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Abstract 
Thas paper addresses the problem of computing the 

fundamental matrix which describes a geometric rela- 
tionshzp between a pair of stereo images: the epipo- 
1ar geometry. W e  propose here a novel method based 
on virtual parallax. Instead of computing directely the 
3 x 3 fundamental matrix, we compute a homography 
with one epipole position, and show that this is equiva- 
lent to compute the fundamental matrix. Simple equa- 
tions are derived by reducing the number of parame- 
ters to estimate. A s  a consequence, we obtain an ac- 
curate fundamental matrix of rank two with a stable 
lznear computation. Experiments with simulated and 
real zinages valzdate our method and clearly show the 
z m pl-of re nient over the exzst ing methods. 

1 Introduction 
Two images of the same rigid scene, taken from 

two different viewpoints, are related by the so-called 
epzpolal- transforination, also called epipolar geometry 
which has been described in publications too numer- 
ous to list here (see for example [2, 3, 6, 81). In the 
uncalibrated case, i.e. when the images are obtained 
with uncalibrated cameras, the epipolar geometry is 
the only information we can get from point matches. 

The epipolar geometry is used in particular for 

3D reconstruction : The epipolar geometry is 
used for 3D reconstruction from stereo images 
[ 1, 3, 111. In particular knowing the epipolar ge- 
ometry of a pair of stereo images is equivalent to 
the knowledge of projective reconstruction [4]. 

camera calibration : Camera self-calibration [7, 91 
is a recent topic which aims to calibrate cameras 
only from point correspondances. If the feasabil- 
ity has been shown, work still remain to be done 
to have robust methods in the field. 

matching and tracking: Once this geometry is 
computed, it reduces drastically the complexity 
of the matching between two images as the cor- 
responding points lie on a line. 

motion segmentation : Rigidity might be violated 
in  part of the image, it can be detected by viola- 
tion of the epipolar constraint[l2]. 

'The reasearch described in this paper has been partially 
supported by Esprit Bra project Viva 

This paper presents a new method for computing 
the epipolar geometry from point matches. It is based 
on the computation of the homography between a vir- 
tual plane and the images and detecting the parallax 
of points which do not belong to this plane. Beside of 
its elegance, the solution presented allows to express 
the epipolar geometry with a minimal number of un- 
knowns and allows directly to express the fondamental 
matrix as a rank two matrix. This leads to simple and 
stable computation giving very accurate results. Fur- 
thermore, it degenerates gracefully in case of planar 
scenes, providing in such a case the homography be- 
tween the two images. 

The rest of this paper is organized as follows: in 
next section we present the basis of the epipolar ge- 
ometry. the notation together with a brief description 
of the existing methods. Section 2 shows the geomet- 
ric aspect of the relation between virtual parallax and 
epipolar geometry. In section 4 we present our method 
to solve for the epipole and the plane homography be- 
tween the two images, we show that the fundamental 
matrix F is simply the product of an antisymmetri- 
cal matrix with a homography matrix and F is of 
rank two by construction. The experimental results 
are presented in section 5. 

2 Basic properties and existing meth- 
ods to compute F 

Let two images be taken by two cameras by linear 
projection, as shown on Figure 1. Let 0 and 0' be 
the two projection centers of the two images which 
will be called in the following: first and second image 
respectively. The point 0 projects to  the point e' in 
the second image, and the point 0' projects to the 
point e in the first image. The two points e and e' 
are the epipoles and the lines through e and e' are the 
epipolar lines. Let a space point P be projected on p 
and p' respectively in the first and the second image. 
The plane defined by the three points P ,  0 and 0' is 
the epipolar plane, it contains the two points p and 
p'. The projections of this plane onto the first and the 
second image are respectively the epipolar lines ( e ,  p )  
and ( e ' , ~ ' ) .  We can see from Figure 1 that the rela- 
tion between the epipolar lines in the first image and 
the epipolar lines in the second image is a homography 
of lines. This homography is the epipolar transforma- 
tion which relates a pair of stereo images. The first 
method to compute the epipolar eometry from point 
matches was proposed by Hesse[d, and later clarified 
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Figure 1: A space point P defines the epipolar plane 
OPO’ which intersects the two image planes in two 
lines ( e p )  and (e’p’) : the epipolar lines. 

and summarised by Sturm [13]. The latter proposes 
an algorithm to compute the epipoles and the epipolar 
transformation compatible with 7 matched points in a 
general configuration. However, this algorithm is only 
of theoretical interest, it doesn’t consider the case of 
noisy data. Furthermore, even if redundant data is 
used, i.e. more than 8 matched points are used and 
noise is considered, the computation is very unstable 
leading very often to incorrect results [6]. 

The most common way to describe the epipolar ge- 
ometry is by means of a 3 x 3 matrix called the fun- 
damental matrix. This matrix, usually noted F, con- 
tains the geometric information which relates a couple 
of stereo images. For a point p given by its homoge- 
neous coordinates in the first image, the corresponding 
epipolar line I ,  in the second image is given by : 

1, = F p  

1, is a vector containing the coefficients of the line. 
If in the second image p’ is the corresponding point 

to p then p‘ must belong to l,, this can be written as 

F is homogeneous and is of rank two [8], it has seven 
independent parameters. 

The most used methods to compute F are based 
on the above equation. A brief description of these 
methods follows. 

Let’s assume that points have been matched in the 
2 images. When using (1), each couple of match points 
(p,p’) gives rise to a linear homogeneous equation in 
the nine unknowns of F. Since F can only be defined 
up to a scale factor, it has 8 independent parameters. 
So F can be computed with 8 matched points in the 
2 images. When more than 8 matches are given, a 
linear least square method can be used to compute 
F .  However, such method is very sensitive to noise as 
shown by the experiments of Luong [6]. Furthermore, 

there is no way to ensure the rank property of F when 
using only linear equations. 

In practice, F computed using equations (1) is not 
correct, particularly when the epipoles are far from the 
center of the image. This is due to the parametrization 
of the epipolar transformation which is represented 
here by 9 parameters instead of 7. In particular, F 
obtained by solving the linear equations (1) is not of 
rank 2 when real data are used. 

To overcome this problem, a nonlinear minimiza- 
tion with the rank constraint is used, the following 
criterion is often used (see [6] for more details) : 

where d2(p:, Fpi) is the square distance of the image 
point p: to its corresponding epipolar line (Fpi).  

Therefore, F is computed in two steps: by using 
the linear criterion ( l ) ,  a solution for F is computed 
with a linear least square method, this first solution is 
used as a starting point for a nonlinear minimization 
based on 2 ) .  In the following, these 2 steps are called 

This algorithm has one major weakness, the conver- 
gence of the nonlinear method to the correct solution 
for F depends on the initialization provided by the 
linear solution. The latter gives very often a false so- 
lution which sometimes leads to a local minimum for 
the function defined in (2). It results into more iter- 
ations for the nonlinear step, and in some cases the 
method converges to a local minimum. An example 
illustrating this problem is presented in section 5. 

3 Epipolar geometry, virtual parallax 
Let II123 be a plane defined by 3 space points PI, P 2  

and P3 ; and let’s consider 2 other space points P 4  and 
P not belonging to II123. These points are observed by 
2 cameras providing 2 images called in the following 
first and second image(see Figure 2) .  

The line (OP4) intersects I I123  in the point Q4 (Fig- 
ure 2).  In the first image both P 4  and Q4 project 
onto the same image point p4. However, in the second 
image they project onto 2 different points p i  and q i  
(parallax effect). This is always true when the motion 
between the two cameras has a non null translation 
component. In a similar way, the two space points P 
and Q project on the same image point p in the first 
image and on 2 points p‘ and q‘ in the second image. 

In the second image, the 2 image lines (pip:) and 
(p’q’) are the projections of the two space lines (OP4) 
and (OP)  respectively. It’s clear that (piqi) and (p’q‘) 
are the epipolar lines correspondin to the two points 
p4 and p of the first image. Hence, biqi) and (p’q’) in- 
tersect in the epipole e’ (see figure 2). Unfortunately, 
the locations of q i  and q‘ are not given since these 
points are the projection of virtual points. If by some 
means the projection of such points can be located in 
the second image, the problem would be solved. For 
example if 4 space points were known to be coplanar, 
then, it would be possible to compute the plane ho- 
mography between the two images, this homography 

respective i y the linear and the nonlinear algorithm. 
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would give the projection of these virtual points in 
the second image. In such case, the epipolar geometry 
could be computed with only 6 match points where 
exactly 4 of them are coplanar [lo]. However, this 
a priori knowledge is not available: the next section 
provides the solution. 

p4 t P  

i 

0 

Figure 2: Epipolar geometry and virtual parallax 

4 Epipole and fundamental matrix es- 
timation 

We propose here a method to compute the funda- 
mental matrix given match points in 2 images. We 
use in this section the same notations as in Figure 2.  

Consider a space point P I  and let the virtual point 
Q be the intersection of the plane II123 with the line 
( O P ) .  Suppose we have a means which enables us to 
find for each space point P the projection q’ of the 
corresponding virtual point Q in the second image. If 
in addition the epipole e’ in the second image is known 
then to a point p in the first image corresponds an 
epipolar line in the second image given by (e‘q’) .  The 
reverse is also true if we exchange the 2 images. This 
is equivalent to the fundamental matrix. 

Let H and H‘ be the 2 plane homographies corre- 
sponding to the projections of n123 onto II and II’ in 
the first and the second image respectively where : 

rI = H ( I I 1 2 3 )  and n’ = H’(II123) 

As nonsingular homographies are invertible, there ex- 
ists a plane homography Ii‘ between rI and II’ such 
that I< = H’H-’, where H - l  is the inverse of H. 

We have the following relation : 

V p  E II, I<(p )  = q’ with q’ E II’ 
”here, according to Figure 2,  p is the projection in 

t,he first image of the point P and q‘ is the projection 
in the second image of the virtual point Q. 

Let the homography I< be described by a 3 x 3 
matrix C. By using homogeneous coordinates for the 
image points we have : 

v p  E n, c p  = Xq’ (3) 

where X is an unknown scale factor. 

if it belongs to I I123 .  In particular] we have: 
Note that q’ could be the projection of a real point 

c p i  = xip:  , i = 1 . . . 3  (4) 

where pi and pi are respectively the projections of Pi 
in the first and the second image. 

For each couple ( p i ,  p i ) ,  the above relation gives rise 
to 2 independent linear equations in the nine unknown 
coefficients of C. Thus P I ,  Pz and P3 introduce 6 lin- 
ear equations. Since C is homogeneous, it has only 
8 independent parameters and we can write it as de- 
pending on only 2 parameters(see next paragraph). 
4.1 Simple expression for C 

Let’s make 2 choices of coordinate systems in the 2 
image planes by choosing a projective basis such that : 

( p i , p : ) ,  i = 1 . . . 3  are the projections on the 2 images 
of P I ,  P2 and P3 ; (PO, p b )  is a couple of matched points 
such that no 3 of these 4 points are collinear. 

Under such choice of coordinate systems and after 
using relation (4) for the three couples ( p i , p : ) ,  i = 
1 . . . 3 ,  the expression of C can be written as : 

(5) 

In fact, the above matrix has 3 parameters, but only 
two of them are independent. Furthermore, these 3 
parameters can noit be null for a nonsingular homog- 
raphy. Since our homography maps a plane onto a 
plane C does not describe a singular homography. 
Thus, we can fix one of the 3 parameters of C .  For 
our case we set it equal to 1 (the last element of C). 

Note that up to now, we only made use of 3 matched 
points in the two images. 
4.2 Basic equation 

Let’s suppose here that C has the form given in (5) 
and any couple of matched points ( p , p ’ )  are given by 
their homogeneous coordinates vectors (2, y, t ) T  and 
(d, respectively. By using the relation (3) and 
the simple form of C given in (5), the homogeneous 
coordinates of the projection q’ of the virtual point Q 
in the second image are given by : 

cp = Xq’ = X(az, p y ,  t ) T  (6) 

where only a and p are unknown here. 
be the unknown homogeneous co- 

ordinates of the epipole e’ in the second image, It is 
clear from Fi ure 2 that in the second image q’ belongs 

ing to p .  This can be written as : 

Let ( e ; ,  e ; ,  

to the line (e P p’)  which is the epipolar line correspond- 
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(e’ x p’ )  . q’ = O ( 7 )  
where x is the cross product and . the scalar product. 

(e’ x p’)  is a vector of dimension 3, the elements of 
this vector are the 3 coefficients of the line (e’p’). 

By expanding (7 )  and using the coordinates of q’ 
given in ( 6 )  we obtain the following equation : 

(e:y’-t’ej)ax+(t’e:-e:x‘)py+(el,x’-y’e:)t = 0 (8) 

Equation (8) has 5 unknowns : a ,  P, e:, e; and e:. 
Since ( e ; ,  e ; ,  e:)T are the homogeneous coordinates of 
e‘, only 2 of these 3 coordinates are independent. Con- 
sequently, we have only 4 independent unknowns in 
the equation above. So, in addition to the 3 couples 
of matched points used to simplify C ,  at least 4 cou- 
ples of matched points in the two images are necessary 
to solve for the 4 independent unknowns of equation 
(8 . Thus, at  least 7 matched points are necessary to 

image. However, the above equation is nonlinear. 

ing notations : 

so i ve for the plane homography and the epipole in one 

Let’s distinguish the unknowns by using the follow- 

(9) 
@ = X I ,  P = X z ,  e L = X s ,  e l , = X 4  

and e: = X5.  

and let’s use the following notations : 

ai = xiy:, b, = -x i t i ,  c; = y,t:, d, = -yix:, 
e, = t ix i  and f, = -t,y,! (10) 

where (xi, ~ i , t i ) ~  and ( x : ,  y,!,t:)T are the homoge- 
neous coordinates of image points pi and p: respec- 
tively. 

For each couple of matched point (pi ,  p i ) ,  the equa- 
tion (8) can now be written as: 

a ,  XI X5 + bi X I  X4 +ci X2 X 3  +di X2X5 +e* X4 + fi X 3  = 0 

Note that the coefficients ai, b,, ci, d i ,  ei and f ,  can 
not be zero all together. 

The above equation is the basic equation of the 
epipolar geometry based on virtual parallax, where we 
have, 4 independent unknowns describing a problem 
depending exactly on 4 independent parameters. 

Equation (11) is nonlinear, but by using the follow- 
ing unknowns transformation : 

(11) 

(12) 
X I x 5  = V I ,  x1x4 = v 2 ,  x2x3 = v 3 ,  

X2X5 = V 4 ,  X4 = V 5  and X3 = V6 

Equation (1 1) becomes ; 

aiV1 + biV2 + ciV3 + diV4 + eiV5 + fiV6 = 0 .  (13) 
The above equation is linear, but with one more pa- 
rameter. So at  least 5 independent equations must 
be used to solve for the unknowns V,. As a conse- 
quence, a linear computation for the epipole (e’) and 
the plane homography (C) is possible when 8 couples 
of matched points are given. This linear computation 
can be followed by a nonlinear one using equation (1 1) 
to ensure the use of a minimal number of parameters. 

4.3 Number of solutions with 7 points 
In this paragraph we show that 3 solutions for the 

epipole are compatible with 7 matched points in 2 im- 
ages. This result was established by Sturm [13], how- 
ever the proof given here is must simpler. 

Suppose we have 7 couples of matched points be- 
tween the first and the second image, 3 of them are 
used to simplify the expressions of the plane homog- 
raphy and the remaining 4 couples are used to solve 
for the 4 independent unknowns of equation (1 1). The 
epipole e’ = (e: , e&,  e:)T has only 2 independent coor- 
dinates, for the simplicity of the proof we assume here 
that the first coordinate of e‘ is non zero and therefore 
it can be set to 1 transforming equation (11) to : 

a iX lX5  + biXlX4 + ciX2 + diX2X5 + eiX4 + f i  = 0 

In theory, a solution exists for the unknowns X I  . . . X4 
when using 4 equations of type (14). 

(14) 

By using (12) the above equation becomes : 

ai& + biV2 + ciV3 + diV4 + eiV5 + fi = 0. (15) 

Using equation (15) for 4 couples of matched points 
(different from the 3 couples used to simplify C), it is 
possible to solve for VI . . . V4 as a function of Vi. 

The solution of (15) has the form : 

vj =AjV5+Bj j =  1 . . . 4  (16)  

where Aj and Bj are known coefficients, they depend 
on the constants a i ,  bi,  ci,  d,, ei and fi. 
Replacing each by its expression in (12) then using 
(16)  and after simple algebric manipulations we obtain 
the following cubic equation in the unknown X ,  : 

AiA3X:  + (A3Bi + B3A1 - A 2 A 4 ) X t +  
(BlB3 - A2B4 - B2A4)X4 - B2B4 = 0 

The above equation has 3 roots, this shows that up to 3 
solutions compatible with 7 couples of matched points 
exist for the epipole position. Hence, we retrieve in a 
simpler’way the result demonstrated by Sturm [13, 21. 
When more than 7 matched points are available, the 
unicity of the solution can be ensured. 

We have not computed the fundamental matrix yet, 
next section shows how it can be deduced from the 
knowledge of one epipole and a plane homography. 
4.4 Fundamental matrix 

Suppose we are given 8 matched points. This en- 
ables us (paragraph 4.2) to compute the epipole coor- 
dinates ( e ; ,  e & ,  in the second image and the ma- 
trix C describing a plane homography between the 
first and the second image. 

Let F be the unknown fundamental matrix. F is a 
3 x 3 matrix such that for each point p = ( x ,  y, t )T  of 
the first image F associates the epipolar line I, in the 
second image, 1, is given by ( F p ) .  

For the same point p ,  the epipolar line 1, can also 
be defined by the two points e’ and q’ (q’ is the point 
obtained from p by the homography described by C as 
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shown in Figure 2). The equation of this line is given 
by (e' x 4 ' ) .  By using relation (3),  the equation of 1, 
becomes (e' x (Cp) )  where: 

From the above, it is clear that the fundamental 
matrix F is deduced directly from e' and C : 

F defined from the above relation satisfies the cri- 
terion given in (1). Furthermore, F is by construction 
of rank 2. Consequently, F is a fundamental matrix 
relating two images. 

As a consequence, with 8 matched points, a fun- 
damental matrix F of rank 2 can be computed using 
only linear equations given by (13). 

5 Experimental results 
Summary of our algorithm: 

Given at least 8 couples of matched points as input, 

select 3 points in the first image and use them 
with a fourth point as a projective basis which 
defines a new coordinate system in the image (in 
practice, the points are chosen largely spread in 
the image). Similarly, define a new coordinate 
system in the second image. 

use the remaining matched points to solve for the 
unknowns by using the linear equations given in 
(13). This step is called the linear algorithm. 

when a nonlinear step is needed, the solution ob- 
tained by the linear algorithm is used as a start- 
ing point for a nonlinear computations. This sec- 
ond step is based on the nonlinear equations (1 1). 
This step is called the nonlinear algorithm. 

To compute the quality of the computed fundamen- 
tal matrix F we used the following formula: 

where ( p i ,  p : ) ,  i = 1 . . . n,  are the n couples of matched 
points and d is the point-to-line Euclidean distance 
expressed in pixels. QF is called in the remaining the 
quality factor of F .  
5.1 Experiments with simulated images 

We simulated a scene consisting of 60 points with a 
40cm x 30cm x 30cm volume placed at  1 meter from 
the virtual camera. Two sets of experiments have been 
carried out, where F is computed using our algorithm : 

quelity of the fundamenral mamx 
mven by QF (pxxels) 

Figure 3: The stability of the method for 2 different 
motions using 60 points. 

quality of the fundamenre1 mauix - given by %(pixels) 

3 motion 1 

moUon 2 

number of p0l"lS 

I I I I I I 
0 1 0  20 30 10 -0 -0 

X I  

Figure 4: The stability of the method for 2 different 
motions when the number of points decreases. 

1. Two different motions for the camera have been 
simulated: one motion is mainly composed by a 
lateral translation and the other one is mainly 
composed by a translation toward the scene. For 
each motion, the fundamental matrix is computed 
several times by adding a uniform noise of dif- 
ferent magnitudes. All points were used here to 
compute F .  The results are shown on Figure 3. 

2. The second set of experiments consists of per- 
forming the former experiments where instead of 
changing noise magnitude we changed the num- 
ber of matched points used to compute F .  Here, 
the noise magnitude is kept equal to  0.5 pixel. 
The results are shown on Figure 4. 

The results of the above experiments show the sta- 
bility of the method for 2 different camera movements. 
As shown in Figure 3 and Figure 4, there is no signif- 
icant effect on the computed epipolar geometry with 
the 2 different motions even when using less points. 
5.2 Experiments with real images 

We used 2 different scenes to test our method, and 
we compared our results with those obtained by the 
existing method based on (1). 
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Our linear algorithm result, Q F  = 0.81 pixels 
Our linear algorithm result, Q F  = 0.47 pixels 

Our nonlinear algorithm result, QF = 0.43 pixels 

Figure 5: The camera movement is mainly a lateral 
translation, 49 points are used here. 

1. An indoor scene, the house (figure 5) : the motion 
between the images is mainly a lateral translation. 

2. An outdoor scene, Bayard (figure 6) : the motion 
between the 2 images is mainly a translation. 

When using the nonlinear step of our method, the it- 
erations number was always less than 10. 

5.2.1 

Epipolar geometry using the existing method based 
on (1) and (2) is computed for the real scenes : 

Comparison with the existing method 

1. 

2. 

6 

the house scene (figure 7 )  : when using only linear 
computation based on equations (1) the result is 
very far from the correct solution (compare with 
the result of our linear method shown on figure 5).  
Using the nonlinear computation based on (a), we 
obtained the correct solution after 72 iterations. 

Bayard scene (figure 8) : when using only linear 
computation the result is false, it corresponds to 
a local minima for the function (2) .  Using this 
solution as initialization for the nonlinear com- 
putation did not get out from this local minima. 

Conclusion 
The epipolar geometry relating a pair of stereo im- 

ages can be computed from pixel correspondences. 

Our nonlinear algorithm result, QF = 0.26 pixels 

Figure 6: The camera movement is mainly a transla- 
tion, 25 points are used here. 

Figure 7: The nonlinear algorithm has recovered the 
error of the linear algorithm. 
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Standard linear algorithm result, QF = 0.89 pixels 

Standard nonlinear algorithm result, QF = 0.66 pixels 

Figure 8: The nonlinear method fails in recovering 
the correct epipolar geometry, being trapped in a local 
minimum (compare with Figure 6). 

The most common way to represent the epipolar ge- 
ometry is the use of the fundamental matrix F ,  that 
is a homogeneous 3 x 3 matrix of rank 2. 

The linear computation of F in the existing meth- 
ods does not ensure the rank property. A nonlinear 
step is usually used and its convergence to the correct 
solution depends on its initialization. 

We proposed in this paper a novel method to com- 
pute the epipolar geometry based on virtual parallax. 
Unlike the existing method which estimates the funda- 
mental matrix, we presented here an other parametri- 
sation for the epipolar geometry. The method consists 
of estimating an epipole position and a 2D homog- 
raphy. A choice of coordinate systems in the images 
allowed us to reduce the number of parameters to esti- 
mate. This simplification leads to more stable compu- 
tation. Furthermore, in our formulation the rank con- 
straint is implicit because the fundamental matrix F 
is simply the product of an antisymmetrical matrix by 
the homography induced by the mapping of the virtual 
plane. Finally in the case of planar scenes, the epipo- 
lar geometry computation we proposed gracefully de- 
generates into an homography between the two image 
planes allowing matching for instance. Experimental 
results on real outdoor and indoor scenes prove the 
accuracy than can be obtained (less than 1/2 pixel). 
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