
Epipolar Constraints for Vision-Aided

Inertial Navigation

David D. Diel

Massachusetts Institute of Technology

Email: ddiel@mit.edu

Paul DeBitetto

Draper Laboratory

Email: pdebitetto@draper.com

Seth Teller

Massachusetts Institute of Technology

Email: teller@csail.mit.edu

Abstract— This paper describes a new method to improve
inertial navigation using feature-based constraints from one
or more video cameras. The proposed method lengthens the
period of time during which a human or vehicle can navigate
in GPS-deprived environments. Our approach integrates well
with existing navigation systems, because we invoke general
sensor models that represent a wide range of available hard-
ware. The inertial model includes errors in bias, scale, and
random walk. Any purely projective camera and tracking
algorithm may be used, as long as the tracking output can
be expressed as ray vectors extending from known locations
on the sensor body.

A modified linear Kalman filter performs the data fusion.
Unlike traditional SLAM, our state vector contains only
inertial sensor errors related to position. This choice allows
uncertainty to be properly represented by a covariance matrix.
We do not augment the state with feature coordinates. Instead,
image data contributes stochastic epipolar constraints over
a broad baseline in time and space, resulting in improved
observability of the IMU error states. The constraints lead to
a relative residual and associated relative covariance, defined
partly by the state history. Navigation results are presented
using high-quality synthetic data and real fisheye imagery.

I. NAVIGATION PROBLEM

An Inertial Measurement Unit (IMU) is a common com-

ponent in modern navigation systems. A typical IMU con-

tains three accelerometers and three gyroscopes that provide

information about the motion of a moving body [1]. Unfor-

tunately, the process of extracting body position estimates

from IMU output leads to significant drift over time. The

Global Positioning System (GPS) provides complementary,

absolute position information. However, circumstances such

as sky occlusion, hardware failure, and war may disallow

GPS signals. Therefore, we turn to vision as an alternative

source of information.

We would like to navigate in places where people go on

foot or in a wheeled vehicle. Examples include warehouses,

factories, offices, homes, city streets, suburbs, highways,

rural areas, forests, and caves. These environments happen to

share some important visual characteristics: 1) Most of the

scene remains stationary with respect to the planet’s surface;

and 2) For typical scenes, the ratio of body velocity to scene

depth lies within a limited range. Other environments that

meet these criteria include the sea floor and unexplored

Variables

t - time

yij - pixel radiance

ǫ - relatively small number

τ - interval of time (fixed)

bbb - bias

cccij - camera ray

fff - specific force

ggg - gravity

hhh - measurement gain

kkk - Kalman gain

nnn - white noise

sss - scale

uuuij - image coordinate

xxx - body state

zzz - feature ray

θθθ - Euler angles

ρρρ - imaging parameters

RRR - rotation matrix

ΛΛΛ - covariance matrix

ΦΦΦ - transition matrix

Other Notation

⋄T - translation part

⋄R - rotation part

⋄T - transpose

⋄̇ - 1st temporal derivative

⋄̈ - 2nd temporal derivative

~⋄ - unit magnitude

⋄̄ - contains error

⋄̃ - residual

⋄̂ - estimated

∆⋄ - change

δ⋄ - error

⋄[] - discrete samples

Fig. 1. Symbols and notation. Scalars are regular italic; vectors are bold
lowercase; and matrices are bold uppercase. Variables may vary with time
unless noted. The ⋄ symbol is a placeholder and subscripts ij indicate
association with an array.

planets. The sky, outer space, and most seascapes do not

fall in this category.

The goal of navigation is to find the transformations xxx [t]
that relate camera poses to a static reference frame. In a

vision-only context, Chiuso et al. have developed a causal

(history-based), real-time algorithm to solve for 3D relative

scene geometry, while addressing scale ambiguity [2]. Most

of their discussion applies here, but we utilize the known

characteristics of an inertial sensor in our development. In-

stead of tackling the Structure From Motion (SFM) problem

directly, we aim to navigate first and leave scene geometry

to be calculated later.

There exists a critical difference between self-localization

and relative target seeking. When the goal is relative po-

sitioning for grasping, assembly, or impact, a convergent

solution can be derived [3]. A visible target needs no ab-

solute reference frame. However, if we want geo-referenced

navigation coordinates in the absence of landmarks, then our

Proc. 7th IEEE Workshop on Applications of Computer Vision / IEEE Workshop on Motion and Video Computing (WACV/MOTION 2005), January 2005, pp. 221--228

sensor combination will face performance limitations. The

only source of absolute position information is the planetary

gravity potential, and this potential is ambiguous over each

iso-layer (the ocean surface is one of them). In essence,

the system we have described cannot converge to the actual

trajectory. So, we will present a transient solution that aims

to reduce drift.

II. APPROACH

Several ideas from machine vision have potential rele-

vance to inertial navigation. The list would certainly include

stereo vision, optical flow, pattern recognition, and tracking

of points, curves, and regions. Each of these methods

produce a different kind of information. Stereo vision may

produce dense relative depth estimates within a limited

range. Optical flow can produce dense motion fields. Pattern

recognition can locate the direction to a unique landmark,

which may be linked to absolute coordinates. And finally,

tracking can offer data association over multiple frames.

The scope of relevance can be limited by considering

system requirements and constraints. We want an automatic

method that is robust to visual distractions such as occlu-

sion, variation in lighting, and ambiguities. It should work

with one or more cameras, within reasonable computational

limits, given no prior knowledge of the environment. These

choices bring the focus to either flow-based or tracking-

based approaches.

A. Tracking vs. Flow

Both optical flow and tracking provide local estimates of

image motion. As a camera translates, light rays from the

environment slice through a theoretical unit sphere centered

at the camera’s focus. Patterns of light appear to flow

outward from a point source, around the sides of the sphere,

and into a drain at the opposite pole. If the camera also

rotates, then a vortex-like flow is superimposed on the flow

induced by translation. Despite the naming conventions,

both optical flow and tracking are supposed to track the

flow. The difference between them lies in the selection of

discrete coordinates. Optical flow calculations are defined on

a discrete regular mesh, with the assumption of underlying

spatial and temporal continuity. Tracking methods tend to

utilize discrete particles that retain their identity over a broad

baseline in time.

Our method tracks sparse independent corner features for

the following reasons: 1) To avoid the texture ambiguity

associated with optical flow; 2) To gain leverage against the

accumulation of inertial drift over time; 3) To facilitate de-

tection of visual distractions; and 4) To bound computational

requirements.

By appealing to feature tracking in general, most as-

sumptions about the visual context can be avoided. For

example, one could use infrared imagery to handle low

light conditions. Landmarks such as corporate logos and

barcodes may provide useful information when they are

available, but none are required. Mixed resolutions and

dropped frames are also handled. The only requirements are

a static electromagnetic environment and sensors selective

to an appropriate frequency band.

B. Data Fusion

Probably the most common approach to combining fea-

ture observations with inertial data is Simultaneous Local-

ization and Mapping (SLAM) [4][5][6]. SLAM takes on

the burden of mapping and the computational complexity

of map maintenance in exchange for maximal information

usage. Nearly all SLAM solutions are based on the Extended

Kalman Filter (EKF) [7], which scales quadratically with

the number of states. Extensions such as Atlas [8] and Fast-

SLAM [9] have been developed to manage large maps, but

the benefits of mapping may not justify the computational

cost. Furthermore, the EKF may be far from optimal due to

its linear approximations.

Fig. 2. Proposed block diagram showing sensor fusion in the EPC Filter.

Our approach toward data fusion focuses on the inter-

pretation of visual measurements. As in other methods, we

propagate the IMU error state, apply visual updates, and

remove translation error. Uncertainty is represented by a

covariance matrix. However, our filter does not maintain

states for each feature, but instead treats visual measure-

ments as independent stochastic constraints on the camera

position. Specifically, out-of-plane violations of the epipolar

constraint (EPC) are fed into a linear Kalman filter as

projected residuals. By disregarding in-plane information,

the measurement equation avoids explicit dependency on

scene depth. In this framework, computation and memory

requirements scale linearly with the number of visible

features. For related work in vision-only navigation, see

[10][11][12].

C. Gyroscope Reliance

Modern gyroscopes (gyros) can be trusted to provide

accurate orientation estimates for periods up to several min-

utes [13]. For some hardware combinations, gyro accuracy

exceeds imaging accuracy by orders of magnitude. Consider

a typical wide-field video camera with a pixel separation of

0.25 degrees. A common flight control gyro can maintain

similar angular precision for about 10 minutes with no

visual assistance. Thus, our method relies on the gyros to

compensate for camera rotation, but image data is not used

to improve the gyros.

III. IMU DEFINITION

We begin with a simplified strapdown1 inertial sensor

model in a static North-East-Down (NED) visual frame. A

strapdown IMU is designed to measure specific force and

orientation changes in its own body frame. We assume ideal

gyros, and noisy accelerometers, as described in Section

II. The gyros output small changes ∆θθθ [t], which can be

integrated to find an associated direction cosine matrixRRR (t).
The visual frame moves with the planet, so the planetary

rotation rate should be subtracted from the gyro output

during integration. The accelerometers measure a non-trivial

combination of acceleration and gravitation.

fff = RRR−1
(

ẍ̈ẍxT − gggapp

)

(1)

Note the apparent gravitation term, which has an approx-

imate value of 9.8 m
s2 near the Earth’s surface. To gain

more significant digits, planetary rotation effects in the NED

frame must be taken into account. These effects depend

strongly on latitude and altitude, and weakly on velocity.

We use the gradient of the second-order spherical harmonic

defined in WGS 84 to model Earth’s gravitational field

[14][15], and add higher-order terms when they are justified

by the sensor accuracy.

Assuming the apparent gravity model accuracy exceeds

that of our accelerometers, the primary sources of measure-

ment error are bias, scale and random walk.

f̄̄f̄f = (III + diag (δsss))fff + δbbb+nnnw (2)

Rewriting as an acceleration measurement yields

¨̄ẍ̄ẍ̄xT = Rf̄Rf̄Rf̄ + gggapp

=
(

ẍ̈ẍxT − gggapp

)

+RRR (diag (δsss)fff + δbbb+nnnw) + gggapp

= ẍ̈ẍxT +RRRdiag (fff) δsss+RRRδbbb+nnnw

(3)

Therefore, omitting the second order effect of diag (δfff) δsss,
the error process may be defined

δẍ̈ẍxT ≡ ¨̄ẍ̄ẍ̄xT − ẍ̈ẍxT = RRRdiag
(

f̄̄f̄f
)

δsss+RRRδbbb+nnnw (4)

which leads to a Linear-Time-Varying (LTV) state-space

model for the translation error. Note the nonlinearity with

1Similar equations can be derived for a gimballed IMU.

respect to external inputs RRR and f̄̄f̄f , though no elements of

ψψψ appear in ΦΦΦ:

ψ̇̇ψ̇ψ = ΦΦΦψψψ +nnn (5)

ψψψ ≡

δxxxT

δẋ̇ẋxT

δbbbTurnOn

δbbbInRun

δsssTurnOn

δsssInRun

nnn =

000
nnnw

000
nnnb

000
nnns

ΦΦΦ =

000 III 000 000 000 000
000 000 RRR RRR RRRdiag

(

f̄̄f̄f
)

RRRdiag
(

f̄̄f̄f
)

000 000 000 000 000 000

000 000 000 − III
τb

000 000

000 000 000 000 000 000

000 000 000 000 000 − III
τs

To calculate the body position without image data,

one would twice integrate the first form of Equation 3.

Given image data, one would also integrate the state

space and apply stochastic updates yet to be defined. In

our discrete-time implementation, we use the following:

ψψψ [t] = expm (τΦΦΦ [t− τ])ψψψ [t− τ]

ΛΛΛ [t] = expm (τΦΦΦ [t− τ])ΛΛΛ [t− τ] expm (τΦΦΦ [t− τ])
T

+ ΛΛΛn

(6)

where τ is a small time step, typically in the range of

10 to 400 Hz. Here, expm () represents the matrix

exponential function. The driving noise is zero mean

Gaussian, uncorrelated with itself over time. Therefore, its

first order expectation is zero E [nnn] = 000, and its second

order expectation is the diagonal matrix ΛΛΛn = E
[

nnnnnnT
]

.

IV. CAMERAS AND TRACKING

This section describes one way of sampling the space of

light rays surrounding a moving body. Any optical system

that produces ray-based observations from known relative

vantage points may be used. For example, the system might

consist of multiple active cameras attached to the body by

kinematic linkages. However, for clarity, the discussion will

be limited to one calibrated camera having a single focus

concentric with the IMU’s inertial axes2.

A. Camera Definition

A calibrated camera can be defined by its transformation

from the space of light rays to the image space [16]. To

calculate an image coordinate, a ray in the world frame is

rotated into the camera frame ~c~c~c = RRR−1~z~z~z and projected to

the image space uuucam = uuucam (~c~c~c), where uuucam ∈ [−111 111]
stretches-to-fill a square array. A forward-right-down frame

is associated with the camera, such that ~c~c~c = [1 0 0]
T

corresponds to the optical axis.

2In an extended development, camera offset would appear in Equation
10, and body-relative camera rotation would appear in Equation 7.

Bakstein and Pajdla propose a simple calibration method

for radially symmetric camera models [17]. The following

model adequately represents our optics:

uuucam =
r

√

1 − c21

[

c3
c2

]

(7)

with

r =
ρ1 arccos (c1) + ρ2 arccos (c1)

2

1 + ρ3 arccos (c1) + ρ4 arccos (c1)
2

Fig. 3. Left—Synthetic image rendered with POV-Ray. Right—calibration
image taken with a commercially available fisheye lens mounted to a
2/3” CCTV camera (lens sold as Kowa LMVZ164, Rainbow L163VCS,
or VITEK VTL-1634).

B. Rotation Compensation

We use gyro data to compensate for camera rotation at

the most basic level. In a single step, the input images

are slightly blurred and warped into a rotationally-fixed

projection. To warp an image, the value of each destination

pixel is calculated as a weighted sum of pixel values from

the source image. We selected the Gall Isographic projection

as the destination, but another projection of a sphere could

substitute3. The Gall inverse projection provides a mapping

from its image space to the world ray space

~z~z~z =

cos (πu2) cos
(

π
2
u1

)

sin (πu2) cos
(

π
2
u1

)

sin
(

π
2
u1

)

 (8)

where uuu is stretched to fill an image array with jmax

imax
=

√
2.

Note that a static mapping of ~z~z~zij = ~z~z~z (uuuij) can be pre-

calculated for each pixel during algorithm initialization.

C. Tracking

Our tracking system is one of many feature-based alter-

natives. Every rotation-compensated image passes through

the Harris corner detector [18] on its way to the tracker.

The resulting “corner strength” image provides a means to

select features and to find those features again in future

images. If less than a desired number of features have been

3Ideally, one would use a geodesic mesh.

successfully tracked from previous frames, then new ones

are selected from candidate peaks above a threshold. A

patch around the peak center is then permanently stored to

represent each new feature. In subsequent frames, features

are tracked by normalized cross-correlation [19] and located

with single-pixel discrete accuracy. A patch can be lost in

one of three ways: 1) No strong correlation exists within a

local search region; 2) Another feature with a higher peak

corner strength already occupies the space; or 3) It gets too

close to the image boundary. If the feature survives, then

an observation ray ~z~z~z [t] is stored along with the feature’s

current location.

Fig. 4. Demonstration of rotation compensation, corner detection, and
tracking applied to the Factory7 scene. Features are boxed and colored for
diagnostic purposes.

V. EPIPOLAR CONSTRAINT FILTER

Consider a single feature tracked over multiple frames.

Any two camera poses and a jointly observed feature define

a plane, as shown in Figure 5. This well known relationship

is often called the epipolar constraint [12][20][21], though

it appears in various forms and under different names. Using

our notation, a basic form is given by

(~z~z~z [ta] × ~z~z~z [tb]) ◦ ∆xxxT = 0 (9)

where ∆ represents a change between two times ta and tb.

Fig. 5. The epipolar constraint, satisfied by ideal sensor data.

A. Residual

Suppose we want to make a filter that “knows” about

the epipolar constraint. When sensor noise comes into play,

the left-hand-side of Equation 9 may become nonzero.

The extra value we would have to add to the right-hand-

side to maintain equality is called a residual. We propose

yet another version of the constraint that yields a more

meaningful residual. To the best of our knowledge, this form

has not appeared in previous literature:

x̃̃x̃xT =
(

III −~e~e~ex~e~e~e
T
x

)

~e~e~ez~e~e~e
T
z∆xxxT

?
= 000 (10)

with

~e~e~ex ≡ ∆xxxT

‖∆xxxT ‖
~e~e~ez ≡ ~z~z~z [ta] × ~z~z~z [tb]

‖~z~z~z [ta] × ~z~z~z [tb]‖
The residual x̃̃x̃xT of Equation 10 has several desirable

properties: 1) It vanishes when the epipolar constraint is

satisfied; 2) It depends only on directly measurable quan-

tities, so scene depth does not appear explicitly; 3) It is

a vector; and 4) Its direction is always perpendicular to

the observation baseline. Figure 6 provides a graphical

interpretation. Although this residual was chosen carefully,

arguably better forms could exist.

Fig. 6. State update in a case of extreme sensor conflict. 1—residual
definition, 2—Kalman state update, 3—final update after spherical normal-
ization.

B. Stochastic Update

Nearly all of the tools are now in place to define a stochas-

tic visual update. When error appears in the residual, we

can rationally distribute its value between our two sensors.

The inertial system uncertainty is properly represented by a

dynamically evolving Gaussian distribution, as in Equation

6. If we trust the residual direction and loosely assume

Gaussian measurement noise associated with its magnitude,

then the Bayes Least Squares (BLS) posterior estimates are

given by

hhh =

[

x̃̃x̃xT
T

‖x̃̃x̃xT ‖ 000

]

(measurement gain) (11)

kkk = ΛΛΛ−hhhT
(

hΛhΛhΛ−hhhT + σ̃2
)

−1

(Kalman gain) (12)

ψψψ
+ = ψψψ

− + kkk ‖x̃̃x̃xT ‖ (state update) (13)

ΛΛΛ+ = (III − khkhkh)ΛΛΛ− (reduced uncertainty) (14)

Admittedly, we do not know much about the measurement

variance σ̃2. It depends on the imaging hardware, the

tracking algorithm, the body path, and the scene. From our

simulations, we were able to determine strong dependence

on the body path and the feature cross product.

σ̃2 ≈
∆x̄̄x̄x2

Tσ
2
angular

∥

∥~̄z~̄z~̄z [ta] × ~̄z~̄z~̄z [tb]
∥

∥

2
+ σ2

tol (15)

Here, σangular is the expected long-term deviation of the

tracking algorithm, which we assume to be about six pixels

of angular separation, or 1.5 degrees. We also set the noise

floor at σtol = 0.01 meters.

C. Multiple Features

The discussion so far has been limited to a single feature,

but multiple features can be handled naturally. Each feature

has its own reference time ta, and all features share the

current time tb. We apply individual stochastic updates in

sequential order, beginning with the oldest visible feature

and iterating through all currently visible features. Each

feature contributes one planar constraint, leading to state

observability in multiple dimensions.

Persistent features are generally more valuable than newly

acquired ones. For this reason, we choose ta to be the initial

observation time of a given feature. In some cases, this may

not be the ideal choice. For instance, if a single GPS update

became available, then it would probably be wise to re-

initialize many or all features at that time.

D. State Transfer

During each integration step, before feature updates are

applied, the values of the first six elements in the error state

are transferred: The position error goes into the position

estimate, and the velocity error is fed back into the IMU

integration process4.

x̂̂x̂xT − δxxxT ⇒ x̂̂x̂xT , 000 ⇒ δxxxT (16)

˙̄ẋ̄ẋ̄xT − δẋ̇ẋxT ⇒ ˙̄ẋ̄ẋ̄xT , 000 ⇒ δẋ̇ẋxT (17)

It is well known that pure image projections contain no

scale information. After each feature update is applied to the

error state, we again transfer the position error. But, instead

of Equation 16, we use a normalized update equation:

x̂̂x̂xT [ta] +
∆x̂̂x̂xT − δxxxT

‖∆x̂̂x̂xT − δxxxT ‖
‖∆x̂̂x̂xT ‖ ⇒ x̂̂x̂xT [tb] , 000 ⇒ δxxxT

(18)

E. Relative Covariance

Suppose the sensor platform has been traveling for some

time in a pitch-black room. Suddenly, the lights are turned

on, and newly acquired feature rays are stored. The body

position estimate at that time would act as a reference for

4Details of integration may vary by implementation.

future visual constraints, and the state covariance would also

be a reference. At any time, consider what happens to the

covariance, given the exact body position:

ΛΛΛ | xxxT =

[

000 000

000 ΛΛΛ4:18,4:18 −ΛΛΛ4:18,1:3ΛΛΛ
−1
1:3,1:3

ΛΛΛ1:3,4:18

]

(19)

Also, consider the algebraic change in covariance:

∆ΛΛΛ ≡ ΛΛΛ [tb] −ΛΛΛ [ta] (20)

Assuming that prior knowledge of the state xxxT [ta] does

not affect the change in covariance, we make the following

approximation:

∆ΛΛΛ ≈ ΛΛΛ [tb] | xxxT [ta] −ΛΛΛ [ta] | xxxT [ta] (21)

By doing this, we lose some fidelity of the noise model.

However, we avoid the need to maintain complicated rela-

tionships between multiple features.

Rearranging Equations 20 and 21 to put the unknown

quantity on the left-hand-side yields

ΛΛΛ [tb] | xxxT [ta] = ΛΛΛ [tb] −ΛΛΛ [ta] + ΛΛΛ [ta] | xxxT [ta]

= ΛΛΛ [tb] −ΛΛΛref [ta]
(22)

with

ΛΛΛref =

[

ΛΛΛ1:3,1:3 ΛΛΛ1:3,4:18

ΛΛΛ4:18,1:3 ΛΛΛ4:18,1:3ΛΛΛ
−1
1:3,1:3

ΛΛΛ1:3,4:18

]

(23)

Since the expression ΛΛΛ [tb] −ΛΛΛref [ta] includes an approx-

imation, some of its eigenvalues could drop below zero.

A covariance matrix by definition must be symmetric and

positive semi-definite. Therefore, the approximate relative

covariance for the BLS update is defined as follows

ΛΛΛ− ≡ EnforceSPD (ΛΛΛ [tb] −ΛΛΛref [ta]) (24)

where EnforceSPD() brings all eigenvalues of its argument

up to ǫ and enforces symmetry. After the BLS update, the

reference uncertainty is then reinstated.

ΛΛΛ [tb] = ΛΛΛ+ + ΛΛΛref [ta] (25)

F. Outlier Protection

Even the best feature tracking algorithms occasionally

mis-track. The types of errors observed in tracking are

difficult to characterize, and may be different for each

algorithm. To identify outliers, we check the validity of each

visual measurement by two criteria. First, the sensor conflict

must lie within a meaningful range (see Figure 6).
(

~̄z~̄z~̄z [ta] − ~̄z~̄z~̄z [tb]
)

◦ ~̄e~̄e~̄ex >
∥

∥~̄z~̄z~̄z [ta] − ~̄z~̄z~̄z [tb]
∥

∥ cos
(π

4

)

(26)

Second, the residual must have a reasonable probability of

being observed, based on the IMU’s error distribution. We

treat anything beyond 2.5 standard deviations as an outlier.

‖x̃̃x̃xT ‖ < 2.5
√
hΛhΛhΛ−hhhT (27)

If either of these criteria are not met, then the current

measurement is excluded from the filter.

G. Numerical Caveats

There are four divide-by-zero traps to avoid in the pro-

posed system. The first two appear when the triangle in

Figure 5 becomes degenerate. If either of the denominators

in Equation 10 become small, we exclude the corresponding

feature from the update phase. The third trap appears when

the magnitude of the residual drops below ǫ. In this case, the

filter is doing well. The measurement should be included,

but calculation of its direction may be numerically unstable.

To work around this, we replace Equation 11 with

hhh =
[

~̄e~̄e~̄e
T

z 000
]

(28)

The fourth trap appears when the inversion in Equation 23

becomes ill-conditioned. We prevent this by adding σ2
tol to

the diagonal elements of ΛΛΛ1:3,1:3 during inversion.

VI. RESULTS

To demonstrate the proposed method, we present results

from one simulated scene and one real scene. The first

scene, entitled “Factory7,” runs for 60 seconds, with an IMU

sampling frequency of 50Hz, and an image frequency of

10Hz. The second scene, entitled “CSAIL5,” runs for about

91 seconds, with an IMU sampling frequency of 100Hz,

and an image frequency of 12.6Hz. Both sets of images are

hemispherical projections and have an image-circle diameter

of about 470 pixels. We would like to emphasize that the

same code was applied to both data sets, where the only

differences were the camera calibration parameters and an

adjusted value for σangular.

A. Simulation

In our simulation, the camera moves through a fictitious

industrial building as if it were carried by a person. Inertial

data and camera poses are generated from a single contin-

uous parametric path. Figure 7 shows an overhead view of

the open-loop path used to generate the Factory7 scene.

Fig. 7. Navigation results for the synthetic scene.

Fig. 8. IMU drift removal plot for the synthetic scene.

The filter can be judged by its ability to estimate and

remove translation error. Figure 8 shows the unaided IMU

drift, totaling 10.2 meters in one minute, compared to a

vision-aided drift of only 1.0 meters. Since the camera

motion was mostly in the horizontal plane, the vertical drift

was almost entirely removed. Based on multiple simulations,

we have also observed that the drift-removal-error remains

within a 99.7% confidence ellipsoid, so the filter output

obeys the following inequality:
√

(x̂̂x̂xT − xxxT)
T

Λ−1
1:3,1:3 (x̂̂x̂xT − xxxT) < 3 (29)

B. Real Data

In the CSAIL5 scene, the camera moves through an

arbitrary closed-loop path, carried by a person. Therefore,

the estimated body path should return to the origin. As

shown in Figure 10, the unaided IMU drifts by 262 meters

during the run. With visual correction, the drift is reduced

to 89 meters (66% improvement). Note how the East axis

drift grows faster than the filter can compensate, probably

due to excessive orientation error.

Fig. 9. Tracked features from the CSAIL5 scene.

The camera sits motionless for a short time near both

the beginning and the end of the scene. At the beginning,

the filter has no effect, because the feature constraints are

degenerate. However, during the last 5 seconds, the position

error stops growing. This effect could be called a visual

zero-velocity update.

Our simulations closely resembled reality, with few ex-

ceptions. In real data: 1) Pixel saturation was more common;

2) There were about three times as many visual features per

image; 3) The lens deviated from the calibrated model by as

much as ±0.5 degrees; 4) The timing of the images relative

to the IMU was only known up to about ±0.03 seconds;

and 5) The initial orientation was roughly estimated.

Fig. 10. Estimate of a closed-loop path, with and without visual data.
No ground truth for the intermediate path was recorded, but the estimate
should return to the origin.

VII. CONCLUSIONS

A method of fusing visual and inertial information has

been presented. The method was based on a simple IMU

error model and a feature tracking system. As expected,

the camera’s wide-field-of view allowed features to be

tracked over extended periods of time. Each feature provided

one stochastic epipolar constraint, and multiple features

contributed to the overall observability of the IMU error

states. Experiments were performed on synthetic and real

data. The proposed filter yielded very good drift-reduction

as long as the orientation error remained small.

A. Future Work

In the near-term, we would like to determine how imaging

parameters, such as resolution and field-of-view, affect over-

all navigation performance. Errors in camera calibration and

signal timing were dominant in our real data, but their effects

can be greatly reduced through careful hardware design.

Theoretical extensions to the filter might include state

history smoothing (in the backward Kalman filter sense),

linearized orientation updates to enable longer excursions,

advanced treatment of outliers, and the straightforward

application of depth estimation (SFM). To facilitate com-

parisons with other methods, we plan to post several sets

of inertial-visual data on the web at http://www.mit.

edu/˜ddiel/DataSets.

http://www.mit.edu/~ddiel/DataSets
http://www.mit.edu/~ddiel/DataSets

Fig. 11. The hardware used to collect real data.

B. Acknowledgements

Special thanks to James Donna and Brent Appleby for

classical inertial navigation models and concepts; J.-J. Slo-

tine and Rami Mangoubi for insights on nonlinearities

and error projections; and Scott Rasmussen for hardware

assistance. This work was funded by Draper Laboratory

under IR&D.

REFERENCES

[1] A. D. King, “Inertial navigation—forty years of evolution,” General

Electric Company Review, vol. 13, no. 3, 1998.

[2] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “Structure from motion
causally integrated over time,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 24, no. 4, pp. 523–535, April 2002.

[3] A. Huster, “Relative position sensing by fusing monocular vision and
inertial rate sensors,” Ph.D. dissertation, Stanford University, July
2003.

[4] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in International Conference on Computer Vision,
Nice, France, October 2003.

[5] R. Eustice, O. Pizarro, and H. Singh, “Visually augmented naviga-
tion in an unstructured environment using a delayed state history,”
International Conference on Robotics and Automation, April 2004.

[6] J. J. Leonard, R. J. Rikoski, P. M. Newman, and M. Bosse, “Mapping
partially observable features from multiple uncertain vantage points,”
International Journal of Robotics Research, vol. 21, pp. 943–975,
2002.

[7] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter
to nonlinear systems,” SPIE AeroSense Symposium, April 1997.

[8] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller,
“An Atlas framework for scalable mapping,” in International Con-

ference on Robotics and Automation, vol. 2, September 2003, pp.
1899–1906.

[9] M. Montemerlo and S. Thrun, “Simultaneous localization and map-
ping with unknown data association using FastSLAM,” in IEEE Inter-

national Conference on Robotics and Automation, vol. 2, September
2003, pp. 1985–1991.

[10] A. Ansar and K. Daniilidis, “Linear pose etimation from points or
lines,” in European Converence on Computer Vision, 2002, pp. 282–
296.

[11] C.-P. Lu, G. D. Hager, and E. Mjolsness, “Fast and globally con-
vergent pose estimation from video images,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 22, no. 6, pp. 610–
622, 2002.

[12] Y. Ma, R. Vidal, S. Hsu, and S. Sastry, “Optimal motion estimation
from multiple images by normalized epipolar constraint,” Communi-

cations in Information and Systems, vol. 1, no. 1, pp. 51–74, January
2001.

[13] T. M. Brady, C. E. Tillier, R. A. Brown, A. R. Jimenez, and A. S.
Kourepenis, “The inertial stellar compass: A new direction in space-
craft attitude determination,” in 16th Annual AIAA/USU Conference

on Small Satellites, Logan, Utah, August 2002.
[14] Department of Defense World Geodetic System, 3rd ed., U.S. National

Imagery and Mapping Agency, January 2000, TR8350.2.
[15] WGS84 Implementation Manual, 2nd ed., EUROCONTROL and

IfEN, February 1998.
[16] J. Neumann, C. Fermüller, and Y. Aloimonos, “Eye design in the

plenoptic space of light rays,” in Ninth IEEE International Conference

on Computer Vision, October 2003, pp. 1160–1167.
[17] H. Bakstein and T. Pajdla, “Panoramic mosaicing with a 180

◦ field
of view lens,” in Third Workshop on Omnidirectional Vision, June
2002, pp. 60–67.

[18] C. Harris and M. Stephens, “A combined corner and edge detector,”
Fourth Alvey Vision Conference, pp. 147–151, 1988.

[19] J. P. Lewis, “Fast normalized cross-correlation,” Vision Interface,
1995.

[20] M. Antone and S. Teller, “Scalable extrinsic calibration of omni-
directional image networks,” International Journal of Computer Vi-

sion, vol. 49, no. 2–3, pp. 143–174, September–October 2002.
[21] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a

scene from two projections,” Nature, vol. 293, pp. 133–135, 1981.

	Navigation Problem
	Approach
	Tracking vs. Flow
	Data Fusion
	Gyroscope Reliance

	IMU Definition
	Cameras and Tracking
	Camera Definition
	Rotation Compensation
	Tracking

	Epipolar Constraint Filter
	Residual
	Stochastic Update
	Multiple Features
	State Transfer
	Relative Covariance
	Outlier Protection
	Numerical Caveats

	Results
	Simulation
	Real Data

	Conclusions
	Future Work
	Acknowledgements

	References

