in terms of Accuracy, sensitivity,

specificity, and AUC have been evaluated using the most

robust machine learning classifiers. The classifiers were

trained using all 21 subjects, and therefore, classification

is generalized across the whole population contained in the

Freiburg database rather than a single individual. For proper

analysis of the problem, efficient use of feature extraction

techniques and use of optimal classifier is most importantly

needed. In this study, we used PFEN for feature extraction

from both the ictal and interictal seizure states of all the

patients, keeping the dynamic and non-linear variations of the

brain. All the classifiers were tuned with different parameters

to view their performance using various metrics like weight,

distance, learning rate, etc. that will help to investigation their

performance in research. In the past, these classifiers were

used with the few options and default parameters, and their

actual ability was under- mined. The higher performance in

classification depends on the selection of different kernel

and other metrics. To minimize the impact of over-fitting,

standard 10-fold cross- validation approach was used for

evaluation of model to find the optimal classification results.

To get an in-depth investigation of classifiers performance,

we deployed SVM with linear, quadratic, cubic, fine gaus-

sian, medium gaussian, and coarse gaussian. The Decision

tree was implemented with a fine tree, medium tree, and

coarse tree. KNN was used using fine, medium, coarse,

cosine, and cubic KNN. The Ensemble was implemented

using the boosted tree, bagged tree, space discriminant

KNN, subspace discriminant KNN and RUS- Boosted tree.

There was linear and quadratic discriminant. Artificial neural

network was implemented with two-layered feedforward net-

works that was trained using scaled conjugate gradient back-

propagation containing ten hidden layers. The performance

evaluation for different classifiers is shown in Tables I–III.

SVM and ANN (Table I), KNN and Discriminant (Table II)

while Ensemble and Decision Tree (Table III) using their

default values. The average accuracy of these classifiers was

98.26 ± 0.84% (ANN), 91.95 ± 0.74% (Lin- ear SVM),

95.33 ± 0.64% (Quadratic SVM), 94.26 ± 0.69% (Cubic

SVM), 93.91 ± 2.33% (Fine Gaussian), 94.29 ± 1.39%

(Medium Gaussian SVM), 92.72 ± 0.47% (Coarse Gaussian

SVM), 92.72± 3.15% (Fine KNN), 93.55± 0.69% (Medium

KNN), 85.98 ± 0.85% (Coarse KNN), 92.81 ± 0.66%

(Cosine KNN), 93.95 ± 0.88% (Cubic KNN) 94.53 ± 0.6%

(Weighted KNN) 91.64 ± 0.52% (Linear Discriminant)

94.24 ± 0.68% (Quadratic Discriminant), 72.99 ± 1.25%

(Boosted Tree), 94.24± 0.59% (Bagged Tree) 90.47± 0.65%

(Subspace Discriminant) 93.63 ± 0.7% (Subspace KNN)

73.81± 1.98% (RUSBoosted Tree) 91.2± 3.15% (Fine Tree)

91.96 ± 0.69% (Medium Tree) and 92.2 ± 0.85% (Coarse

Tree). The best classification accuracy of 98.26 ± 0.84%

was achieved by using ANN, while the lowest accuracy

of 72.99 ± 1.25% was found using Boosted Tree Ensemble.

Using SVM, the highest accuracy was achieved for

quadratic Gaussian, followed by medium SVM, and the low-

est classification accuracy was achieved for linear SVM.

Using KNN, the most promising accuracy was achieved by

Weighted KNN followed by Cubic KNN, and most low

results were obtained by Coarse KNN. Using Discriminant,

Quadratic discriminant made the highest accuracy while the

Linear discriminant was the second one. The highest discrim-

ination using ensemble was found for Bagged tree ensemble

and the lowest discrimination was found with the boosted

tree. For Decision Tree, the highest accuracy was achieved

by Coarse tree followed by the medium and fine tree. The

average highest values of these classifiers are shown in

Table VIII and Fig 8. Most of the results of classification are

very high, which again justifies the higher discriminative abil-

ity of PFEN based feature extraction. We have further evalu-

ated the performance of SVMQuadratic kernel in more depth

by varying the kernel scales (KS) and fixing box constraint

level (BCL) at 1. The performance was evaluated by changing

the values of Kernel scale (KS), which can be seen in Table IV.

The overall highest accuracy of 95.69% was observed with

KS= 2. The accuracy was trending down with the increase in

the value of KS, and we got 78.49% accuracy at KS 50, which

can be shown in Fig 3. Similar behavior was observed in case

of sensitivity and specificity. It demonstrates that the value

of KS at different levels is significant in dis- criminating the

subjects for determination of epileptic seizure stages. Thus,

these parameters help us in getting more in- sight towards

getting improved performances. In Table V, we evaluated

the performance of KNN by using altered weight metrics

and fixed neighbor of 10. We have used Cosine, City Block,

Chebyshev, Minkowski, Euclidean, Co-relation, Spearman,

Hamming, and Jackard distance weights. The highest per-

formance accuracy of 93.53% was observed for KNN with

Minkowski followed by Euclidean with 93.50% accuracy,

followed by City Block with 93.49% accuracy. The lowest

accuracy was observed with Jackard and hamming distance

metrics. The detailed comparison of the classification perfor-

mance shown in Fig 4.
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TABLE 5. Performance evaluation results to distinguish ictal subjects from interictal subjects using K-nearest neighbor classifier with varying distance
metrics and selection criterion of the number of neighbors.
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TABLE 5. (Continued.) Performance evaluation results to distinguish ictal subjects from interictal subjects using K-nearest neighbor classifier with varying
distance metrics and selection criterion of the number of neighbors.

FIGURE 3. Effect of varying Kernel Scale (KS) on the performance of SVM.

A. SCATTER PLOT

To visually show the classification performance of the dif-

ferent classifier, we used the scatter plot of PFEN against

the ictal and interictal stage of subjects in Fig 5. We selected

patient 14 with one variant of each classifier for the sake of

illustration. We chose SVM with the quadratic kernel, KNN

FIGURE 4. Effect of varying Distance Metrics on performance of KNN.

with Cosine, Discriminant with linear, subspace discriminant

Ensemble, Fine DT and ANN. Here the brown dots denote

interictal whereas blue dots represent the ictal class. The cross

dots indicate the errors in classification.

B. RECEIVER OPERATING CURVE (ROC)

Receiver Operating Curve (ROC) is a plot against true pos-

itive rate (sensitivity) and false positive rate (specificity) at

various cutoff values to visualize the behavior of the classifi-

cation system. Ictal values are classified as 1, whereas interic-

tal values are represented as 0. Sensitivity is plotted on y-axis
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TABLE 6. Area under curve (AUC) for patient specific values of SVM, tree, discriminant and ANN for all the 21 cases.

whereas specificity is plotted on the x-axis. The area under the

curve (AUC) is used to the get better discrimination ability of

the system, and its value ranges between 0 and 1. Higher the

value of AUC, higher will be the system discrimination ability

and vice versa [1]. The AUC values obtained were found

higher which matches to the higher accuracy values of our

classifiers as visualized in Fig 6. The AUC values of different

classifier are shown in Tables VI & VII. Table VI contains

AUC values of SVM, Tree, Discriminant and ANN classifiers

while, Table VII contains AUC values of KNN and Ensemble

classifiers.

Furthermore, the capability of PFEN entropy in discrim-

inating seizure states was conducted using student t-test on

all 21 independent patient values, which were normally dis-

tributed. Lower the value of p; higher will be the power of

discrimination between different states, i.e., ictal and inter-

ictal [1]. This means lesser p-value has a greater discrimi-

nating capability. The average p-value was found less than

0.05 which infers that PFEN has better discriminative power

of seizure detection.

VI. DISCUSSION

Objective of this study was to find the potential of PFEN

towards discriminating ictal and interictal stage based on

individual subjects using robust machine learning algorithms.

We utilize only the ictal EEG segments between the seizure

onset and seizure end, containing only the seizure event and

missed the non-ictal recording providing in the database.

Thus, it is more suitable to precisely capture the seizure

activity. According to [38], human brain exhibits a variation

in the chaotic electrical physiological act from interictal to

ictal or seizure state. As the nerve cells inside the epilep-

togenic zone turn isolated, they grow vacant which might

incline to an epileptic seizure. Through ictal state, a huge

amount of nerve cells on the cerebral cortex sharply jump

discharging in a tremendously ordered recurring pattern.

We observed that there is a sharp fall in PFEN values after

the seizure start, which can be due to a sudden increase

in magnitude either slightly before or slightly after the

seizure onset, which reveals that brain gets affected by the

occurrence of such seizures so that it becomes momentarily

182252 VOLUME 7, 2019



W. Hussain et al.: Epileptic Seizure Detection With PFEN Using Robust Machine Learning Techniques

TABLE 7. Area under curve (AUC) for patient specific values of KNN and discriminant for all the 21 cases.

TABLE 8. Comparison of highest performance achieved by different classifier’s.

irregular before becoming regular during the seizure. This

type of recurring pattern regularly begins and finishes impul-

sively without any external consequences, which fallouts in

lessening values of PFEN. We found that interictal subjects

have higher complexity than that of ictal subjects. The author

in [19], [31], [32] while analyzing human epileptic EEG using

permutation entropy (PE), experience’s the lower value of

PE during seizure stage and higher PE values in the normal

stage. Our findings of PFEN are also in agreement to their

studies where we find lower PFEN values in ictal state

and higher PFEN values in interictal state, shown in Fig 7.

This infers that the brain activity during the seizure period

has a more regular pattern than the normal interictal state

having a more repetitive pattern with a similar pattern. This

feature of PFEN helps us in discriminating EEG signal states

with high accuracy. A substantial difference in the values of
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TABLE 9. Comparison of our techniques with other techniques using Freiburg Data.

ictal and interictal seizure can be seen after using PFEN,

which signifies the legitimacy of PFuzzyEn based feature

extraction. The study result itemized above shows that fea-

ture extraction grounded over PFuzzyEn method is not only

capable of lessening feature dimension of the EEG data, but

likewise capable of imitating the characteristic discrepancy

of original epileptic EEG signals efficiently, which is major

reasons of achieving high accuracy. High-frequency arti-

facts can increase the chances of misclassification [33].

Thus, the Notch filter was used to detain the artifacts. Also,

the smoothing used in post-processing can process the impre-

cise boundaries between preictal and interictal EEGs, which
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FIGURE 5. Patient 16 Scatter plot using different classifier for PFEN for
different classifiers. The brown color represents Ictal while blue color
denotes Interictal points. The dot point represents correctly classified
point whereas cross point represents incorrectly classified data point.
(a) Quadratic SVM (b) Cosine KNN (c) Linear Discriminant (d) Subspace
Discriminant Ensemble (e) Fine Decision Tree (f) Artificial Neural Network.

makes the model capable of classification more accurate.

Before analyses, we tried to minimize all the possible effects

of the skull by applying band-pass filter on all the raw

EEGs (cut-off frequencies: 0.53–48 Hz). All the classifiers

show excellent results with the proposed entropy; however,

it was more desirable to find the capability of the state

of art robust machine learning classifiers in discriminating

ictal and interictal states. We compared the classification

performance used in our framework and found that the ANN

achieved a comparable classification accuracy and a much

faster computation speed than other states of art models. The

ANN gives the classification accuracy of 98.26 ± 0.84% for

discrimination and diagnostic purpose than the traditional

approaches. It also requires the minimum time to train and

test unseen EEG pattern in comparison to SVM, KNN and

other classifiers which suits to the rapid real-time detection

of epileptic EEG. The higher accuracy using SVM kernel

was 95.33 ± 0.64% with quadratic SVM, 94.65 ± 0.6%

with KNN the best result was using Weighted KNN having

Euclidean distance, Fine tree with 100 splits using Gini’s

diversity index produce 92.2 ± 0.85%, bagged tree ensemble

with decision tree learner has 92.23 ± 0.59% and quadratic

discriminant with 94.24 ± 0.68% accuracy. The compari-

son of the proposed method with the previously reported

FIGURE 6. Area Under Curve to discriminate Ictal subjects and interictal
subjects using SVM, KNN, LD, FT, SSE and ANN.

FIGURE 7. Boxplot of extracted ictal and interictal value of PFuzzyEn
using EEG signal with values of m = 2 and r = 0.25 ∗ std. Lower PFuzzyEn
value were observed during the ictal state and higher PFuzzyEn values
were found in normal or interictal stage.

methods [33]–[39], which also uses the same database is

shown in Table IX. In contrast with other works adopted on

said database, our technique produced better overall results.

Different methods have been proposed in the literature for

seizure detection on the same dataset used in this study. The

maximum accuracy reported on the said dataset is reported

by Xie and Krishnan [39] produced 100% accuracy, but they

have used just four patients, so it’s quite difficult to extract

some conclusions from their proposed model. But in our

case, our methodology was tested on data from 21 patients,

which achieves a very higher value of accuracy, sensitivity,

specificity, and AUC. For instance, Patel et al. [34] report

94% for sensitivity, 77.9% for specificity, and 87.7% for
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FIGURE 8. Comparative analysis of different classifiers in discriminating
ictal and interictal states using PFEN.

overall accuracy. Yuan et al. [40] report 91.72% for sen-

sitivity, 94.89% for specificity, and 94.9% accuracy.

Park et al. [35] used SVM and reported a mean seizure pre-

diction sensitivity of 90.8% using 19 patients. Patel et al. [34]

performed binary classification using SVM on 18 patients

and find the sensitivity of 93.8% to 97.5%. Geng et al. [33]

performed epileptic seizure detection using the improved

wavelet neural network over 20 patients and achieved a recog-

nition accuracy of 98.9%, 96.72% sensitivity and 98.91%

specificity. Patnaik et al. [38] uses feed- forward propagation

ANN for classification of epileptic seizure and obtained

sensitivity of 91.29% and specificity of 99.19%. Alickovic

et al. [41] decomposed EEG signal using wavelet packet

decomposition along with different classifiers to achieve the

classification accuracy of 99.5%. Subasi et al. [42] decom-

posed EEG signals into time-frequency sub-bands using

DWT with optimized parameters of SVM and GA to achieve

classification accuracy of 99.38% over Bonn dataset. From

all the analysis results and discussion above, it can be said

that the performance along with the robustness of any frame-

work could be enhanced by the ability of feature extraction

technique, i.e., entropy and by choosing optimized parame-

ter value of classifiers. From the simulations, we conclude

that due to obtained highly promising results, our proposed

method, combined with simple classifier’s such as artificial

neural network can be handy for the detection of epilepsy and

seizure detection problems.

VII. CONCLUSION

Epileptic seizures encompass huge portions of the cerebral

cortex, thus effective means of switching state from interictal

to ictal is exceptionally complex. Even in the same subject,

the involved cortical regions and the time consumed in the

development remain changed through every seizure onset.

Therefore, a swift and proficient detection technique capable

of discriminating interictal and ictal state is highly desired.

In this work, PFEN has been explored to see its potentials

toward discriminating the transitional change from interictal

to the ictal state of the human brain in a complex time

series extracted from multichannel EEGs. The classification

model uses PFEN and robust machine learning algorithms

with advance parametric tactics to get superior accuracy and

more profound knowledge to detect seizures for each specific

patient. The results of all subjects were compared for all

classifiers to check their performance. The artificial neural

network gives the most efficient and optimized results for

discrimination and diagnostic purpose than the traditional

approaches. The support vector machine was found second

best by optimizing their kernel and kernel scales. The classifi-

cation results varied significantly across subjects, signifying

abnormal activities in the brain and the potential advantage

of patient-specific seizure classification methods. The study

proposed a novel approach for automatic epileptic seizure

detection with a very high identification accuracy in classi-

fication with a low computational budget that can be further

used to construct real-time epileptic seizure detection system.

These findings indicate that PFEN has much better anti-

noise performance than the Permutation entropy and fuzzy

entropy. Also, it has much better seizure detection ability

than the current state of art entropy variants. PFuzzyEn is

not sensitive to noise, so it can be extended to analyze EEG

signals of other diseases and electromyography (EMG) and

electrocardiogram (ECG).

VIII. LIMITATION

Freiburg database is mixed with scalp and intracranial

recordings, so it might not be perfect for testing diverse

classification algorithms. Possibly amplitudes of intracranial

recordings, are higher partly due to the different locations

of electrodes and the filtering mechanism of the skull. Also,

this method uses stored offline data to assesses algorithms;

therefore, it’s not a suitable marker of the system’s ability,

because the data for training and testing algorithms are pre-

processed and filtered with significant features extracted. It’s

a substantial concern, in our future work we will be looking

towards implementing the real-time signals, using advances

in the big data and deep learning techniques.
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