Epipolar Geometry in Stereo, Motion and Object Recognition A Unified Approach

by

Gang Xu

Department of Computer Science, Ritsumeikan University, Kusatsu, Japan

and

Zhengyou Zhang

INRIA Sophia-Antipolis, Sophia-Antipolis, France

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

CONTENTS

Fo	rwar	d by Olivier Faugeras	xiii
Fo	rwar	d by Saburo Tsuji	xv
PF	REFA	CE	xvii
1	IN	TRODUCTION	1
	1.1	Vision Research	1
	1.2	Multiple View Problems in Vision	2
	1.3	Organization of this Book	4
	1.4	Notation	5
2	CA	MERA MODELS AND EPIPOLAR	
		OMETRY	7
	2.1	Modeling Cameras	7
		2.1.1 Pinhole Camera and Perspective Projection	7
		2.1.2 Perspective Projection Matrix and	
		Extrinsic Parameters	10
		2.1.3 Intrinsic Parameters and Normalized Camera	12
		2.1.4 The General Form of Perspective Projection Matrix	14
	2.2	Perspective Approximations	16
		2.2.1 Orthographic and Weak Perspective Projections	17
		2.2.2 Paraperspective Projection	20
		2.2.3 Affine Cameras	24
	2.3	Epipolar Geometry Under Full Perspective Projection	26
		2.3.1 Concepts in Epipolar Geometry	26
	,	2.3.2 Working with Normalized Image Coordinates	29

~

		2.3.3	Working with Pixel Image Coordinates	33
		2.3.4	Working with Camera Perspective Projection	
			Matrices	37
		2.3.5	Fundamental Matrix and Epipolar Transformation	39
	2.4	A Ge	neral Form of Epipolar Equation for Any Projection	
		Mode	_	42
			Intersecting Two Optical Rays	42
			The Full Perspective Projection Case	45
	2.5		olar Geometry Under Orthographic, Weak Perspective,	
		-	perspective and General Affine Projections	46
			Orthographic and Weak Perspective Projections	47
			Paraperspective Projection	56
			The General Affine Camera	61
	2.6		olar Geometry Between Two Images	
			Lens Distortion	65
			Camera Distortion Modelling	66
			Computating Distorted Coordinates from Ideal Ones	68
		2.6.3	Epipolar Constraint Between Two Images with Distortion	69
	2.7	Sumn	nary	70
	2.A	Appe	ndix	71
		2.A.1	Thin and Thick Lens Camera Models	71
		2.A.2	Inverse and Pseudoinverse Matrices	75
3	RE	cov	ERY OF EPIPOLAR GEOMETRY	
	\mathbf{FR}	OM I	POINTS	79
	3.1	Deter	mining Fundamental Matrix Under Full Perspective	
		Proje		79
		3.1.1	Exact Solution with 7 Point Matches	81
		3.1.2	Analytic Method with 8 or More Point Matches	81
		3.1.3	Analytic Method with Rank-2 Constraint	87
		3.1.4	Nonlinear Method Minimizing Distances of Points to Epipolar Lines	88
		3.1.5	Nonlinear Method Minimizing Distances Between	00
		2.2.0	Observation and Reprojection	91
		3.1.6	Robust Methods	93

Contents

	3.1.7	Characterizing the Uncertainty of Fundamental Matrix	106
	3.1.8	An Example of Fundamental Matrix Estimation	111
		Defining Epipolar Bands by Using the Estimated	
		Uncertainty	117
3.2	Deter	mining Fundamental Matrix for Affine Cameras	120
	3.2.1	Exact Solution with 4 Point Matches	121
	3.2.2	Analytic Method with More than 4 Point Matches	121
	3.2.3	Minimizing Distances of Points to Epipolar Lines	126
	3.2.4	Minimizing Distances Between Observation and Reprojection	127
	325	An Example of Affine Fundamental Matrix	121
	0.2.0	Estimation	129
	3.2.6	Charactering the Uncertainty of Affine Fundamental	
		Matrix	131
	3.2.7	Determining Motion Equation in the 2D Affine	
		Motion Case	133
3.3	Recov	very of Multiple Epipolar Equations by Clustering	136
	3.3.1	The Problem in Stereo, Motion and	
		Object Recognition	137
		Definitions and Assumptions	138
		Error Analysis of Motion Parameters	139
		Estimating Covariance Matrix	141
		The Maximal Likelihood Approach	142
	3.3.6	Robust Estimation Using Exponential of Gaussian	145
	007	Distribution	145
		A Clustering Algorithm An Example of Clustering	147
9.4		An Example of Clustering	148 149
3.4	•		149 149
		Projective Structure from Two Uncalibrated Images	149
		Computing Camera Projection Matrices Reconstruction Techniques	151 153
		-	
0 F		Use of Projective Structure	155
3.5		e Reconstruction	156
		Affine Structure from Two Uncalibrated Affine Views	156
*		Relation to Previous Work	159
	3.5.3	Experimental Results	159

	3.6	Summary	161		
	3.A	Appendix	164		
		3.A.1 Approximate Estimation of Fundamental Matrix from			
		General Matrix	164		
		3.A.2 Estimation of Affine Transformation	165		
4	RE	COVERY OF EPIPOLAR GEOMETRY			
	\mathbf{FR}	OM LINE SEGMENTS OR LINES	167		
	4.1	Line Segments or Straight Lines	168		
	4.2	Solving Motion Using Line Segments Between Two Views	173		
		4.2.1 Overlap of Two Corresponding Line Segments	173		
		4.2.2 Estimating Motion by Maximizing Overlap	175		
		4.2.3 Implementation Details	176		
		4.2.4 Reconstructing 3D Line Segments	179		
		4.2.5 Experimental Results	180		
		4.2.6 Discussions	192		
	4.3	Determining Epipolar Geometry of Three Views	194		
		4.3.1 Trifocal Constraints for Point Matches	194		
		4.3.2 Trifocal Constraints for Line Correspondences	199		
		4.3.3 Linear Estimation of K, L, and M Using Points and			
		Lines	200		
		4.3.4 Determining Camera Projection Matrices	201		
		4.3.5 Image Transfer	203		
	4.4	Summary	204		
5	RE	DEFINING STEREO, MOTION AND			
	OBJECT RECOGNITION VIA EPIPOLAR				
	GEOMETRY				
	5.1	Conventional Approaches to Stereo, Motion and			
		Object Recognition	205		
		5.1.1 Stereo	205		
		5.1.2 Motion	206		
		5.1.3 Object Recognition	207		
	5.2				
		as 1D Search	209		
		5.2.1 Stereo Matching	209		

Contents

6

	5.2.2	Motion Correspondence and Segmentation	2 09			
	5.2.3	3D Object Recognition and Localization	210			
5.3	Dispa	rity and Spatial Disparity Space	210			
	5.3.1	Disparity under Full Perspective Projection in the Parallel Camera Case	211			
	5.3.2	Disparity under Full Perspective Projection in the General Case	211			
	5.3.3	Disparity under Weak Perspective and Paraperspective Projections	214			
	5.3.4	Spatial Disparity Space and Smoothness	215			
	5.3.5	Correspondence as Search for Surfaces and Contours in SDS	218			
5.4	Sumn	nary	219			
тм	AGE	MATCHING AND UNCALIBRATED				
	ERE		221			
6.1	-	ng Match Candidates by Correlation	223			
		Extracting Points of Interest	223			
	6.1.2	Matching Through Correlation	224			
	6.1.3	Rotating Correlation Windows	225			
6.2	Uniqu	e Correspondence by Relaxation and Robust Estima-				
	tion o	f Epipolar Geometry for Perspective Images	227			
		Measure of the Support for a Match Candidate	228			
		Relaxation Process	230			
		Detection of False Matches	232			
6.3		Unique Correspondence by Robust Estimation of Epipolar				
		etry for Affine Images	233			
		Discarding Unlikely Match Candidates	233			
	6.3.2	Generating Local Groups of Point Matches for Clustering	234			
6.4	Image	Matching with the Recovered Epipolar Geometry	235			
	6.4.1	A Simple Implementation for Matching Corners	236			
		A Simple Implementation for Matching Edges	236			
6.5		xample of Matching Uncalibrated Perspective Images	237			
6.6	An Ez	xample of Matching Uncalibrated Affine Images	241			
6.7	Sumn	nary	243			

7	MU	JLTIPLE RIGID MOTIONS: CORRESPONI	DENCE
	AN	ID SEGMENTATION	247
	7.1	Problems of Multiple Rigid Motions	247
	7.2	Determining Epipolar Equations for Multiple Rigid Motions	249
		7.2.1 The Algorithm	249
		7.2.2 Experimental Results	250
	7.3	Matching and Segmenting Edge Images with Known	
		Epipolar Equations	253
		7.3.1 Representing the Problem in ESDS	253
		7.3.2 A Support Measure for Selection from Multiple	
		Candidates	255
		7.3.3 Experimental Results	256
	7.4	Transparent Multiple Rigid Motions	258
	7.5	Summary and Discussions	260
	7.6	Appendix: SVD Algorithm for Structure and Motion Re-	
		covery with Known Epipolar Equations	263
8	3D	OBJECT RECOGNITION AND	
	\mathbf{LO}	CALIZATION	269
	8.1		269
	8.2	Recognition and Localization with Single Model View with Model Views	271
		8.2.1 Is a Single View Sufficient for 3D Object Recognition?	271
		8.2.2 Matching Model View with Input View as	
		Uncalibrated Stereo Images	272
		8.2.3 An Example	273
	8.3	Recognition and Localization with Multiple Model Views	278
		8.3.1 Intersection of Epipolar Lines	279
		8.3.2 Basis Vectors	279
		8.3.3 Determining Coefficients	282
		8.3.4 An Example	286
	8.4	Summary	287
9	CC	NCLUDING REMARKS	291
RF	EFEI	RENCES	293
INDEX			309