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EPIMORPHICALLY CLOSED PERMUTATIVE VARIETIES
BY

N. M. KHAN

Abstract. We show that for semigroups all permutation identities are preserved
under epis and that all subvarieties of the permutative variety defined by any
permutation identity

X, X",     '   '   '    X„   -   X;   X;        '   '   '    X;    .

with « > 3 and such that ¡„ ^ n or ix ^ 1, are closed under epis. Finally we find
some sufficient conditions that an identity be preserved under epis in conjunction
with any nontrivial permutation identity.

1. Introduction and summary. We establish that for semigroups all permutation
identities are preserved under epis. A stronger result for commutativity has long
been known, namely that the semigroup dominion of a commutative semigroup is
also commutative; we show by a counterexample due to P. M. Higgins that this
stronger result is false for each (nontrivial) permutation identity other than com-
mutativity. Next we show that all subvarieties of the permutative variety defined by
any permutation identity

(1) xxx2 ■ ■ ■ xn = xhxh ■ ■ ■ x,n,

with n ^ 3 and such that in =£ [ix # 1], are closed under epis, thus generalizing
Theorem 4.1 of the author [10] which states that all commutative varieties are closed
under epis. Finally we find some sufficient conditions that an identity be preserved
under epis in conjunction with any nontrivial permutation identity.

2. Preliminaries. Let U, S be semigroups with U a subsemigroup of S. We say that
U dominates an element d of 5 if for every semigroup T and for all homomorphisms
ß, y: S -* T, uß = uy for all u e U implies dß = dy. The set of all elements of S
dominated by U is called the dominion of U in S, and we denote it by Dom5(£/). It
can be easily verified that Doms([/) is a subsemigroup of S containing U. Following
Howie and Isbell [8], we call a semigroup U saturated if Doms(U) # S for every
properly contained semigroup S.

A morphism a: A -* B in the category #of semigroups is called an epimorphism
(epi for short) if for all C e fé'and for all morphisms ß, y: B -* C, aß = ay implies
ß = y. It can be easily verified that a morphism a: S -* T is epi if and only if the
inclusion map i:  Sa -* T is epi, and the inclusion map /':   U -> S from any
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508 N. M. KHAN

subsemigroup U of S is epi if and only if Doms(í/) = S. In such a case S will be
called an epimorphic extension of U.

A most useful characterization of semigroup dominions is provided by Isbell's
Zigzag Theorem.

Result 1 [9, Theorem 2.3 or 7, Theorem VII.2.13]. Let U be a subsemigroup of
any semigroup S, and let d be any element of S. Then d e Doms({/) if and only if
either d e (7or there are elements a0, ax, a2,...,a2m g U, tx, t2,.. .,tm,y\,y2,. .-,ym
g 5 such that

d = a0tx,       a0 = yxax,

(2) JV»2i-Ä+lfl2i + li «2,-l'< = «21*1 + 1 (i = l,2,...,m-l),

a2m-lím = a2m. ^«2« = d-

These equations are called a zigzag of length m over U with value d and with spine a0,
ax,a2,...,a2m.

An identity of the form of equation (1) for some permutation /' of the set
{1,2,... ,n} is called a permutation identity. The permutation identity (1) is said to
be nontrivial if the permutation i is different from the identity permutation.

Result 2 [11, Result 3]. Let U and S be any semigroups with U a subsemigroup of
5. For any d G Doms((7)\ U, if (2) is a zigzag of shortest possible length m over U
with value J, then t¡, y}; g S \ U foij = 1,2,..., m.

Result 3 [11, Proposition 3.1]. Let S be any semigroup satisfying the identity (1)
with n > 3.

(i) For each y g (2,3,... ,n} such that Xj_xx¡ is not a subword of x{x¡ ■ ■ ■ x¡, S
also satisfies the permutation identity

xxx2 • • • Xj_xxyXj ■ ■ ■ xn = xxx2 ■   • Xj_xyxXj ■ • ■ xn.

(ii) If xx =*= x¡, then 5 also satisfies the permutation identity

xyxxx2 ■■■ xn =yxxxx2 ■■■ xn.

In the following results, let U and 5 be any semigroups with U a subsemigroup of
S and such that Doms(t/) = S.

Result 4 [11, Result 4]. If d g S\ U, then for any positive integer k, there exist
ax, a2,...,ak G t/and dk G S\ [/such that d = axa2 ■ ■ ■ akdk.

Result 5 [11, Corollary 4.4]. Let U satisfy a permutation identity (1) with in ¥= n.
Then, for each positive integer k,

SXXX2 ■ ■ ■ Xk = SXjXj2 ■ ■ ■ Xjk

for all xx, x2,.. .,xk g S, s g S\U, and for any permutation/ of the set (1,2,.. .,k}.
Result 6 [11, Corollary 4.2]. If U satisfies a nontrivial permutation identity, then

for each positive integer k,

SX, X -,      ■••     _/Ç,(     -    SX :   X :        •*•      JÇ  ■   I
1      L k J\     72 Jk

for ail s, t g S\ U, xx, x2,...,xk g S, and for any permutation j of the set
{1,2,...,k).

The notations and conventions of Clifford and Preston [3] and Howie [7] will be
used throughout without explicit mention.
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EPIMORPHICALLY CLOSED PERMUTATIVE VARIETIES 509

The general question of which varieties are closed under epis has been studied in
semigroup theory, ring theory and elsewhere [2]. For example, in [4] Gardner has
shown that certain identities weaker than commutativity are not preserved under
epis of rings although the variety of commutative rings is closed under epis [1]. P. M.
Higgins [5] has shown that identities for which both sides contain a repeated variable
are not preserved under epis of semigroups. In showing that all varieties of
commutative semigroups are closed under epis [10], the author has generalized the
classic result of Isbell [9, Corollary 2.5] that commutativity is preserved under epis.
However, finding a complete determination of all identities which are preserved
under epis of semigroups still remains an open problem.

3. Epimorphisms of semigroups and permutation identities. An identity u = v is
said to be preserved under epis if for all semigroups U and S with U a subsemigroup
of S and such that Doms(U) = S, U satisfying u = v implies 5 satisfies u = v.

Theorem 3.1. All permutation identities are preserved under epis.

Proof. Let equation (1) be any permutation identity with n > 3. Without loss we
can assume that (1) is nontrivial. Take any semigroup U satisfying (1), and any
semigroup S containing U properly and such that Doms(t7) = S. We shall show
that S also satisfies (1).

For k = 1,2,...,«, consider the word x¡x¡ ■ ■ ■ xik of length k. We shall prove the
theorem by induction on the length of these words, assuming that the remaining
elements x¡    ,...,x, g U.

>k + V '      'n

First for k = 1, that is, when x¡ g S, and x¡,... ,x¡ g U, we wish to show that
equation (1) holds. When x¡ g U, (1) holds so we assume that x, g S \ U. By
Result 1, we may let (2) be a zigzag of shortest possible length m over U with value
xh-

First we introduce some notation:
wx(xi,xi,...,xi) = x,xi   ••• x, = ux(xx,x2,...,x„),

(3) ' \_ ( ï
w2\Xi^ X¡2>. . . ,X¡^) — XXX2  ■ • ■  Xn       U2\XX, X2,. . . ,Xn).

Case (i). ix = 1. Now
XkXh ' ' ' *<„ = >»«2m*i2 • * • xl, = Wl(a2m. *,y • ,*,„)

= ymwAa2m> xh,... ,x,n)    (since Usatisfies (1))

= yma2mx2 ■■• xn = xxx2 ■■■ xn,
as required.

Case (ii). 1 < ix < n. Now, putting^ = /',, we have
(4) xixh ■ ■ ■ x,n = yma2mxh ■ ■ ■ x(>   (from equations (2))

= ymwAa2m,xii,...,xin)

= ymw2(a2m> x¡2,... ,xln)    (since {/satisfies (1))

= ymxiX2 ■ ■ ■ Xj_xa2mxJ+x       xn

= ymxxx2 ■ ■ ■ Xj_xa2m^xtmz   (from equations (2),

wherez = x/+1,.. -,x„)

(Continues)
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510 N. M. KHAN

= ymxxx2 ■ ■ ■ Xj_xa2m_xb^\ ■ ■ ■ bj,mh'mz

(by Result 4, for some b(™\,... ,b(„m) g [/,

and t'me S\U, since tm g S\ U)

= ^««2(^1. x2,. . .,Xj_x, a2m_x, b(™\,.. .Mnm))t'mz

= .vm"i(*i, x2,... ,Xj_x, a2m_x, bjl\,.. .,b(m))t'mz

(since U satisfies (l)).

Now ux(zx, z2,...,zn) begins with zi = z¡, so the product (4) in S contains
yma2m_x which equals >>m_1a2m_2 (from equations (2)). Thus the product (4) above
equals

(5)
ym-iuAxi' x2,- ■ ■ ,Xj_x, a2m_2, bj+x,... ,bn    )tmz

= ym^iU2{xx,x2,...,xj_x,a2m_2,b^\,...,bY,))t'mz   (since Usatisfies (1))

= ym-xxxx2 ■ ■ ■ xJ.1a2m_2bj^l ■ ■ ■ bj,m)t'mz

= .V,h-i*i*2 • • • Xj_xa2m_2tmz    (since tm = b$\ ■ ■ ■ b(nm)t'mz)

= ym-ixix2 • • ' Xj_xa2m_3tm_xz    (from equations (2))

= yxxxx2 ■■■ Xj_xaxtxz

= yxxlx2 ■ ■ ■ Xj^aJ)^ ■ ■ ■ b^t[z

(by Result 4, for some
by7i,..-,b(nl)^ U,andt[ g S\í/, sincefj g S\U)

= yxu2{xx, x2,... ,Xj_x, ax, bf}x,... ,b^)t'xz

= yxux(xx,x2,...,xJ_1,ax,b^x,...,bj,1))t'xz    (since U satisfies (1)).

Again as before, product (5) in S contains yxâx which equals a0 (from equations (2)).
Thus the product (5) above equals

u1(x1,x2,...,Xj_1,a0,bft1,...,b<n)t'1z

= u2{xx, x2,.. .,Xj_x, a0, bf}x,... ,b^)t'nz    (since [/satisfies (1))

= xxx2 ■■■ Xj_xaQbf}x ■■■ b^t[z

= xxx2 ■ ■ ■ Xj_xa0txz    (since tx = ¿>jVi ■ • • b^t[)

= xxx2 ■■■ xn    (since a0tx = xl% = Xj, and z = xJ + x • • • x„),

which proves the result for k = 1 in Case (ii).
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Case (iii). ix = n. Now
x>ixh ' ' ' xt. = yma2mxil ■ ■ ■ xin

= ymxxx2 ■ ■ ■ xn_xa2m   (since [/satisfies (1))

= ymXiX2 ■ ■ • xn_xa2m_xtm    (from equations (2))

= yma2m-\Xh ■ • ■ xintm   (since U satisfies (1))

■ >'™-i«2m-2^2 • ' ' x,Jm   (from equations (2))

= ym-iXiX2 ■ ■ ■ xn_xa2m_2tm   (since [/satisfies (1))

= ym-ixix2 • ■ ■ x„-xa2m_2tm^x    (from equations (2))

■
= y\Xxx2 ■■■ xn_xaxtx

= yxaxx¡  • • • x¡ tx    (since [/satisfies (l))

= a0x¡   ■ ■ ■ x¡ tx    (from equations (2))

= xxx2 • • • xn_xa0tx

= xxx2 • • • x„   (from equations (2), since ix = n),

as required.
Remark 1. A proof for Case (iii) could also be obtained from the proof for Case

(ii) above by making the following conventions:
(a) the word xj+x ■ ■ ■ xn = 1;
(b)b}*\ = •••  =bik)= land/; = tkfoik= 1,2,..., m;
(c) the vector

\X\, x2,.. .,Xj_x, a2k_x, bj+,,...,bn   j = (xx, x2,...,xn_x, a2k_x)

foik = 1,2,. ..,m\
(d) the vector

\x1> x2,.., ,Xj_x, a2k_2, bj+l,. ..,o„   j = (xx, x2,- ■ ■ ,xn_x, a2k-2)

foik = 1,2,...,m.
So assume now that (1) is true for all x,, x, ,... ,x,     g S and all x,, x, ,... ,x,

g [/. We prove from this assumption that (1) is true for all x,, x,,... ,x, eS and
for all x,    , x,    ,... ,x,  g [/. We need not consider the case where x,  g [/, so we

'q+l '?+2 '     'n ',

assume that x,  eS\ U. As x,  G 5\ U and Doms([/) = S, by Resuit 1, we may
let (2) be a zigzag of shortest possible length m over U with value x,.

Put j = igandl = iq_x.
Case (i). I — j — 1. Now

xhxh ' ' ' xi» = xhx>2 ' ' ' xiq_¡\yma2m)x¡í¡+i • • • x,n

= XX     •••(x       V   )fli   x ---x

= xxx2 ■   ■ Xj_2(x^ iym)a2mXj+x ■•• xn

(by the inductive hypothesis)
(Continues)
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512 N. M. KHAN

= XjX2 •   • Xj_2x^ ¡(yma2m)xj+x ■   ■ xn

•Xj +1 ' ' ' x„

(since x,  =x,andx,     = x,_1),V lq J 'q-l J      L'7

— XXX2  • ■ •  Xj_2Xj_xXjXj + x

as required.
Case (ü). I < j — 1 andj < n. Now

(6)
^V ; J\, ; -A. : .A- ;

h 'q-l      'q 'n

= xh ■ ■ ■ xiçiyma2m ■ ■ • xin   (from equations (2))

= wAxtl, xh,... ,xiq tym, a2m,... ,x,J

= w2(xh, x,2,... ,xiq _jm, a2m,... ,x,J    (by the inductive hypothesis)

= w2(xii,...,xí^iym,a2m_ltm,...,xiii)    (from equations (2))

= xxx2 ■■■ x,_Ax,qiym)x¡+x ■■■ x^x(a2m„xtm)z    (wherez = xy+1 • • • x„)

= x,x2 • • • x,_x(xiq iym)xl+x ■ ■ ■ Xj_xa2m_xbj^¡ ■ ■ ■ b(nm)t'mz

(by Result 4 for some bffl,... ,<3<m) g U,
and t'me S\U, since tm g S\ U)

= u2(xx, x2,.. .,x¡_x, xiqiym, xl+x,... ,Xj_x, a2m_x, bj+{,... ,bn    Jtmz

— U\\xx,...,X/_X, xiq¡ym, x/+x,..,,Xj_x, a2m_x, b^x,...,bn    ymz

(by the inductive hypothesis).
Since ux(zx, z2,... ,zn) contains as a subword z,    z,, the product (6) in S contains

(xiq_iym)a2m-1  which equals (xlq iym_l)a2m_2 (from equations (2)). Thus the
product (6) above equals

(7)

uxyxx,... ,X[_X, xjqiym_x, x/+1,... ,Xj_x, altn_2, bJ+x,... ,bn    Jtmz

= u2yxx,... ,X/_X, xjq_iym-i, x/+1,... ,Xj_x, a2m_2, bj+x,... ,bn   jtmz

(by the inductive hypothesis)

= X]X2 •   • xl_xxiqiym_xx!+x ■■■ Xj_xalm^2bj+X        bn   tmz

= x,x2 • • • x,_xxiq iym_xx,+ x ■ ■ ■ Xj_xa2m_2tmz (since tm = bj?¡ ■ ■ ■ b<,m)t'm)

= xxx2 ■ ■ ■ x,_xxiqiym_xxI+x ■ ■ ■ xJ_,a2m_3im_1z    (from equations (2))

= X]X2 • • • xt_xxiq_iyxxl+x ■ ■ ■ Xj_xaxtxz

x,-iXlq_J1xl+x •■• xj__xaxb^x ••• b(^t'xz

(by Result 4 for some b%,..., b™ g [/,  t[ e S \ U, since t x g 5 \ U )

(Continues)
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EPIMORPHICALLY CLOSED PERMUTATIVE VARIETIES 513

= u2(xx,... ,X/_X, xiq^yx, x/+1,... ,Xj_x, ax, bj+x,.. .,b„  jtxz

= ux(xx,... ,x¡_x, xiq^yx, x/+1,... ,Xj_x, ax, bj+x,... ,bn  jtxz

(by the inductive hypothesis).
Now as ux(zx, z2,...,zn) contains z,    z,   as a subword, the product (7) in S

contains (x,    y\)ax which equals x,    a0 (from equations (2)). Thus the product (7)
above equals

ux(xx, x2,... ,x¡_x, xiq¡, x,+ x,... ,Xj_x, a0, bj+x,.. .,b„  jtxz

= u2(xx,... ,x¡_x, xjq¡, x/+1,... ,Xj_x, a0, bj+x,.. .,bn  Jtxz

(by the inductive hypothesis)

= x, • • • Xi_xxiq   xl+x • ■ • Xj_xa0bJ + x • ■ • bn txz

= x, •   • x¡_xx¡q  xl+x ■   • Xj_xa0txxJ+x • ■ ■ xn   (sincez = xy+1 • • • xn)

= xxx2 • • • x„   (since x,     = x¡, and a0tx = x,  = x-),

as required.
Case (iii). I <j — l,j = n. Now

x, x ■ x,'9-1    'q

■ • • x¡    yma2m ■ ■ ■ x,     (from equations (2))

■ x.

'1     '2 •q-l'

= x,x,.2 ■■■(xif_tym)a2m

= xxx2 ■   • x/_1(x,^_ijm)x/+1

Xi-Axia_.ym)xnx—    AlA1A2

• xn_xa2m   (by the inductive hypothesis)

■ xn_xa2m_xtm   (from equations (2))

x¡ tm   (by the inductive hypothesis)

x, tm    (from equations (2))

= x,.xÍ2 ---(x^ iym)a2m_1

= xhxh '" xiq_Ayma2m_x)-

= x,x,2 • • • xiq Aym-xa2m_2)

= xhxh ' ' ' \xiq iym-i)a2m^2

= x,x2 • • • x,_Axit_iym-i)xt+i ' ' ' xn-\a2m-2tm (by the inductive hypothesis)

= xxx2 ■ ■ ■ x,_x(xi    ym_x)xl+x ■ ■ ■ xn_xa2m_3tm_x    (from equations (2))

l-*2

= X, X,
'l     '2

= X, X,

= X, x¡'1     '2

as required.

Xi-Axi„_,yi)xi+X ,a,t.

(xi _ yA)a\ ' " xj tx    (by the inductive hypothesis)

VJ^i)- Xifi
■ x,    ac¡q-l     l • x, /,

••• x„_1a0t1    (by the inductive hypothesis)

x„    (from equations (2), since iq = n and /'    , = /),
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Remark 2. A proof for Case (iii) could also be obtained from the proof for Case
(ii) by making the following conventions:

(a) the word xJ+x ■ ■ ■ xn = 1,
<b)b}1\= •••  = b^=landt'k = tkfoik = l,2,...,m;
(c) the vector

[xx, x2,... ,x¡q¡yk, x/+1,... ,Xj_i, a2k_x, bj + x,... ,bn   j

= (xx,x2,...,xiqiyk,...,xn^x, a2k_x)    foik = l,2,...,m;

and

\xx, x2,... ,xjqiyk_x, xl+x,.. .,Xj_x, a2k_2, bj+x,. ..,bn   j

= (x,, x2,.. -,xiqiyk_x,. ■•,x„_1, a2k-2)

for A: = 1,2,...,m and wherey0 = 1.

Case (iv). j + 1 < I < n. We have

(8)
JC ;  .A. ; -A- ; -A ;  .A. ; .A : .A ; .A. ;

'l      '2 ln l\      '2 la-\      'a 'n'1      '2 •n '1      '2 ',-1      'q

iX'2    '  '  '   X',-l-= x,xh ■ ■ ■ xiq_^ma2mJcif+l • ■ • xim    (from equations (2))

= wAxh, xl2,.. .,x,riym, a2m, xiq+i,... ,x,J

= w2(xh,...,x:q iym, a2m, xiq+i,...,xin)    (by the inductive hypothesis)

= xxx2 • • • Xj_xa2mXj+x ■ ■ ■ x¡_xxiq iymx¡+l • • • xn

= xxx2 ■ • • Xj_xa2m_xtmXj+x ■   ■ xl_xxiq¡ymx!+l ■   ■ xn

(from equations (2))

= XjX2 •   • Xj_xa2m_xbj+X ■■■ bj+(i_j_X)tmXj+x ■■■ x¡_xxi^iymx¡+x • • • x„

(by Result 4 for some bj™\,... .^(/-y-i) e U,

and tme S\U since tm g S \ U)

= u2(xx, x2,... ,Xj_x, a2m_x, bj+x,... ,bj+(i_j_x-), tmxj+x ■ ■ ■ xiq_iym,

x/+1,... ,xn)

= ux(xx, x2,.. .,Xj_x, a2m_x, bj+x,... ,bj+(/_j_X), tmXj+x ■ ■ ■ xiq ^ym,

x/+1,... ,x„)

(by the inductive hypothesis).

Now since the word ux(zx, z2,...,z„) contains z, zi as a subword, the product
(8) in S contains (x, ¡ym)a2m_x which equals (x, _iym-i)a2m-2 (from equations
(2)). Thus the product (8) above equals

(y)      Wi(x1( x2,... ,Xj_x, a2m_2, bJ+x,... ,bj+^_j_Xy, tmXj+x

xl_lxiqiym_x, x/+1,. ■ ■ ,xn)

(Continues)
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= u2(xx, x2,.. .,Xj_x, a2m_2, bj1x,...,bj+(l_j_x^, tmxj+x

...   Xi„xxiq iym_x,   xl+x,...,x„)

(by the inductive hypothesis)

= X]X2 • • • Xj_xa2m_2bj+X ■   ■ bj+g_j_X)tmXj+x ■   ■ x¡_xxiq_¡ym-iX¡+1 • • • xn

= xxx2 •   ■ Xj_xa2m_2tmXj+x ■   ■ xl_xxjqiym_xxl+x ■   ■ x„

(smcetm = b$l---b}$l_J_l/m)

= xxx2 ■   ■ Xj_xa2m_3tm_xXj+x •   • x¡_xxiq iym_xx¡+x • • • x„

(from equations (2))

= X]X2 • • • Xj_xaxtxXj+x ■ ■ ■ x¡_xxiq iyxx¡+x        x„

= xxx2 •   • Xj_xaxbj+X •   ■ bj+y_j_V)txXj+l ■   • Xi_xxiq^yxxl+X • • • x„

(by Result 4 for somebßx,.. .,bf}(l_j_X) g [/,

and t'x g S \ U, since tx g 5\ U)

= u2(xx,... ,Xj_x, ax, bj+x,... ,bj+(i_j_V), txXj+x •   ■ xiqiyx, x/+1,.. .,xnJ

= ux(xx,... ,Xj_x, ax, bj+x,... ,bj+(i_j_Xy, txXj+x ■ • ■ xiq xy\, xi+x,... ,x„J.

As ux(zx, z2,...,zn) contains z, z, as a subword, the product (9) in S contains
(x, yx)ax which equals x, a0 (from equations (2)). Thus the product (9) above
equals

ux(xx,... ,Xj_x, a0, bj+x,.. .,o/+(/_y_1), txXj+x ■ ■ ■ xiq¡, x/+1,... ,x„j

- u2(xx,...,Xj_x, a0, bJ+x,...,bj+<l_j_x^, txXj+x ■   • xjq_i, x/+1,.. .,xnj

(by the inductive hypothesis)

= xxx2 ■•■ Xj_xa0bj+X •   • bj+(i_j_x-)txXj+1 ■   ■ Xi_xxjq_xl+X •■■ xn

— xxx2 • • ■ Xj_xa0txXj+x ■ • ■ Xi_xxiq jX/+1 x„

(sincetx~b% ■••bjl%l_j_1)ii)

= xxx2 • • • xn    (since x, _i = xh andx,  = a0tx = Xj),

as required.
Case (v). j + 1 = I. Now

X'iXh *'■

" xhxh ' ' ' xiq-iyma2m ■ ■ ■ xin   (from equations (2))

= x,xh ■■■(\_ly„)a2m--- xh

= xxx2 ■ • ■ Xj_xa2m(xiq_¡ym)x,+x • • • x„

(by the inductive hypothesis; if / = n, the product xl+x • • • x„ = l)

(Continues)
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= xxx2 • • • Xj_xa2m_xtm(xiq ^m)xl+x ■■■ xn    (from equations (2))

= xxx2 ■ • • Xj_xa2m_x(tmxiq_¡ym)x¡+x • • • xn

= xhxh ' ' ' x¡q-1it'nXlq_iym)a2m-iXl¡i,i ' ' ■ *,„    (by the inductive hypothesis)

= xilxh ■ ■ ■ xlq 2(tmxiq ¡ym_x)a2m_2xiq+i ■ ■ ■ x,n    (from equations (2))

= x,x2 • • • Xj_xa2m^2(tmxiq ¡ym_x)xl+x ■ ■ ■ x„   (by the inductive hypothesis)

= x,x2 • • • Xj_1a2m_3(tm_xxi<i_iym_x)x,+X ■■■ x„    (from equations (2))

= xxx2 • • • Xj_xax(txx¡q iyx)xl+x        xn

= xjxi   • • • x,    (tjX,    jJûjX,      • • • x,     (by the inductive hypothesis)

= xh*h ' ' ' xiq-2(tixiq-i)aoxiq+i ' " ' X'„   (f""01" equations (2))

= x,x2 • • • xy^1a0(t1x,   Jx/+1 • • • x„    (by the inductive hypothesis)

= x,x2 • • • xn    (from equations (2) and i    x = I = j + l),

as required.
Finally, a proof in the remaining Case (vi), namely when y + 1 < / and / = n, can

be obtained from the proof for Case (iv) above by making the following conven-
tions:

(a) the word x/+1 • • • x„ = 1;
(b) the vector

(xx, x2,. ..,Xj_x, a2k_x, bj+l,...,bj+(l_j_1), tkxJ+1 •   ■ x¡_xx¡q _iyk, xl+x,. ..,xnj

= yxx, x2,... ,Xj_x, a2k_x, bj+x,... ,bn_x, tkXj+x ■ ■ ■ xn_lx¡^_¡ykj

for k = 1,2,.. .,m;
(c) the vector

(xx, x2,... ,Xj_i, a2k_2, bj+x,... ,bj+y_j_x<), tkXj+x ■ • ■ x¡_xx¡q_¡yk-X, x/+1,... ,xnJ

= yxx, x2,.. .,Xj_x, a2k_2, bj+x,... ,o„_i, tkXj+x ■ ■ ■ xn_xxiq¡yk_1J

foik = 1,2,...,m and where y0 = 1.
This completes the proof of Theorem 3.1.
The following corollary gives a sufficient condition for Doms([/) to satisfy any

permutation identity that U satisfies and, thus, generalizes [9, Corollary 2.5] from
commutativity to any permutation identity.

Corollary 3.2 (to the proof of Theorem 3.1). Let U and S be any semigroups
with U a subsemigroup of S. Let U satisfy a permutation identity (1). If for all
s G S\U, s = as' for some a g U and s' g S, then Doms([/) also satisfies the
permutation identity (1) satisfied by U.
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Remark 3. Theorem 3.1 generalizes [9, Corollary 2.5], which stated that commuta-
tivity is preserved under epis of semigroups.

Example (P. M. Higgins, verbal communication). This shows that the nontriv-
ial permutation identities other than commutativity are not carried over to domin-
ions.

Let Fx be the free semigroup on a countable infinite set X = {x,,x2,...}. Let
T = ( Y), the subsemigroup of Fx generated by the set Y, where

00

Y == (J (x3/J+1x3n + 2, x3n+2, x3n + 2x3n + 3).
n = 0

Put S = Fx/p and T = T", where p is the congruence generated by the relation p0
which consists of the pairs (uxu2 ■ ■ ■ «„, u¡u¡ ■ ■ ■ u¡J with Uj g Tfoij = 1,2,... ,n,
and where / is a fixed non trivial permutation of the set (1,2,... ,n} with n > 3. It is
easy to see that for each n = 0,1,2,..., (x3„ + 1x3n+2x3„+3)p G Doms(T). Now we
show that Doms(T) does not satisfy the permutation identity corresponding to the
permutation i.

To see this consider the product (x,x2x3)(x4X5x6) • • • (x3„+1x3„+2x3„+3) in Fx.
Since no n members of T occur consecutively in this word, no elementary p0
transition is possible from this base and hence Dom5(7T) does not satisfy the
permutation identity corresponding to the permutation /'.

4. Epimorphically closed permutative varieties. In Theorems 4.1 and 4.4 the
bracketed statements are dual to the other statements.

Theorem 4.1. Let equation (1) be any permutation identity with n > 3 and such that
i„ J= n [ix # 1]. Then all identities, in conjunction with (1), are preserved under epis.

Proof. Take any identity
(10) u(xx,x2,...,xp) = v(xx,x2,...,xp)

and any semigroups U and S such that U is a subsemigroup of S, U satisfies (1) and
(10), and Doms(U) = S.

By Theorem 3.1, S satisfies (1). Now we show that S satisfies (10). Since S satisfies
(1), by the dual of Result 3, S also satisfies the permutation identity
(11) xxx2,...,x„xy = xxx2 ■■■ xnyx.

Lemma 4.2. Take any word w in variables xx, x2, ...,xk say, any ax, a2,..., ak G [/,
and any tx, t2,...,tk g S1 such that if t¡ G S, then a¡ = y¡b¡ for some y¡ g ,S\ Í7,
Z>, G S(i= 1,2,...,k). Then

w(a1t1,a2t2,...,aktk) = w(ax, a2,... ,ak)w(tx, t2,... ,tk).

Proof. Let xq be the first variable appearing in w for which tqe. S (whence
aq = yqbq for some^ g S \ U, bq g S). Then

w(axtx, a2t2,...,aktk) = w(axtx, a2t2,...,yqbqtq,.. .,aktk)

= w(ax, a2,... ,yqbq,.. .,ak)w(tx, t2,.. .,tk)    (by Result 5)

= w(ax, a2,... ,ak)w(tx, t2,... ,tk),
as required.
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We return to the proof of Theorem 4.1. Take any dx, d2,...,dp g S. If some
di G [/, there is a zigzag in S1 over u with value d¡, namely

d, = d,l = ld,l = Id,.

Now a^, d2,...,dp all have zigzags over 1/ in S1 of some common length [10,
Lemma 4.2], say

A  = /7(')/(0 /,(') = vi'M''"/   "o »i >     "o    y\ "i »

(12)
v(<)„(0 = v(i) n(i) _(i)     .(/) _ „(0,(0.Jjt   "2*        //i + l"2/c+l' "2/c-l'jfc u2klk+l

(i = 1,2,...,p, k = 1,2,...,m - 1),

"2m-l'm "2m' >m  "2m        ";'

where aj0 g [/ (/ = 1, 2,... ,p, j = 0,1,2,... ,2m) and f<'>, .y« g S1 (i =
1,2,. ..,/>, fl = 1,2,...,m), and further, for each dt■ g S \ Í/ we can assume that f^
yf> (= S\U(from the proof of [10, Lemma 4.2]).

In the following , we shall make free use of Lemma 4.2 without explicit mention.
We put x = (xx, x2,... ,xp). In this notation, the identity (10) is simply u(x) = v(x).

Put

d= (dx,d2,...,dp),

äk={akl\ak2\...,a^)        (k = 0,1,2,.. .,2m),
(13) ?,-(/» »»...,*«)       (? = l,2,...,m),

~yq=Ux\y?\---^p))     (?.= i,2,...,m).
We wish to show that u(d) = v(d).
By [10, Lemma 4.3], d g S' is in the dominion of [/' in (Sx)p, where T7, for any

semigroup T and any integer y > 2, denotes the cartesian product of y-copies of the
semigroup T; dhas the following zigzag of length w:

d = ä0tx,       ä0=yxäx,

(14)     ykä2k=yk + lä2k+x,       ä2k_Jk = ä2ktk+x        (k = l,2,...,m-l),

ä2m-Jm = á2m> ímá2m = «*>

whereâ, g (/'(îê 0,1,2,.. .,2m), andyq, tq g (SV(« = 1,2,. ..,m).

Lemma 4.3. Let the word v in (10) begin with x¡, say. If dj e S\ U, then
u(d) = v(d).

Proof.

u(d) = u(a0tx)    (from equations (14))

= u(ä0)u(tx)    (by Lemma 4.2, since each a^ = y^a^)

= v(yxäx)u(tx)    (since [/satisfies (10))

= v(yx)v(äx)u(tx)    (by Result 5, since y¡J) g S\U)

= v(yx)u(äx)u(tx)    (since Usatisfies (10))

(Continues)
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= v(yx)u(äxtx)    (by Result 5, sincey¡J) g S\U)

= v(yx)u(ä2t2)    (from equation (14))

= v(ym_x)u(ä2m_2tm)

= v(ym^x)u(ä2m_2)u(tm)    (by Result 5, since y^lx g S\U)

= v(ym_x)v(ä2m_2)u(tm)    (since [/satisfies (10))

= v(ym_xä2m^2)u(tm)    (by Result 5, since y^, g S\ [/)

= v(ymä2m_x)u(tm)    (from equations (14))

= v(ym)v(a2m^x)u(tm)    (by Result 5, since y™ g S\U)

= v(ym)u(ä2m_xtm)    (by Result 5, since >></> e S\ U,

and since [/satisfies (10))

- v(ym)u(ä2m)    (from equations (14))

= v(ymä2m)    {°y Result 5, sinceyW g 5\ i/and [/satisfies (10))

= u(J)    (from equations (14)).

This completes the proof of Lemma 4.3.
We return again to the proof of Theorem 4.1. We regard the variables xx,

x2,... ,xn as being "replaced by" dx, d2,.. .,dn respectively, and it will be convenient
for us to use the phrase "replaced by" in our proof. If all the variables in u and v are
replaced from [/, then u(d) = v(d) as required; hence we assume that in v, say, not
every variable is replaced from [/.

By Lemma 4.3, if the first variable of v is replaced by an element of S \ U, then
we have the required result again. Hence we consider now the case where further the
first variable of v is replaced by an element of U. Then

(15) v(x) = vx(x)v2(x)

for some words vx and v2 in the variables xx, x2,... ,x , where vx is of the maximum
length such that all the variables of vx are replaced by elements of U (the word vx is
nonempty and not all the variables xx, x2,... ,xp appear in vx). Let the first variable
of v2(x) be x,, say (that is, x¡ is the first variable appearing in v(5c) which is replaced
by an element of S\U).

For any i, if ¿, g S\U then y& g 5\ U for j = 1,2,...,m. Therefore, by
Results 1 and 2, for d¡ g S \ U, we can write

(16) yp = bj%V>   and   bf = zfcf   foij = l,2,...,m,

for some bj'\ c)° g [/,yj'\ zf eS\U. For each d, g [/, we put

(17) ¿,jo = cjo = ^(o = zjo=1.
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In addition to the notations (13), we shall also use the following:

bq={bq»,bq2\...,bY))        (q=l,2,...,m),

(18) ?<-(??> ??,-&>)     (« = i,2,...,m),
2,-(c« <f>,...,c<'>)        (q=l,2,...,m),
zq=(zf,z?,...,zq»)        (q=l,2,...,m).

Now from equations (17) and (18) we have

(i9) yq = ~bqyq = ~z<fqyr

Now

u(d) = u(ä0tx)    (from equations (14))

= u(ä0)u(tx)    (by Lemma4.2 sinceau° = y^al0 for /' = 1,2,...,p)

= v(ä0)u(tx)    (since [/satisfies (10))

= v(yxäx)u(tx)    (from equations (14))

= v(yiä2i_x)u(ti)    (this equality is essentially an inductive assumption;

we now obtain equality with v(yi + xa2i+x)u(ti+x))

= üi(.V,«^-i)«2(j'iä2,-i)"(ri)    (from equation (15))

=  !)l(a2,-l)"2(F2M)"(íl)

(since all variables of vx are replaced from [/)

= yi(ä2l-1)«2(>>/)i;2(a2l_1)t/(f,)    (by Result 5, since v2(ytä2i_x)

begins withyfl)a2^_x and.y,(/) g S\U)

= vAä2i-i)v2Cbiyi)v2(ä2,_1)u(t1)    (from equation (19))

= vAä2l-1)v2('bl)v2(yi)v2(ä2l_1)u(tl)    (by Result 5, sincebj° = zY>cY>

and z,(/) g S \ U from equation (16))

= D1(a2i_l)o2(ila2i-i)«('/)»a(j'i)    (by Result 5, since bjl) = z,(/)cf >

and z\n g S\U from equation (16))

(since all variables of u, are replaced from [/)

= B(Í,á2/-i)»('¡)l'2(j'¡)    (from equation (15))

= u(~bia2i_x)u(ti)v2(y¡)    (since [/satisfies (10))

= u(biä2i_xti)v2(yj)    (by Lemma 4.2, since if any t\J) g S \ U for anyy,

then ftp) = zp^P with z\n eS\[/ from equation (16))

= uÇbiâ2^tiJrX)v2(y/)    (from equations (14))
(Continues)
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= u(bja2i)u(ti+x)u2(yj)    (by Lemma 4.2, since if any tjl\ g S \ Ufor anyj,

then b\J) = z\j)c\j) with zjJ) g S\U from equation (16))

= v(hiä2i)u(ti+x)v2(yi)    (since [/satisfies (10))

= vAbiä^vA'bfi^uYt^^vAy,)    (fromequation (15))
- ^i(à2,>2(o,â2,)t/(t,+1)i;2(j,)

(since all variables of vx are replaced from [/)

= v1(:a2i)v2(bl)v2(y¡)v2{a2i)u(tt+1)    (by Result 5, since b\l) = z,(/)c,(/)

and z<° G S \ U from equation (16))

= D1(a2/)o2(i<Äaai)«(/i+1)    (by Result 5, since &<'> = zf^cf

and z<" éS\í/ from equation (16))

= vr(A3<-)02(Aa2()if(i(+i)    (from equation (19))

= v1(yiä2i)v2(yiä2i)u(ti+1)    (since all variables of ux are replaced from [/)

= D(Ä32i)«('l+l)
= v(yi+xä2l+x)u(ti+x)    (if i < w - 1)

= v(ymä2m) = v(d),

as required. This completes the proof of Theorem 4.1.
A restatement of Theorem 4.1 in terms of permutative varieties gives us a

generalization of the author's result [10, Theorem 4.1] which states that all commuta-
tive varieties are closed under epis.

Theorem 4.4. Let "V be the permutative variety defined by a permutation identity (1)
such that in =£ n [/', ¥= 1]. Then all subvarieties of the variety Yare closed under epis.

Call an identity u = v epimorphically stable or stable under epis if all identities in
conjunction with it are preserved under epis, by which we mean that if U is any
semigroup satisfying u = v and S is any epimorphic extension of U, then S satisfies
all the identities satisfied by U.

In his paper [6], P. M. Higgins has provided an example showing that some
permuation identities are not epimorphically stable, namely those permutation
identities which are consequences of the normality identity xyzw = xzyw. Theorem
4.4 gives a sufficient condition for permutation identities to be epimorphically
stable. So as a joint result, in the following theorem, we determine all the permuta-
tion identities which are epimorphically stable.

Theorem 4.5. A permutation identity (1) is epimorphically stable if and only if in =£ n
or ix =£ 1.

Proposition 4.6. Let U and S be any semigroups with U a subsemigroup of S and
such that Doms(U) = S. Take any d G S\U. Let (2) be a zigzag of length m over U
with value d with yx eS\(7 (for example if the zigzag is of shortest possible length).
If U satisfies any nontrivial permutation identity, then dk = aktx for any positive
integer k.
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Proof. We have
dk = (a0tx)k = a0tx(a0txY-2a0tx    (if * - 2 - 0, (a0tx)k-2 = l)

= yiaxtx(a0tx)      a0tx    (from equations (2))

= yxaxak~ltk   (by Result 5, sinceyx, fx e S\U)

= aktk"O'l '

as required.
In general, for any nontrivial permutation identity /, say, we have not yet been

able to determine completely which identities are preserved under epis in conjunc-
tion with L However, we have the following

Theorem 4.7. Let equation (1) be any nontrivial permutation identity. Then a
nontrivial semigroup identity I (one which is not satisfied by the class of all semigroups)
is preserved under epis in conjunction with (1) if I has one of the following forms:

(i) at least one side of I has no repeated variable;
(n)xp=yq,p,q>0;

(iii) x^Xj" • • • jcf = x{xq2 ■ ■ ■ x], p, q > 0, / > 1;
(iv) xpyq = yrx\p, q,r,s > 0;
(v)x' = 0,p>0;

(wi)xpyq = 0,p,q> 0.

Remark 4. We regard u = 0 (for some nonempty word u) as a semigroup identity:
We define it to mean the conjunction of the two identities uy = u = yu (in each case
y is a variable not occurring in the word u).

Proof. Take any semigroups U and S with U epimorphically embedded in S, and
such that U (and hence, S, by Theorem 3.1) satisfies the identity (1). We show that
each of the identities (i) to (vi) satisfied by U is also satisfied by S.

(i) That S satisfies (i), if U does, follows from [11, Theorem 3.5].
(ii) Assume Usatisfies (ii). Then for all u, v g [/we have up = vq = vp = uq.
Take any x, y g 5. We assume first that x g S \ U. By Result 1, we may let (2) be

a zigzag of shortest possible length m over U with value x. Then
xp = aptp   (by Proposition 4.6 and equations (2))

= (ji^iT'f (sincey\al =y\aiai = aoa\ e u)

= fxapx(axtx)p   (by Result 6, sinceyx,tx g S\U)

= yxapx(a2t2)p   (from equations (2))

= y[a[ap2tp2    (by Result 6, sinceyx, t2<= S\U)

= y[apaPtP   (since aP = aP)

= vpapap      tp^l"l"2m-l'm

= (>'i«i«2«-i'™)''   (by Result 6, sincejv'm^SXi/)

= (yxaxa2m)p   (from equations (2))

= {a0a2m)P = up    foralluGi/.
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Hence xp = up for all x g S, u g U and likewise yq = uq for ail y g S and t/ g [/.
Therefore xp = up = uq = yq, as required.

(iii) Assume Í/ satisfies (iii). For A: = 1,2,...,/, consider the word xpxxp2 • • • xpk of
length /t-p. We shall prove that S satisfies (iii) by induction on the length of these
words, assuming that the remaining elements xk+x,■ ■ ■ ,x¡ G [/.

First for k = 0, the equation (iii) is satisfied vacuously. So assume next that (iii) is
true for all xx, x2,...,xk_x g 5 and all xk, xk+x,...,x/ g [/. We prove from this
assumption that (hi) is true for all xx, x2,... ,xk e S and for all xk + x, xk + 2,... ,x¡ G
[/. We need not consider the case where xk G [/, so we assume that xk G S \ U. As
xk ^ S\U and Doms([/) = S, by Result 1, we may let (2) be a zigzag of shortest
possible length m over [/with value xfc. Assume first that 1 < k < I. Then

x^x^ • • • Xe = x^x^ • ■ • ap)fxxpk+x • • • xf   (by Proposition 4.6 and equations (2))

= x[xp2 ■ ■ ■ alb^W ■ ■ ■ b^pt'xpz
(by Result 4 and Proposition 4.6

for some bkl\,,..., bjP g [/, and t'x G S \ U,

since tx g S\ [/, and where z = xpk+x • • ■ xp)

= x{x\ ■ ■ ■ aq0bkllqx ■ ■ ■ b^1)qt'xpz    (by the inductive hypothesis)

= wyqa^bkll\ ■ ■ ■ b^qt'xpz   (by Result 6 and equations (2), since yx, t'x

g S \ U, and where w = xf • • • x%_x)

= wy^c^c^o ■ ■ ■ c£>la?ft£& ■ ■ ■ b^qt'xpz

(by Result 4 for some cY> ,...,ckV)_x g [/,

and .vi g 5\ Í/, since j, g 5\ [/)

= wyi9c{1)p • • • ckl)_pxa(bkllpx ■ ■ ■ bf)pt[pz    (since [/satisfies (iii))

= wy'xqc\1)p ■ ■ ■ c^lpxa[tpz    (since t{ = bffi ■ • • bf>pt{p)
= wy'xqc(x)p ■ ■ ■ c{klpxaPtPz   (by Result 6 and equations (2),

since^i, tx, t2 g5\ U)

= wy'mq-Am-1)p •■■ 4-I1)jP«i«-2^ (for somec*"1"1*,...,^!1'g [/

and^_x g S\£7)
= Hy;«.^--1)' • • • 4™T1)M„-2«l+)iB ■ ■ • 6/m)rm»z

(by Result 4 and Proposition 4.6 for some bkl\,.. .,b\m) g [/,

and t'm<sS\U, since im g 5 \U)

wym-lcl ck-\      a2m-2°k+\ °l       lmz

(since [/satisfies (iii))

= wvl     ni       /S(m)? ... h(m^it'pz    (since vq      = v">   Am^v>i ■■■ /•(m~1)?)wym-la2m-2Dk+l °l        lmz      \ M«CC ym _ x       ym-\Cx ck-\       )

(Continues)
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= ^Mm-iH + i7 • • • b\m^t'pz    (by Result 6 and equations (2),

sinceym_x,ym,t'meS\U)
=   wv'lAm)4   ■ ■ ■   Am^1n<t A(m)<7   . . .   him)qt>p,wymcl ck-la2m-l°k + l Dl        lm^

(by Result 4 and Proposition 4.6 for some c{m),... ,ck™\ g [/,

and^; eS\U, since y^ g 5\ U)

= wy'Jc[m)p ■ ■ ■ ckmJpaPm_xbYll ■ ■ ■ b\m)pt'¿z   (since [/satisfies (iii))

= wy'qc\^p ■ ■ ■ cY_\paPm_xtpmz    (sincebffl ■ ■ ■ *}">'# = t>)

= wy'mqc[^p ■ ■ ■ cYL\palmxpk + x ■ ■ ■ xf

(by Result 6 and equations (2),

since y'm, ?m g S\U, and sincez = x^ + 1 • • • xp)

= wy'qmc[m)q ■ ■ ■ Ck^\almxl + \ '- - x1    (since u satisfies (iii))

= ^«L^+i • • • A (since y^-"« ■ ■ ■ cY\q = yqm)
= xf ■ • • xqk_xxqkxqk + x ■ ■ ■ xq   (by Proposition 4.6 and equations (2)),

as required.
Finally, a proof in the remaining cases, namely when k = 1 or k = I, can be

obtained from the proof above by making the following conventions:
First when k = 1,
(i) the word w = 1,

(ii) the word c[i)p ■ ■ • ck']_px = c[i)q ■ ■ ■ c(k'lqx = 1 and>>/ = y, for i = 1,2,...,m.
Dually when k = I,
(i) the word z = 1,

(ii) the word b%l'x ■ ■ ■ b\i)p = bk¡\\ ■ ■ ■ b\')q = 1 and t'm = tm for i = l,2,...,m.
(iv) Assume U satisfies (iv) and take any x, y g S. First we consider the case

where x g S \ U and y g [/ (the case where x g [/ and j g S \ [/ is symmetric to
this case).

Since x g 5 \ [/, we may let (2), by Result 1, be a zigzag for x of shortest possible
length m over U. Now

x'V = yma2myq   (°y Proposition 4.6 and equations (2))

= ypyra2m   (since U satisfies (iv))

= ymy\a2m_xtmY    (from equations (2))

= ^'«L-iC   (by Result 6, sinceym, tm<=S\U)

= y> 2m- i.F'C   (since t7 satisfies (iv))

= (.Fm^m-JVC   (by Result 6, since.>;„,, im g S\U)

= (ym-\aim-2Yyqtm    (from equations (2))

= yZ-Am-iy't'm   (by Result 6, since ym_x, tmeS\U)

= y£-iyri2m-2tm   (since V satisfies (iv))

(Continues)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EPIMORPHICALLY CLOSED PERMUTATIVE VARIETIES 525

- ym-xy\a2m_2tmY   (by Result 6, since ym_x, tmeS\U)

= 7m-i>'r(a2m-3im-i)S    (from equations (2))

= y(y%axtx)'

= ypxyra[tsx   (by Result 6, sinceyx, tx g S \ U)

= y[a[yqt[   (since U satisfies (iv))

= (yia\)"yqt\    (by Result 6, sinceyx, tx g S\ U)

= apyqt[   (from equations (2))

= yras0t{   (since U satisfies (iv))

= yrxs   (by Proposition 4.6 and equations (2)),

as required.
So we assume next that x, y g S \ U. By Result 1, we may let (2) be a zigzag for x

of shortest possible length m over U. Then

xPyi = ypaPmyq   (by Proposition 4.6 and equations (2))

= ymyr(12m   (by the first part of the proof)

= ymyr(a2m-itmY   (from equations (2))

= y£y'a*2m-ifm   (by Result 6, since ym, tmeS\U)

= yma2m-\yqtm   (by the first part of the proof)

=  (.Vm«2m-l) V'm      (by Result 6, shlCC ym , tm<=S\U)

= (ym-ia2m-2YVC   (from equations (2))

= y^,-iap2m-2yqtsm   (by Result 6, since ym_x,tm g S\U)

= y^,-iyra2m-2tsm   (by the first part of the proof)

= ^-i>'''(«2m-2ím)i    (by Result 6, since^.,, tmeS\U)

= ym^\yr(a2m-itm-\Y    (from equations (2))

= y?yr{axtx)s

= y(yra[t[   (by Result 6, since yx,txeS\U)

= y{a{yqtxs   (by the first part of the proof)

= (yxax)pyqt[   (by Result 6, sinceyx, tx g S\U)

= apyqt¡   (from equations (2))

= .v^ii    (by the first part of the proof)

= yrxs   (by Proposition 4.6 and equations (2)),

as required. This completes the proof of part (iv).
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(v) Assume U satisfies xp = 0 and take any x, y g S; we show that xpy = yxp =
xp.

Case (a), x g 5e \ U, y g [/. Let (2), by Result 1, be a zigzag for x over U of
shortest possible length m. Then

xpy = yma2my   (by Proposition 4.6 and equations (2))

= ypapm   (since U satisfies (v))

= xp.

Similarly yxp = xp, as required.
Case (b). x g [/, y g S \ [/. Since .y g S \ U, we may let (2), by Result 1, be a

zigzag of length m over [/ with value y. Then

x^y- = xpa0tx = xpaxtx    (since [/satisfies (v))

= xpa2t2   (from equations (2))

= xpa3t2    (since U satisfies (v))

= x a2m_xtm

= xpa2m = xp   (since [/satisfies (v)).

Similarly yxp = xp, as required.
Caie (c). x, v G S \ [/. By Result 1, let (2) be a zigzag for x of shortest possible

length m over U. Then

■x^ = yma2my   (by Proposition 4.6 and equations (2))

= ypaPm   (from case (b) above)

= xp.
Similarly yxp = xp, are required.

(vi) Assume U satisfies (vi) and take any x, y, z g S; we prove that xpyqz =
zx^9 = xpyi.

Case (a), x, y g [/, z g 5 \ Í/. Let (2), by Result 1, be a zigzag of shortest possible
length m over U with value z. Then

x^?z = xpyqa0tx    (from equations (2))

= xpyqaxtx    (since [/satisfies (vi))

= xpyqa2t2    (from equations (2))

= xkyqa2m_2tm

= x/'>''?a2m_1tm   (since [/satisfies (vi))

= xpyqa2m   (from equations (2))

= xpyq   (since [/satisfies (vi)).

By a similar argument we can show easily that zxpyq = xpyq. Therefore xpyqz =
zxpyq = xpyq, as required.
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Case (b). y, z g [/, x g S \ U. As x g S \ U, by Result 1, we may let (2) be a
zigzag of shortest possible length m over U with value x. Then

xpyqz = ypaPmyqz   (by Proposition 4.6 and equations (2))

= ypaPmyq   (since U satisfies (vi))

= xpyq   (by Proposition 4.6 and equations (2)).

Also

zxpyq = zypaPmyq   (by Proposition 4.6 and equations (2))

= y>pmyq   (from Case (a))

= xpyq   (by Proposition 4.6 and equations (2)).

Therefore xpyqz = zxpyq = xpyq, as required.
Case (c). x, z g U,y g S\U. This case is dual to Case (b).
Case (d). z G [/, x, y g S \ U. Let (2), by Result 1, be a zigzag of shortest possible

length m over U with value x. Now

xpyqz = y„aPmyqz    (by Proposition 4.6 and equations (2))

= y>Lyq   (from Case (c))
= xpyq   (by Proposition 4.6 and equations (2)).

Since j' g ,S\ [/, by Result 1, we may let ^ = b0zx = sxbxzx be the first two lines
of a zigzag for y with bQ, bx g [/, and sx, zx g S\U. Now

zxpyq = zy^a^b^zl   (by Proposition 4.6 and equations (2))

= y£flpJ>W   (from Case (a))
= xpyq   (by Proposition 4.6 and equations (2)).

Therefore xpyqz = zxpyq = xpyq, as required.
Case (e). y g [/, x, z g S \ U or x G [/, _y, z G S \ U or x, >>, z g 5 \ Í/. As

z g 5 \ [/, by Result 1, we may let (2) be a zigzag of length m over U with value z.
Now

xpyqz = xpyqa0tx    (from equations (2))

= xpyqaxtx    (from Cases (b), (c) and (d))

= xpyqa2t2    (from equations (2))

= x"yqa2m_2tm

= xpyqa2m_xtm   (from Cases (b), (c) and (d))

= xpyqa2m   (from equations (2))

= xpyq   (from Case (d)).

The dual argument shows that zxpyq = xpyq. Therefore

xpyqz = zxpyq = xpyq,

as required, thus completing the proof of Theorem 4.7.
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