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Abstract

Background: Plants and their heterotrophic bacterial biofilm communities possibly strongly
interact, especially in aquatic systems. VWe aimed to ascertain whether different macrophytes or
their habitats determine bacterial community composition. We compared the composition of
epiphytic bacteria on two common aquatic macrophytes, the macroalga Chara aspera Willd. and the
angiosperm Mpyriophyllum spicatum L., in two habitats, freshwater (Lake Constance) and brackish
water (Schaproder Bodden), using fluorescence in situ hybridization. The bacterial community
composition was analysed based on habitat, plant species, and plant part.

Results: The bacterial abundance was higher on plants from brackish water [5.3 x 107 cells (g dry
mass)-'] than on plants from freshwater [1.3 x 107 cells (g dry mass)-'], with older shoots having a
higher abundance. The organic content of freshwater plants was lower than that of brackish water
plants (35 vs. 58%), and lower in C. aspera than in M. spicatum (41 vs. 52%). The content of nutrients,
chlorophyll, total phenolic compounds, and anthocyanin differed in the plants and habitats.
Especially the content of total phenolic compounds and anthocyanin was higher in M. spicatum, and
in general higher in the freshwater than in the brackish water habitat. Members of the Cytophaga-
Flavobacteria-Bacteroidetes group were abundant in all samples (5-35% of the total cell counts)
and were especially dominant in M. spicatum samples. Alphaproteobacteria were the second major
group (3—-17% of the total cell counts). Betaproteobacteria, gammaproteobacteria, and
actinomycetes were present in all samples (5 or 10% of the total cell counts). Planctomycetes were
almost absent on M. spicatum in freshwater, but present on C. aspera in freshwater and on both
plants in brackish water.

Conclusion: Bacterial biofilm communities on the surface of aquatic plants might be influenced by
the host plant and environmental factors. Distinct plant species, plant part and habitat specific
differences in total cell counts and two bacterial groups (CFB, planctomycetes) support the
combined impact of substrate (plant) and habitat on epiphytic bacterial community composition.
The presence of polyphenols might explain the distinct bacterial community on freshwater M.
spicatum compared to that of M. spicatum in brackish water and of C. aspera in both habitats.
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Background

In aquatic systems, bacteria occur often associated with
surfaces, e.g. in biofilms or on lake or marine snow [1].
Biofilm associated bacteria are most abundant at interme-
diate nutrient availability while either low or high nutri-
ent conditions favour planktonic growth of bacteria [2].
Biofilms are not only formed on abiotic surfaces but also
on living organisms such as aquatic plants and algae.

In freshwater and marine habitats, bacteria associated
with cyanobacterial blooms, diatom blooms, phytoplank-
ton [3], lake snow [4], and bacterioplankton [5,6] have
been investigated. Betaproteobacteria occur almost exclu-
sively in freshwater but not in saline habitats, while alp-
haproteobacteria are more abundant in marine than in
freshwater samples [5]. Alphaproteobacteria dominate
the planktonic bacteria in the North Sea, followed by the
Cytophaga-Flavobacteria-Bacteroidetes (CFB) group, and
all groups of bacteria display a seasonal succession [7].
Diverse bacterial communities dominate in cyanobacte-
rial blooms, including members of the CFB group and
betaproteobacteria [8]. Mainly members of the CFB group
and alphaproteobacteria, especially Roseobacter, are
attached to marine diatoms [9,10]. Members of the CFB
group and alpha-, beta-, and gammaproteobacteria have
been identified by molecular methods on the chloro-
phytes Desmidium devillii, Hyalothexca dissliens, and
Spondylosium pulchrum [11]. In general, the bacteria
associated with diatoms and some chlorophytes that have
been studied are mostly heterotrophic. In contrast, infor-
mation about bacterial biofilms on aquatic macrophytes
is scarce. A general overview and comparisons of attached
and planktonic bacterial communities in freshwater and
marine habitats is given in [12,13] and references therein.

Submerged macrophytes are, in addition to algae, the
main primary producers in lakes; they structure the littoral
zone and prevent resuspension of sediments, thus ena-
bling clear water states [14]. The freshwater macrophytes
Myriophyllum spicatum and Chara globularis, and possi-
bly also other Chara species, produce secondary com-
pounds such as polyphenols and cyclic sulfur
compounds, which exert allelopathic activity against algae
and cyanobacteria [15,16]. Antibacterial cyclic quaternary
amines have been isolated from C. globularis|17]. Hydro-
lysable polyphenols of M. spicatum, especially tellima-
grandin II, inhibit photosystem II of cyanobacteria [18].
Plant polyphenols may have antimicrobial activity, but
some bacteria may also overcome polyphenol-based
plant defences [19].

Not only secondary metabolites but also nutrients possi-
bly affect biofilm density and composition. Depending
on their life cycle stage, macrophytes may release low to
substantial amounts of macronutrients [20], and at times
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high concentrations of micronutrients [21]. Especially
older plant parts may leak both organic compounds and
inorganic nutrients [22]. Nutrient conditions affect the
impact of submerged macrophytes on bacterioplankton:
Vallisneria americana has a positive impact on bacterio-
plankton density under high NH,* conditions, but a neu-
tral or negative impact when NH,* is limiting [23].

Biofilms can be both beneficial and detrimental for sub-
merged macrophytes. On the positive side, epiphytic bio-
films provide organic compounds and carbon dioxide to
the macrophytes and enhance nutrient recycling [24]. Fur-
ther, the biofilm bacteria Roseobacter gallaciencis and
Pseudoalteromonas tunicata that colonize the marine
alga Ulva australis produce compounds against fouling
organisms [25], and axenic {//va /inza require bacteria to
restore the typical growth form, and some bacteria even
enhance the algal growth rate [26,27]. Negative impacts
on submerged macrophytes could arise from increased
shading by thick biofilms and possibly also from patho-
genic bacteria present in the biofilm. Macroalgae can also
have negative effects on epiphytic bacteria. For instance,
bacterial colonization of the marine red algae Bonnemai-
sonia hamifera and Delisea pulchra is inhibited by algal-
released secondary metabolites [28,29]. These furanones
also affect the swarming motility of Serratia liguefaciens
[30] and indirectly affect larval attachment [31]. Whether
or not such chemical interactions between plants and bac-
teria are important for biofilm density and community
composition on aquatic macrophytes is unknown. The
only study addressing microbial diversity on M. spicatum
showed that the biofilm was dominated by gammapro-
teobacteria and members of the CFB group [32]. Bacterial
epiphytes of C. aspera have not been described before.

Given that a strong interaction might exist between plants
and their associated heterotrophic biofilm, especially in
aquatic systems, we questioned whether different macro-
phytes (substrate, plant age) or the respective habitat
determines bacterial community composition. We
selected two common, allelochemically active, submerged
macrophytes, Chara aspera and Myriophyllum spicatum,
sampled in freshwater (Lake Constance) and brackish
water (Schaproder Bodden). We identified plant species,
plant age, and habitat-specific differences and similarities
of the bacterial density and community composition.

Results

The two plant species, each from two different habitats,
exhibited distinct morphological and chemical character-
istics. The organic content of the plants of each species
and from each habitat differed, but the upper or lower
parts of each plant sampled did not differ in organic con-
tent (Figure 1; 3-way ANOVA, Table 1). Chara aspera had
a lower organic content (40.9% + 14.4, mean + SD, n =
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12) than Myriophyllum spicatum (51.7% + 11.6, mean +  0.079), owing to a larger difference in organic content of

SD, n = 12). Freshwater plants had a much lower organic ~ C. aspera from the two sites than that of M. spicatum. The

content (35.1% =+ 9.4, mean + SD, n = 12) than brackish  significant interaction term between habitat and plant

water plants (57.5% + 6.6, mean + SD, n = 12). Only a  part is due to the observed differences of plant parts in

marginal interaction of plant x habitat was found (p =  Lake Constance; the organic content of the plant parts did
80 not differ in plants from Schaproder Bodden.

Myriophyllum spicatum contained more phenolic com-
pounds than C. aspera [97-173 mg (g dry mass)! vs. <1
l mg (g dry mass)-!; Table 2] and M. spicatum from Lake
Constance had a slightly higher polyphenol content than
M. spicatum from Schaproder Bodden [apices: 173 + 21
— h mg (g dry mass)-!and 120 + 33 mg (g dry mass)-!, respec-
tively; Student's #test: P = 0.02]. Also the anthocyanin
content was much higher in M. spicatum than in C
aspera. In both habitats, the anthocyanin content of C.
aspera was <0.1 mg (g dry mass)-!; the anthocyanin con-
= = tent of M. spicatum from Schaproder Bodden was slightly
lower than that of M. spicatum from Lake Constance
[approx. 0.5 mg (g dry mass)!vs. 1.0 mg (g dry mass);
Student's #test: P = 0.005, Table 1]. The chlorophyll 2and
b contents were highest in the apical shoots and upper
leaves of M. spicatum from Lake Constance (Table 2).
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The carbon content (Table 2) of C. aspera was about half
of that of M. spicatum, possibly in part owing to the over-
all lower organic dry mass of the former. Chara asperaalso
contained less nitrogen and phosphorus per g dry mass
than M. spicatum when whole plants were considered.
The C/N molar ratio ranged from about 15 in apices of M.
spicatum fromLake Constance to 31 in stems of M. spica-
tum from Schaproder Bodden. The C/P molar ratio
ranged from 436 in apices of M. spicatum to more than
1373 in C. aspera from Lake Constance.

LC C upper -
LC C lower A

SB C upper A
SB C lower -
LC M upper A
LC M lower A

SB M upper -
SB M lower -

Figure |

Proportion of organic dry mass in plant samples col-
lected at all sites. SB: Schaproder Bodden, LC: Lake Con-
stance, C: Chara aspera, M: Myriophyllum spicatum; upper and
lower indicate plant parts analysed; n = 3; error bars indicate
SE. We determined the bacterial abundance based on plant

dry mass since there are no reliable surface area-to-bio-
mass ratios for M. spicatum and C. aspera from the two

Table I: Statistical analysis

% Plant organic matter Ash-free dry mass Total bacterial cell counts Planctomycetes CFB
Source of DF F P F P F P F P F P
variation
Habitat | 101.63 <0.001 13.721 0.002 25.963 <0.001 30.970 <0.001 0467  0.504
Plant | 24.481 <0.001 3.746 0.071 1.944 0.182 26.623 <0.001 45454 <0.001
Plant part | 0.0563 0.815 0.183 0.674 21.229 <0.001 3.705 0072 21.018 <0.001
(PP)
Habitat x PP | 3510 0.079 0.0307 0.863 2.606 0.126 10618 0.005 0.538 0.474
Habitat x | 5.249 0.036 2.253 0.153 10.499 0.005 0.484 0497 4901 0.042
Plant
Plant x PP | 1.087 0313 0.0479 0.830 0.0246 0.877 0.0998  0.756 7.105 0.017
Habitat x | 0.505 0.488 0.121 0.732 <0.001 0.995 1.179 0.294 14.113 0.002
Plant x PP

3-way ANOVA for selected parameters. Data for the CFB were arcsin transformed; for planctomycetes, x!/4 transformation was used.
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Table 2: Chemical parameters measured in plants
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Total phenolic content
[mg (g dry mass)-']

Anthocyanin
[mg (g dry mass) ']

Chlorophyll a and b
[mg (g dry mass)']

LC SB LC SB LC SB
C. aspera 0.9 £ 0.08 0.7+0.12 0.05+0 0.06 +0 1.9+0.17 1.2 £0.02
M. spicatum
Apex 173 £ 21 120 + 33 0.9 £0.02 0.52 £ 0.08 68+ 1.3 23 +0.26
Upper leaves 120 + 29 97 £5 08+0.2 0.50 £ 0.01 84+23 23+0.28
Upper stem 13313 100 £ 9 1.4 £ 0.1 0.81 £0.15 1.8 0.6 1.0 £ 0.04
(o N P
[mg (g dry mass)'] [mg (g dry mass)'] [mg (g dry mass)']
LC SB LC SB LC SB
C. aspera 206 + 4 179 £ 15 I+l 14 +0.12 04 +0.1 0.68 + 0.06
M. spicatum
Apex 425 +20 357 £35 36+9 24+8 26%12 24+ 15
Upper leaves 384 37 3635 27+ 6 16 +3 1.2 1.3+0.33
Upper stem 400 + 7 379 £25 15+3 14+3 0902 --

LC: Lake Constance, SB: Schaproder Bodden, n = 3, mean + SD

habitats. The bacterial abundance in the two habitats and
on the different plant parts differed significantly, but did
not differ significantly between the two plant species (Fig-
ure 2, Table 1). In general, we found higher a bacterial
abundance on plants from Schaproder Bodden [5.1 x 107
+ 3.9 x 107 cells (g dry mass)!; mean + 1 SD] than on
plants from Lake Constance [1.3 x 107 + 0.7 x 107 cells (g
dry mass)!]. The lower plants parts from Schaproder Bod-
den had higher bacterial cell counts than the upper plant
parts, while cell counts on lower plant parts from Lake
Constance were only marginally higher than the counts
on upper plant parts (Figure 2), resulting in a significant
habitat x plant part interaction (Table 1, P = 0.005). The
ash-free dry mass differed significantly between habitats,
and the organic content of the plant samples differed sig-
nificantly between habitats and plant species but not
between plant parts (Table 1). The general pattern of bac-
terial abundance remained when calculated on an organic
dry matter basis (Figure 2).

The composition of the bacterial biofilm on the two plant
species was similar except for the abundance of members
of the CFB group and planctomycetes (Figure 3). On both
plant species in both habitats, bacteria of the CFB group
were the most abundant bacterial group and reached up
to 35% of the total cell counts. The CFB counts correlated
positively with all measured chemical parameters (Pear-
son correlation: carbon: r = 0.637, P = 0.0008; nitrogen: r
= 0.666, P = 0.0003; phosphorus: r = 0.755, P < 0.0001;
chlorophyll: r = 0.433, P = 0.0344; total phenolic com-
pounds: r = 0.685, P = 0.0002). The number of CFB cells

was generally higher on M. spicatum than on C. aspera
and higher on upper parts of both plant species. The dif-
ferences were not uniform and resulted in significant
interaction terms (Figure 3; Table 1), which indicated spe-
cific habitat, plant, and plant part patterns.

The second major group of bacteria in the biofilms were
alphaproteobacteria, which accounted for 3-17% of the
DAPI counts. The abundance of alphaproteobacteria did
not differ between plant species and habitats (3-way
ANOVA, df = 1, F = 4.1, P = 0.05). Beta- and gammapro-
teobacteria abundance was similar on both plant species
and in both habitats (3-way ANOVA, df = 1, F = 1.257, P
=0.279;df =1, F=1.982, P = 0.178). Actinomycetes were
the least-abundant group, and their abundance did not
differ between plant species (0.7-2.0% of DAPI counts, 3-
way ANOVA, df =1, F=1.179, P = 0.294).

Interestingly, the proportion of planctomycetes differed
between habitat and plant species. In Lake Constance,
almost no planctomycetes were detected on M. spicatum,
but they made up 2-3% of all cell counts on C. aspera. In
Schaproder Bodden, planctomycetes were found on both
plant species, with slightly higher numbers on the upper
plant parts (2-6% of DAPI counts) than on the lower
plant parts, but there were no differences between the
plant species (Figure 3, Table 1). We found negative corre-
lations of this group with carbon (Pearson correlation; r =
-0.507, P = 0.0114), nitrogen (r = -0.433, P = 0.0343),
chlorophyll (r = -0.648, P = 0.0006), and total phenolic
content (r =-0.449, P = 0.0278).
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Figure 2

Total bacterial cell counts determined by DAPI
staining. Black bars: counts (g dry mass)-!; grey bars: counts
(g ash-free dry mass)-!. SB: Schaproder Bodden; LC: Lake
Constance; M: M. spicatum; C: C. aspera. n = 3; error bars
indicate SE.

Overall, the bacterial community composition on M. spi-
catum in Lake Constance differed from that on C. aspera
in both habitats and even from M. spicatum in Sch-
aproder Bodden (Figure 4).

Discussion

To our knowledge, this is the first study comparing bacte-
rial biofilms on two macrophytes in brackish and fresh-
water habitats. Our data support the findings of other
studies of biofilms on aquatic organisms, especially dia-
toms and cyanobacteria, where CFB and alphaproteobac-
teria make up major parts of the biofilm [8,10]. The total
bacterial cell counts on the two plant species revealed that
habitat and plant part seem to be more important for epi-
phyte bacterial abundance than the plant species.
Although surface area-to-dry mass ratios have been deter-
mined in other studies, e.g. Myriophyllum spicatum 1205
cm? (g dry mass)-! and Nitellopsis obtusa (starry stone-
wort) 560 cm? (g dry mass)! [33], we decided not to cal-
culate bacterial density based on plant surface area
because our computer-based image analysis of M. spica-
tum leaf area showed that the calculation of surface area
based on dry mass cannot be averaged over the whole
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plant. The surface area-to-dry mass ratio was 3500 cm? (g
dry mass)-! for freshwater M. spicatum apices and 1600
cm? (g dry mass)-! for the lower parts of the same plant.
Such a difference would amplify our findings that lower
shoots harbour a higher abundance of bacteria. Freshwa-
ter Chara spp. had a surface area-to-biomass ratio of only
122 cm? (g dry mass)!, which would yield even higher
bacterial densities on this plant. In general, bacterial
counts were highest on lower leaves close to the sediment
(Figure 2). This seems reasonable since biofilm on older
leaves should be thicker, thus containing more cells.
Older leaves also contain less allelopathic compounds
and are leakier than younger leaves, which might influ-
ence the nutrient availability. The nutrient content of the
water column could be higher close to the sediment; this
could also have an impact, but was not assessed in this
study. Differences between the total bacterial cell counts
on plant species from the different habitats might also be
a consequence of pH, temperature, salinity and water
retention time, which have been also found to influence
community composition [34,35].

Alpha-, beta-, and gammaproteobacteria were present on
both macrophytes in similar abundance, with gammapro-
teobacteria having the lowest counts of the proteobacte-
ria. The least-abundant group was the actinomycetes
(0.7-2.0% of DAPI counts). Not all members of this
group might have been detected with the FISH probes
because of the generally thicker cell walls of gram-positive
bacteria. Our EUB probe, for example, detected only 50-
80% of all DAPI cell counts (data not shown). The cover-
age of all bacteria together could probably have been
higher if a combination of three different EUB probes
were used [36], but since the planctomycetes, which are
often missed by the single EUB probe used, did not make
up a major amount of the biofilm, our results would not
have changed dramatically. The total counts of all group-
specific probes did not account for all eubacterial counts.
We therefore assume that we did not detect all bacterial
groups present in the biofilm of the two plant species, but
we did use probes for the most common groups in bio-
films and aquatic systems.

Alpha- and betaproteobacteria are the most abundant
bacteria in lake snow aggregates in Lake Constance, and
CFB are only found in hypolimnic particles, where they
are considered to degrade refractory compounds such as
chitin and cellulose [37]. Betaproteobacteria in the pol-
luted river Spittelwasser dominated biofilms formed on
glass slides throughout the year, followed by alphaproteo-
bacteria, with seasonal maxima of CFB and planctomyc-
etes, but gammaproteobacteria were never abundant [38].
Comparably, alphaproteobacteria, followed by CFB, were
dominant in biofilms on stainless steel and polycarbonate
exposed in Delaware Bay, and betaproteobacteria were
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Figure 3

Biofilm composition in Lake Constance (left) and
Schaproder Bodden (right). A and B, M. spicatum upper
section; C and D, C. aspera upper section; E and F, M. spica-
tum lower section; G and H, C. aspera lower section. n = 3;
errors bars indicate SD. ALF: alphaproteobacteria; BET: bet-
aproteobacteria; GAM: gammaproteobacteria; PLA: plancto-
mycetes; HGC: actinomycetes; CFB: Cytophaga-
Flavobacteria-Bacteroidetes.

almost absent [39]. In our study, we saw a comparable
picture, with CFB mostly dominating the biofilm on mac-
rophytes, followed by alpha- and betaproteobacteria. Dis-
tinct differences for habitat and plant species were found
for the members of the CFB group and planctomycetes.
Especially the abundance of planctomycetes differed
between plant species and between the plant parts. Planc-
tomycetes are found in a wide variety of habitats and are
known to colonize surfaces [40]. Earlier studies on lake
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v Stress: 0.12
A
A
v v
A A
v VV
A vy VVA A
A g YA
NN
A
v
Figure 4

Non-metric dimensional scaling plot of the bacterial
community composition on all plant samples. Grey
triangles: M. spicatum, white triangles: C. aspera. Striped trian-
gles: samples from Schaproder Bodden; non-striped triangles:
samples from Lake Constance. Upper and lower plant parts
are denoted by triangles pointing upwards and downwards,
respectively. Data are x!4 transformed.

snow in Lake Constance did not look for this bacterial
group, and a comparison of lakes and oceans found only
low numbers in freshwater and hardly any in the marine
bacterioplankton [5,37]. The authors of the latter study
argue that this might be due to low abundance and that
FISH was at the range of its detection limit. This could also
be the case in our study since we only found low abun-
dances. Based on our data and the meagre knowledge
about planctomycetes ecology, we propose that either
nutrient content or plant age (senescence) might account
for differences in the abundance of planctomycetes
because of the strong negative correlations with carbon,
nitrogen, chlorophyll, and total phenolic content. This is
supported by a study of marine planctomycetes, which
were affected by organic compounds [41], and the obser-
vation that M. spicatum excretes substantial amounts of
organic compounds [42]. Planctomycetes occur in many
different habitats, yet their ecology is unexplored since
only a few species have been cultivated [43].

The dominance of the CFB group in all our samples is not
unusual, but is nevertheless interesting because we found
distinct differences between plant species and plant parts.
The CFB counts correlated positively with plant carbon
and nutrient content as well as with chlorophyll and phe-
nolic compounds. Members of the CFB group have often
been described as major components of biofilms and are
known to degrade rather complex molecules that occur in
the high molecular mass fraction of dissolved organic
matter [44]. This is important for other bacterial groups
that are not capable of degrading such molecules but
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thrive on the degradation products [24]. Considering that
alphaproteobacteria are more likely to degrade labile
organic matter [37,45], this group could depend on deg-
radation products of CFB or betaproteobacteria. The cor-
relation of alphaproteobacteria with CFB (r = 0.444, P =
0.03) might be evidence for this.

We found that habitat had a distinct influence on both
planctomycetes and members of the CFB group. The Sch-
aproder Bodden is a shallow coastal area of the Baltic Sea
and has a higher salinity than Lake Constance. Salinity is
in fact a major environmental determinant of microbial
community composition [35]. Whether or not the trophic
state of the habitat influences biofilm density and compo-
sition remains open. Epiphytic algae are influenced by the
trophic state, especially nitrogen availability, but only
indirectly or not at all by host species [46]. Under
eutrophic conditions, epiphytes should receive more
organic and inorganic resources from the surrounding
water and should be less dependent on plant-exuded
compounds. It is unlikely that plant nutrient content
influences the algal biofilm since plants relocate only
small amounts of macronutrients [20]. This, however,
does not exclude the possibility that the epiphytic algal
composition might influence the composition of hetero-
trophic bacteria.

Only M. spicatum from Lake Constance exhibited a dis-
tinct bacterial biofilm community compared to M. spica-
tum from Schaproder Bodden and C. aspera from both
habitats (Figure 4). Perhaps the phenolic content of the
plant species in the different habitats is responsible for
this effect. While C. aspera contains almost no phenolic
compounds, M. spicatum has high concentrations of total
phenolic compounds and anthocyanin, especially in the
samples from Lake Constance.

We propose that the bacterial community composition is
rather determined by the presence or (near) absence of
phenolic compounds and not by their concentrations,
since the concentrations between the upper and lower
shoots in both habitats are rather similar. The association
of polyphenol-degrading bacteria with M. spicatum [47]
might be evidence for this. A direct proof of the impact of
phenolic compounds on biofilm composition is difficult
to achieve, and complex molecules, especially tannins,
can be a difficult substrate for some bacteria [19] and may
have caused this pattern. We also cannot rule out other
factors such as salinity, pH, temperature, and dissolved
organic carbon to explain these differences [48]. Dis-
solved organic matter produced by plants and epiphytic
algae is usually subjected to photolysis [49] but can also
be degraded by bacteria capable of degrading high molec-
ular weight compounds [44]. The resulting degradation
products as well as carbon dioxide and oxygen recycling
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can be of mutual benefit for both primary producers and
heterotrophic bacteria. Biofilm bacteria are also known to
produce compounds that can influence phototrophs ben-
eficially or detrimentally [25]. Both plant species contain
allelochemicals known to inhibit bacterial or algal growth
[16,50].

Conclusion

We present one of the first studies investigating hetero-
trophic bacterial communities on aquatic plants. To eluci-
date further which bacterial groups are active and
contribute metabolically to processes within the biofilm,
further approaches such as MICRO-FISH could be
applied. To gain insight into the bacterial groups involved
more specific probes for proteobacteria and CFB should
be used. Also archaea could be of interest since they play
a major role in the root region of various aquatic plants.
Our data suggest an apparent impact of plant species,
plant age and habitat on epiphytic bacterial communities.

Methods

Plants

Brackish water samples of Chara aspera and Myriophyl-
lum spicatum were collected on 24 October 2006 in the
Schaproder Bodden, east of the Isle of Hiddensee (N
54°27.4627'; E 13°07.5664"). Three plants each were col-
lected by snorkelling in 0.7-1 m depth, stored in artificial
brackish water (8%o, the same salinity as in the Bod-
den;[51]) with 3.5% formaldehyde (final concentration).
Freshwater plants were sampled at the southwest shore of
the Isle of Reichenau, Lake Constance, near a gravel ridge
(N 47°42.247, E 9°02.289). Three replicates each were
collected on 6 November 2006 at a depth of 0.7-1.2 m for
M. spicatum and 2.5-3 m for C. aspera. The plants were
transported in separate sterile tubes to the laboratory,
where they were fixed with 3.5% formaldehyde (final con-
centration). All samples were stored at 4 °C until process-
ing started on 7 November 2006. The plant samples were
divided into an upper section of the plants apices, approx.
5 cm long, and a lower section, approximately 5-10 cm of
stem length above the sediment.

Biomass and chemical analyses

Myriophyllum spicatum was processed as part of our
routine sampling campaign, in which plants are dis-
sected into apices, upper and lower leaves, and stems.
For C. aspera chemical analyses, we did not differentiate
between upper and lower plant parts. Sub-samples of
each plant part were incinerated for 6 h at 550°C to
determine the ash-free dry mass. We measured the car-
bon, nitrogen, and phosphorus content of all plant sam-
ples using standard methods [52]. The total phenolic
content of M. spicatum and C. aspera was determined
using a modified Folin-Ciocalteau method [53]. The
concentration of non-phenolic compounds interfering
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Table 3: Oligonucleotide probes used in this study

http://www.biomedcentral.com/1471-2180/8/58

Probe?) Sequence % Formamide Target group Reference
EUB338 GCTGCCTCCCGTAGGAGT 35 Most bacteria [58]
NON338 ACTCCTACGGGAGGCAGC 35 Competitor of EUB [59]
ALF968 GGTAAGGTTCTGCGCGT 20 Alphaproteobacteria [60]
BET42ab) GCCTTCCCACTTCGTTT 35 Betaproteobacteria [61]
GAM42ab) GCCTTCCCACATCGTTT 35 Gammaproteobacteria [61]
PLA886P) GCCTTGCGACCATACTCCC 35 Planctomycetes [62]
HGC96a TATAGTTACCACCGCCGT 25 Actinomycetes [63]
CF319a TGGTCCGTGTCTCAGTAC 35 Bacteroidetes [64]

3) Probes were labelled with cy 3 b) For these probes, a competitor probe was used

with the Folin reagent are <5% in M. spicatum [52].
Those in C. aspera were determined using a modified
polyvinylpyrrolidon method [50]. The major allelo-
chemical of M. spicatum, tellimagrandin II, was quanti-
fied by reverse-phase HPLC [47]. All measurements were
based on dry mass since the inorganic incrustations of C.
aspera also provide settlement surfaces for bacteria. The
antibacterial and allelopathically active compounds in
Chara spp. [11,14] are difficult to isolate and were not
determined here.

Detachment of biofilm

Plant parts were transferred into sterile 50 ml polypropyl-
ene tubes containing 50 ml of formaldehyde (3.7% final
concentration) and sodium pyrophosphate (0.1 M
Na,P,0, x 10 H,O, NaPPi). The biofilm was detached by
ultrasonication for 60 s (Laboson 200 ultrasonic bath,
Bender & Hobein), followed by 15 min of vigorous shak-
ing (18.3 Hz, Thermomixer Eppendorf) and again 60 s of
ultrasonication. Two millilitres of the detached biofilm
were filtered onto white polycarbonate filters (0.2 pm, @
25 mm Nucleopore) and stored at -20 C.

We optimized the detachment procedure prior to this
experiment. NaPPi was a suitable detergent to detach bac-
teria from macrophyte leaves as shown by a previous
study in our group [47]. We further varied the sonication
time and shaking duration to obtain the best results for a
gentle but effective detachment of the biofilm [54,55].
Detachment with an ultrasonic probe (Bandelin elec-
tronic GM 70 HD, 20 kHz, 57W) resulted in 0.13 + 0.03 x
10¢ cm2 but the plant tissue was severely damaged and
numerous bacterial cells were still attached to the leaf sur-
face as observed by microscopic examination. We then
tried are more gentle detachment with shorter sonication
times in an ultrasonic bath and constant, gentle shaking
afterwards, rather than permanent ultrasonication. This
method yielded 1.9 + 0.6 x 10° cells cm2and the plant tis-
sue was not visibly damaged except at the cut surface on
the petiole. A thorough microscopy of the leaves proved
hardly any attached bacterial cells left.

Fluorescence in situ hybridization (FISH)

FISH was conducted following a protocol by Pernthaler et
al. [56] consisting of a hybridization step at 46°C for 3 h
and a washing step for 15 min at 48°C. Filters were coun-
terstained with DAPI (4',6-diamidino-2-phenylindol, 1
pg ml-1, 5 min). Stained cells were counted under an epi-
fluorescence microscope (Labophot 2, Nikon) at an exci-
tation wavelength of 549 nm. Probes used are listed in
Table 3 and further details are available at probeBase [57].

Statistical analyses

Data of FISH analysis we re arcsin transformed. For planc-
tomycetes, data were additionally x1/4 transformed to
ensure equal variances. Plant species-, plant part-, and
habitat-specific differences were analysed by 3-way ANO-
VAs (Sigma STAT 3.0). Non-metric dimensional scaling
plots were generated with square-root transformation of
data and Bray-Curtis similarity (Primer 5.0). For correla-
tions, the Pearson correlation was used (Sigma STAT 3.0).

Authors' contributions
MH: Guidance of experiments; writing the manuscript

MB: Carried out sampling and experiments

IB: Initiated the work on biofilm on charophytes together
with MB, critically amended and edited the manuscript

EMG: Sampling in Lake Constance, supervising experi-
ments, writing and editing the manuscript

All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the German Science Foundation with grant
CRCA454, project A2 to EMG. Claudia Feldbaum is acknowledged for tech-
nical assistance. We thank M. Mértl for providing the statistical program
PRIMER 5. Karen Brune improved the English, and two anonymous review-
ers made valuable comments on the manuscript.

References

I. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-
scott HM: Microbial Biofilms.  Annu Rev Microbiol 1995,
49:711-745.

Page 8 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8561477

BMC Microbiology 2008, 8:58

21.

22.

23.

24.

25.

Stanley NR, Lazazzera BA: Environmental signals and regulatory
pathways that influence biofilm formation. Mol Microbiol 2004,
52(4):917-924.

Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN: Phy-
logenetic diversity and specificity of bacteria closely associ-
ated with Alexandrium spp. and other phytoplankton. Appl
Environ Microbiol 2005, 7 1(7):3483-3494.

Weiss P, Schweitzer B, Amann R, Simon M: Identification in situ
and dynamics of bacteria on limnetic organic aggregates
(Lake Snow). Appl Environ Microbiol 1996, 62(6):1998-2005.
Glockner FO, Fuchs BM, Amann R: Bacterioplankton composi-
tions of lakes and oceans: a first comparison based on fluo-
rescence in situ hybridization. Appl Environ Microbiol 1999,
65(8):3721-3726.

Shade A, Kent AD, Jones SE, Newton R}, Triplett EW, McMahon KD:
Interannual dynamics and phenology of bacterial communi-
ties in a eutrophic lake. Limnol Oceanogr 2007, 52(2):487-494.
Sapp M, Wichels A, Wiltshire KH, Gerdts G: Bacterial community
dynamics during the winter-spring transition in the North
Sea. FEMS Microbiol Ecol 2007, 59(3):622-637.

Eiler A, Bertilsson S: Composition of freshwater bacterial com-
munities associated with cyanobacterial blooms in four
Swedish lakes. Environ Microbiol 2004, 6(12):1228-1243.

Riemann L, Steward GF, Azam F: Dynamics of bacterial commu-
nity composition and activity during a mesocosm diatom
bloom. Appl Environ Microbiol 2000, 66(2):578-587.

Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T: Marine dia-
tom species harbour distinct bacterial communities. Environ
Microbiol 2005, 7(6):860-873.

Fisher MM, Wilcox LW, Gram LE: Molecular characterization of
epiphytic bacterial communities on charophycean green
algae. Appl Environ Microbiol 1998, 64(1 1):4384-4389.

Pernthaler J, Amann R: Fate of heterotrophic microbes in
pelagic habitats: Focus on populations. Microbiol Mol Biol Rev
2005, 69(3):440-461.

Simon M, Grossart HP, Schweitzer B, Ploug H: Microbial ecology
of organic aggregates in aquatic ecosystems. Aquat Microb Ecol
2002, 28(2):175-211.

Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E: Alternative
equilibria in shallow lakes. Trends Ecol Evol 1993, 8:275-279.
Nakai S, Inoue Y, Hosomi M, Murakami A: Myriophyllum spicatum-
released allelopathic polyphenols inhibiting growth of blue-
green algae Microcystis aeruginosa. Water Res 2000,
34(11):3026-3032.

Wium-Andersen S, Anthoni U, Christophersen C: Allelopathic
effects on phytoplankton by substances isolated from
aquatic macrophytes (Charales). Oikos 1982, 39:187-190.
Anthoni U, Nielsen PH, Smithhansen L, Wium-Andersen S, Christo-
phersen C: Charamin, a quaternary ammonium ion antibiotic
from the green-alga Chara globularis. | Org Chem 1987,
52(4):694-695.

Leu E, Krieger-Liszkay A, Goussias C, Gross EM: Polyphenolic alle-
lochemicals from the aquatic angiosperm Myriophyllum spi-
catum inhibit photosystem Il. Plant Physiol 2002, 130:2011-2018.
Scalbert A: Antimicrobial properties of tannins. Phytochemistry
1991, 30(12):3875-3883.

Carignan R, Kalff : Phosphorus release by submerged macro-
phytes: Significance to epiphyton and phytoplankton. Limnol
Oceanogr 1982, 27(3):419-427.

Jackson LJ, Rowan DJ, Cornett R, Kalff J: Myriophyllum spicatum
pumps essential and nonessential trace elements from sedi-
ments to epiphytes. Can | Fish Aquat Sci 1994, 51(8):1769-1773.
Sondergaard M: Kinetics of extracellular release of 4C-labelled
organic carbon by submersed macrophytes. Oikos 1981,
36(3):331-347.

Huss AA, Wehr |D: Strong indirect effects of a submersed
aquatic macrophyte, Vallisneria americana, on bacterioplank-
ton densities in a mesotrophic lake. Microb Ecol 2004,
47(4):305-315.

Wetzel RG: Microcommunities and microgradients: Linking
nutrient regeneration, microbial mutualism and high sus-
tained aquatic primary production. NL | Aquat Ecol 1993,
27(1):3-9.

Rao D, Webb JS, Kjelleberg S: Microbial colonization and com-
petition on the marine alga Ulva australis. Appl Environ Microbiol
2006, 72(8):5547-5555.

26.

27.

28.

29.

30.

31

32.

33.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

http://www.biomedcentral.com/1471-2180/8/58

Marshall K, Joint I, Callow ME, Callow JA: Effect of marine bacte-
rial isolates on the growth and morphology of axenic plant-
lets of the green alga Ulva linza.  Microb Ecol 2006,
52(2):302-310.

Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y: Isolation of an algal
morphogenesis inducer from a marine bacterium. Science
2005, 307(5715):1598.

Huber B, Eberl L, Feucht W, Polster |: Influence of polyphenols on
bacterial biofilm formation and quorum-sensing. Z Naturfor-
sch Sect C | Biosci 2003, 58(1 1-12):879-884.

Maximilien R, de Nys R, Holmstrom C, Gram L, Givskov M, Crass K,
Kjelleberg S, Steinberg PD: Chemical mediation of bacterial sur-
face colonisation by secondary metabolites from the red alga
Delisea pulchra. Aquat Microb Ecol 1998, 15(3):233-246.
Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Chris-
tophersen C, Steinberg P, Kjelleberg S, Givskov M: How Delisea pul-
chra furanones affect quorum sensing and swarming motility
in Serratia liquefaciens MG1. Microbiology 2000, 146:3237-3244.
Dobretsov S, Dahms HU, Huang YL, Wahl M, Qian PY: The effect
of quorum-sensing blockers on the formation of marine
microbial communities and larval attachment. FEMS Microbiol
Ecol 2007, 60(2):177-188.

Chand T, Harris RF, Andrews JH: Enumeration and characteriza-
tion of bacterial colonists of a submersed aquatic plant, Eur-
asian watermilfoil (Myriophyllum spicatum L.). Appl Environ
Microbiol 1992, 58(10):3374-3379.

Sher-Kaul S, Oertli B, Castella E, Lachavanne ]JB: Relationship
between biomass and surface-area of six submerged aquatic
plant-species. Aquat Bot 1995, 51(1-2):147-154.

Lindstrom ES, Kamst-Van Agterveld MP, Zwart G: Distribution of
typical freshwater bacterial groups is associated with pH,
temperature, and lake water retention time. Appl Environ
Microbiol 2005, 71(12):8201-8206.

Lozupone CA, Knight R: Global patterns in bacterial diversity.
PNAS 2007, 104(27):11436-11440.

Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M: The domain-
specific probe EUB338 is insufficient for the detection of all
Bacteria: development and evaluation of a more compre-
hensive probe set. Syst Appl Microbiol 1999, 22(3):434-444.
Schweitzer B, Huber I, Amann R, Ludwig W, Simon M: Alpha- and
beta-proteobacteria control the consumption and release of
amino acids on lake snow aggregates. Appl Environ Microbiol
2001, 67(2):632-645.

Brummer IH, Felske AD, Wagner-Dobler |: Diversity and seasonal
changes of uncultured Planctomycetales in river biofilms.
Appl Environ Microbiol 2004, 70(9):5094-5101.

Jones PR, Cottrell MT, Kirchman DL, Dexter SC: Bacterial com-
munity structure of biofilms on artificial surfaces in an estu-
ary. Microb Ecol 2007, 53(1):153-162.

Brummer IH, Fehr W, Wagner-Dobler I: Biofilm community
structure in polluted rivers: abundance of dominant phyloge-
netic groups over a complete annual cycle. Appl Environ Micro-
biol 2000, 66(7):3078-3082.

Tadonleke RD: Strong coupling between natural Planctomyc-
etes and changes in the quality of dissolved organic matter in
freshwater samples. FEMS Microbiol Ecol 2007, 59(3):543-555.
Godmaire H, Nalewajko C: Growth, photosynthesis, and extra-
cellular organic release in colonized and axenic Myriophyllum
spicatum. Can | Bot 1989, 67:3429-3438.

Wang J, Jenkins C, Webb RI, Fuerst JA: Isolation of Gemmata-like
and Isosphaera-like planctomycete bacteria from soil and
freshwater. Appl Environ Microbiol 2002, 68(1):417-422.

Kirchman DL: The ecology of Cytophaga-Flavobacteria in
aquatic environments. FEMS Microbiol Ecol 2002, 39(2):91-100.
Cottrell MT, Kirchman DL: Natural assemblages of marine pro-
teobacteria and members of the Cytophaga-Flavobacter
cluster consuming low- and high-molecular-weight dissolved
organic matter. Appl Environ Microbiol 2000, 66(4):1692-1697.
Phillips GL, Eminson D, Moss B: Mechanism to account for mac-
rophyte decline in progressively eutrophicated freshwaters.
Aquat Bot 1978, 4(2):103-126.

Muller N, Hempel M, Philipp B, Gross EM: Degradation of gallic
acid and hydrolysable polyphenols is constitutively activated
in the freshwater plant-associated bacterium Matsuebacter
sp FB25. Aquat Microb Ecol 2007, 47(1):83-90.

Page 9 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16000752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8787398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8787398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8787398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10427073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17381518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17381518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17381518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15560821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15560821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15560821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10653721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9797295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9797295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9797295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16148306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16148306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12481084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15037963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16897307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15761147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15761147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17371321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17371321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17371321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16348792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17592124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10553296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10553296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10553296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11157226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11157226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11157226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17186146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17186146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17186146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10877809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10877809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10877809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17059481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17059481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17059481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11772655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11772655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11772655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742262

BMC Microbiology 2008, 8:58

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

Aligaier M, Grossart HP: Seasonal dynamics and phylogenetic
diversity of free-living and particle-associated bacterial com-
munities in four lakes in northeastern Germany. Aquat Microb
Ecol 2006, 45(2):115-128.

Wetzel RG, Hatcher PG, Bianchi TS: Natural photolysis by ultra-
violet irradiance of recalcitrant dissolved organic matter to
simple substrates for rapid bacterial metabolism. Limnol Oce-
anogr 1995, 40(8):1369-1380.

Gross EM, Meyer H, Schilling G: Release and ecological impact of
algicidal hydrolysable polyphenols in Myriophyllum spicatum.
Phytochemistry 1996, 41(1):133-138.

Blindow |, Dietrich J, Mollmann N, Schubert H: Growth, photosyn-
thesis and fertility of Chara aspera under different light and
salinity conditions. Aquat Bot 2003, 76(3):213-234.

Choi C, Bareiss C, Walenciak O, Gross EM: Impact of polyphenols
on growth of the aquatic herbivore Acentria ephemerella. |
Chem Ecol 2002, 28( 1 1):2245-2256.

Box JD: Investigation of the Folin-Ciocalteau phenol reagent
for the determination of polyphenolic substances in natural
waters. Water Res 1983, 17(5):511-525.

Bockelmann U, Szewzyk U, Grohmann E: A new enzymatic
method for the detachment of particle associated soil bacte-
ria. | Microbiol Methods 2003, 55(1):201-211.

Buesing N, Gessner MO: Comparison of detachment proce-
dures for direct counts of bacteria associated with sediment
particles, plant litter and epiphytic biofilms. Aquat Microb Ecol
2002, 27(1):29-36.

Pernthaler J, Gléckner FO, Schonhuber W, Amann R: Fluorescence
in situ hybridization (FISH) with rRNA-targeted oligonucle-
otide probes. Methods in Microbiology 2001, 30:207-226.

Loy A, Horn M, Wagner M: probeBase: an online resource for
rRNA-targeted oligonucleotide probes. Nucleic Acids Res 2003,
31(1):514-516.

Amann RI, Binder BJ, Olson R}, Chisholm SW, Devereux R, Stahl DA:
Combination of 16S rRNA-targeted oligonucleotide probes
with flow cytometry for analyzing mixed microbial popula-
tions. Appl Environ Microbiol 1990, 56(6):1919-1925.

Wallner G, Amann R, Beisker W: Optimizing fluorescent in situ
hybridization with rRNA-targeted oligonucleotide probes
for flow cytometric identification of microorganisms. Cytom-
etry 1993, 14(2):136-143.

Neef A: Anwendung der In-situ-Einzelzell-ldentifizierung von
Bakterien zur Populationsanalyse in komplexen mikrobiel-
len Biozonosen. In PhD thesis Munich: Technical University Munich,
Biology Department; 1997.

Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH: Phyloge-
netic oligodeoxynucleotide probes for the major subclasses
of proteobacteria — problems and solutions. Syst Appl Microbiol
1992, 15(4):593-600.

Neef A, Amann R, Schlesner H, Schleifer KH: Monitoring a wide-
spread bacterial group: in situ detection of planctomycetes
with 16S rRNA-targeted probes. Microbiology 1998, 144(Pt
12):3257-3266.

Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH: In situ
probing of gram-positive bacteria with high DNA G + C con-
tent using 23S rRNA-targeted oligonucleotides. Microbiology
1994, 140(10):2849-2858.

Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH: Appli-
cation of a suite of 16S rRNA-specific oligonucleotide probes
designed to investigate bacteria of the phylum cytophaga-
flavobacter-bacteroides in the natural environment. Microbi-
ology 1996, 142(5):1097-1106.

http://www.biomedcentral.com/1471-2180/8/58

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12523565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2200342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2200342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2200342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9884217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9884217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8000548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8000548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8000548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8704951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8704951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8704951
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Discussion
	Conclusion
	Methods
	Plants
	Biomass and chemical analyses
	Detachment of biofilm
	Fluorescence in situ hybridization (FISH)
	Statistical analyses

	Authors' contributions
	Acknowledgements
	References

