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ABSTRACT and focal lengths etc., we can confine our search for matching

it . libration inf L labl isoaf points to what we refer to apipolar spacesFor each point
precise calibration information Is unavailable, as iseat ;o image, we define the corresponding epipolar space in

the case for actlye binocular vision systems, the determmqhe other image as the union of all associated epipolar lines
tion of epipolar lines becomes untenable. Yet, even Wlthoug)Ver all possible system geometries

instantaneous knowledge of the geometry, the search fer cor Epipolar spaces eliminate the need for calibration at the

respond;gg pom;c]s can b_e restrl_cted to are:sf_caﬂmﬁolar cost of an increased search region. One approach to mitigate
spaces For each point in one image, we define the COMeyyq inerease is the application of a space variant sampling

spondlng. eplpolgr space in the other Image as the union %veation strategy. The application of such a strategyerest
a[l assoqated epipolar I|'ne's over all possible system &S0M \ision tasks is not new. Space variant transformations asch
tries. Eplpqlar spaces eliminate _the need for Callbrattcthe_a_ log-polar [2], reciprocal wedge transform [3], and fish-g4je
cost of an increased search region. One approach to mitigalg, e peen successfully applied to binocular vision problem

this ingrease Is the appl_ication of a space variant S""mp“'”g such as vergence [5] and depth recovery of a scene [6]. Yet,
foveation strategy. While the application of such strateg|eon|y rarely has a foveation strategy been specifically taio

to stereo vision tasks is not new, only rarely has a foveation, " «tareo vision task. Both Basu [7] and Elnagar [8] de-
scheme been specifically tailored for a stereo vision task. lived optimal sampling schemes with respect to the error dis

this paper we d_e_rive a f_oundation _Of theorems that pr_ovide fretization of depth measurements. Klarquist and Bovik [9]
means for obtaining optimal sampling schemes for a given s signed a real-time foveated stereo technique that attapts

of epipolar spaces. A.n optimal sampling scheme i§ defined e specific geometry, always producing horizontal epipola
a strategy that minimizes the average area per epipolaespag, .«

Index Terms— Stereo vision, Image sampling, Active vi- In this paper we first formalize the concept of epipolar
sion, Image registration spaces. We then discuss the general mathematics of applying
nonuniform sampling strategies to epipolar spaces. Kinall
we present an optimal sampling scheme specifically designed

1. INTRODUCTION to minimize the average area per epipolar space.

Active binocular vision systems (ABVS) are especially well

suited for the recovery of depth information [1]. This recov 2. EPIPOLAR SPACES
ery process, accomplished through registration, can lzlgre
simplified if the geometric configuration is known, allowing
the search for corresponding points to be restricted toodguip
lines. Unfortungtely, ascertaining the; actively changitegeo _ Fsin(6)) +uy cos (6)

geometry requires accurate calibration, a complex praeedu v = v Fsin (6,) — uy cos (6,) @
Though it is possible to register images without geometric i

formation, such unconstrained algorithms are usually moreConsider the situation where the camera configuration ac-
time consuming and prone to error. In this paper we propostvely changes and we no longer know the specific geometry.
a compromise. Even without knowledge of the exact stere@omputing epipolar lines becomes untenable. However, even
geometry we can restrict the region of correspondence by inthough we may not know the precise values of parameters
posing limits on the possible range of configurations. Teat i such as focal length, baseline distance, and camera motatio
by restricting the range of vergence angles, baselinerdissa  angles, we can establish acceptable ranges for these values

Given the specific stereo geometry shown in Fig. 1, the ex-
pression for corresponding epipolar lines is




Remarkably, an epipolar space is well modeled by a rectangle
This fact is illustrated in Fig. 2. The thick lines represte
precise boundaries of the regions. The thin lines denote the
approximate upper and lower bounds determined from (4) and
(5). Epipolar spaces are nonuniform in area, increasinge s
with increasing values af anduv.
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Consequently, we can still restrict the location of coroesp . Ll —
ing points across images. For a given point in one image, the 0o 01 02 03 04 05 06 07

matching point in the other is confined to a region defined by b

the union of all corresponding epipolar lines produced over
all possiblle camera configurations. We call these contisuou Fig. 2. Various epipolar spaces.
regionsepipolar spaces

The goal of the remainder of this section is to quantify
these epipolar spaces for a stereo rig with a fixed baselitie an
fixed focal length as shown in Fig. 1. In this configuration the
only variable parameters that effect the epipolar geonaty
the camera rotation anglésandé,.. Translation and rotation i o o
of the entire stereo rig abo@, while allowed, do not influ- Epipolar spaces eliminate the need for calibration at the ex

ence the epipolar geometry. We establish the range ofoatati PENSe of an increased search space. To mitigate this iecreas

3. OPTIMAL SAMPLING THEOREMS

angles by confining them to the interval a sampling strategy can be_a_pp_lied. The optimal strategy
is defined as the one that minimizes the average number of
01,0, € [Orr, 7 — O], (2)  points per epipolar space. Though sampling is inherently a

discrete process, it can be modeled continuously. Working i
a continuous domain simplifies the analysis, allowing the us
of powerful mathematical tools that are either unavailaile
extremely cumbersome in a discrete framework.

wheref,, is the minimum angle relative to the baseline.
Although theoretically a matching point can lie anywhere

on the corresponding epipolar lines, the search is usually r

stricted to a maximum horizontal disparity. For our purgpse

we assume a maximum horizontal disparity defined by Consider any two-dimensional, connected reginFor
each point: in R the matching point must lie within the cor-
|d] = [w — u,| < D. (3)  responding epipolar spacéu). The goal of an optimal sam-

pling strategy is to placév points in the regionR in such
fashion as to minimize the average number of candidate
atches for each of th& points. A candidate match for
pointw; is defined as any poini, that lies within the epipo-

The restriction imposed by (3) determines the leftmos
and rightmost bounds of the epipolar spaces. The upper arft
lower bounds are determined by maximizing and minimizin
(1) with respect to both; andé,.. For reasonable image sizes

and focal lengths these bounds can be approximated as féﬁr spa'cer (7). .
lows: A discrete sampling strategy can be represented as a con-

. . tinuous sampling function [10]. Such a function is defined as
vV f2tur =vec(uy) (4 AW invertible functiony(u)_ = [vu (?‘) Yo (w)]" that maps
fsin (Onr) — uy cos (Onr) R2 — R2 and has a Jacobian matrix with a determinant that

U, maz ~

is positive everywhere. For a given sampling functip(u)

sin (6pr) — w, cos (0 r : ;
Vi, min = Urf in (Ou) 5 - 5 G =2 (vu ) (5) the average area of the epipolar spacés) over the region
VIt r Ris defined as

where
2 2
(ur) = VIt 6) By R) =4 //R ey (Wl (W)ldu,  (7)

fsin ((9]»]) — Uy COS (GM) '




where uniform rectangular epipolar spaces of any aspect ratio. It

ely;r (u)] = // Iy (@)| da (8)  also holds for rectangular sampling of any aspect ratid; tha
r(u) is, the sampling rate in each dimension need not agree. Com-
is the area of the epipolar space associated with the poifning this result with Theorem 3.2 demonstrates that any
w after transformationsy’ () is the Jacobian matrix, and aréa preserving sampling function (i.e., it satisfies (Bgtt
Ap = ffR du. An optimal sampling scheme is a function Warps nonuniformly sized epipolar spaces into rectangles o

~ (u) that minimizesE (v;r, R) subject to the constraint of uniform size is the minimizing function associated withgbo
area preservation: nonuniform spaces. In fact, the nonuniform spaces do not

have to be warped into rectangles. They need only be mapped
A(v:R) = // ' ()] duw = // du=Ap  (9) :cnto regions of uniform area. The proof of this is omitted
R R or space. In summangny area preserving sampling func-

. o . ) tion v (u) that warps epipolar spaces into regions of uniform
We begin by considering hypothetical uniform rectangu-

: - : . area is optimal with respect to their average epipolar area
lar epipolar spaces(u) defined byu € [u—c,,u+c,] and
¥ € [v—cy,v+ey], Wheree, > 0 ande, > 0. It is assumed
that Ar > c,c,, eliminating the need to clip the epipolar
spaces that extend outsidefof Furthermore, since the epipo-

. . . This section uses the results from previous sections to for-
lar spaces are separable and not spatially variant, it #rea mulate the optimal sampling schemes for the epipolar spaces
able to restrict the space of optimal sampling function$iéo t P bing PIp P

t defined in (3), (4), and (5). The sampling function that warps

space of separabl_e functions, i.g.(u) = [y (7%) » To (U)].' these epipolar spaces into regions of nearly equal area, and
With these restrictions (8) can be well approximated (fdr un consequently, minimizes (7) is:

form epipolar spaces) as follows:

€ (3 7) ~ cucartl (u) 1) (0) (10) o (uy0) = [ﬂuu,

Assuming separability, the insertion of (10) into (7) prods

4. OPTIMAL SAMPLING STRATEGY

Bylnw }t

Inc(u) (12)

where 3, and g, are constants chosen such that their prod-
e c uct satisfies the constraint in (9). The transformationsef t
nes) ’ ’ 2 . . . . . .
1 // [V (W) 7, (v)]" dudv. (11)  epipolar spaces shown in Fig. 2 using (12) are illustrated in
R R . h . . .
Fig. 3. Though the warped boundaries are not identical in
The following theorems and proofs form the foundationshape, they are almost perfectly uniform in area.
for constructing optimal two dimensional sampling stréeg

4
E(v;7,R) ~

Theorem 3.1 Let R be a rectangular image plane with € Ofaeoe D ””” . D """ o
I, andv € I,, wherel, and I, are the intervals defined -0.2 D
by [ay, bu] and [a,, b,], respectively. Iy, (u) € C? [ay, by] o4}

and-~, (v) € C? [ay, b, theny, (v) = B,u and~, (v) = B,v, o g pry

whereg, 3, = 1, minimize the objective functional given in D mage Boundary

(112), subject to the constraint posed in (9).

Proof This is omitted due to space restrictions.

Theorem 3.2 If «v (u) = T (u) is a sampling function that T o4 ot oe oy
minimizesE (v; r, R) subject toA (v; R) = Ar andx (u) is a
some other sampling function satisfying(x ~*; R) = Ag,
then~ (u) = Iy (u) = T [x (u)] minimizes the functional
E (v;7y, Ry) subject to the constraind (v; Ry) = Ag,,
whereR, =x ! (R) andr, (u)=x"" (r[x (u)]).

Fig. 3. Epipolar spaces from Fig. 2 after optimal sampling.

As mentioned previously, the constaptsandg, in (12)

Proof This can be shown by performing the variable substi-2re only restricted in the sense that their product musifyati

tution z = x ! (u) in equations (7), (8), and (9). This is (9). This is a consequence of the fact that the average epipol
omitted due to space restrictions. area is a function of the determinant of the Jacobian @f),

and noty (u) itself. Fig. 4 illustrates the optimal sampling
Theorem 3.1 states that uniform rectangular sampling istrategies whes, is set to two different, arbitrarily chosen
optimal for uniform rectangular epipolar spaces when tea ar values:3, =1 andg3, =4.
of R is large with respect to the individual epipolar areas, i.e. Consider the uniform grid in Fig. 5(a). This grid repre-
as the amount of clipping becomes negligible. This holds fosents the uniform sampling of the warped image space re-
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Fig. 4. Examples of optimal sampling scheme.

sulting from the application of the optimal transformatian
(12) to a square image plane. Fig. 5(b) illustrates the kesse
lation resulting from projecting the uniform grid in Fig.&§(
back into the original square image plane. Each enclosed are
in the tessellation is called a super-pixel. Foveating & typ
cal uniformly sampled image requires assigning all the uni-
form pixels within each super-pixel their average value. In
the warped space each uniform pixel is assigned the averag
of its concomitant super-pixel.
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Fig. 5. Tessellations for optimal epipolar sampling.

5. CONCLUSION

In this paper we introduced the concept of an epipolar spac
For a point in one image, an epipolar space was defined a
the region in the other image formed from the union of all as-
sociated epipolar lines produced over all possible geametr
configurations. Epipolar spaces eliminate the need for cali

bration, but at the expense of a greater search space. To r§9] W. N. Klarquist and A. C. Bovik, “Fovea:
duce this increase we established a foundation of theorems

for deriving optimal foveation schemes that minimize the av

erage area per epipolar space. These theorems indicated tha

any transformation mapping nonuniform epipolar spaces int
regions of uniform area is optimal with respect to mean epipo
lar area. As a demonstration of principle we obtained an opti

mal sampling scheme and tessellation for the epipolar spacé1

resulting from a specific range of stereo geometries.

On a final note, we reiterate that for a given set of epipo-
lar spaces there exists an infinite number of optimal samgplin
strategies. To intelligently select from among these ftivea

e is]

schemes the additional optimization of ancillary metrsesgh
as 3D discretization error, can also be considered.
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