
Episodic Memory Deep Q-Networks

Zichuan Lin13, Tianqi Zhao2, Guangwen Yang1, Lintao Zhang3

1Tsinghua University
2Microsoft

3Microsoft Research

linzc16@mails.tsinghua.edu.cn, tianqi.zhao@microsoft.com,

ygw@tsinghua.edu.cn, lintaoz@microsoft.com

Abstract

Reinforcement learning (RL) algorithms have
made huge progress in recent years by leveraging
the power of deep neural networks (DNN). Despite
the success, deep RL algorithms are known to be
sample inefficient, often requiring many rounds of
interaction with the environments to obtain satis-
factory performance. Recently, episodic memory
based RL has attracted attention due to its ability
to latch on good actions quickly. In this paper,
we present a simple yet effective biologically in-
spired RL algorithm called Episodic Memory Deep
Q-Networks (EMDQN), which leverages episodic
memory to supervise an agent during training. Ex-
periments show that our proposed method can lead
to better sample efficiency and is more likely to
find good policies. It only requires 1/5 of the in-
teractions of DQN to achieve many state-of-the-art
performances on Atari games, significantly outper-
forming regular DQN and other episodic memory
based RL algorithms.

1 Introduction

Deep neural networks has enabled significant progress in re-
inforcement learning research in recent years. The semi-
nal work Deep Q-Networks (DQN) [Mnih et al., 2015] suc-
cessfully learns to play Atari games at or exceeding human-
level performance by combining deep convolution neural
network [LeCun et al., 1995] and Q-learning [Watkins and
Dayan, 1992]. Since then, deep reinforcement learning has
achieved notable successes in a variety of tasks such as
robotics control [Amarjyoti, 2017] and the game of Go [Sil-
ver et al., 2016]. Unfortunately, there are still many chal-
lenges preventing RL from being applied more broadly in
practice. One major problem is sample inefficiency of current
deep RL algorithms. For example, it takes DQN hundreds of
millions of interactions with the environment to learn a good
policy and generalize to unseen states. To avoid divergence,
DQN has to use a small learning rate and learns from experi-
ences slowly.

Existing works [Pritzel et al., 2017; Blundell et al., 2016;
Lengyel and Dayan, 2007] propose to leverage episodic

control (EC) as a data-efficient approach to solve decision-
making problems. The key idea is to memorize the best
episodic experiences in training and replay the highly-
rewarding sequences in evaluation. These methods are non-
parametric since they do not depend on a parametrized value
function. In these works, episodic memories are stored
and updated in a lookup table during training, and are re-
trieved in the agent’s decision making process. Table-based
Episodic Control often requires very large memory footprint,
and lacks generalization comparing with DNN-based RL ap-
proaches [Pritzel et al., 2017; Blundell et al., 2016]. More-
over, its time complexity grows dramatically as more memo-
ries are stored [Blundell et al., 2016].

In this paper, we propose Episodic Memory Deep Q-
Networks (EMDQN), a novel reinforcement learning algo-
rithm which uses episodic memory to supervise an agent’s
training. Our work is partially inspired by human brain in
decision making and motion control [Pennartz et al., 2011],
where two learning systems interact and compete with each
other to come up with an optimal control strategy. Our ap-
proach combines the generalization strength of DQN and the
fast converging property of EC by distilling the information
of episodic memory into a parametric model. Experiments
show that our algorithm learns good policy faster and also
with less training data than other methods. Moreover, our ap-
proach provides a direct way to alleviate overestimations of
Q-values, which is a common problem for Q-learning based
agents with function approximators [Thrun and Schwartz,
1993; Hasselt, 2010].

We evaluate our algorithm using arcade learning environ-
ment (ALE) [Bellemare et al., 2013] and show that it not only
outperforms original DQN in both accuracy and training time
despite being trained with 5 times fewer data frames, but also
significantly outperforms other data-efficient RL algorithms
using the same amount of training data.

2 Background

RL considers agents which learn policy by interacting with
environment. An agent is facing a sequential decision making
problem, where interaction with the environment takes place
at discrete time steps (t = 0, 1, ...). We denote environment
state space by S, the action space A and the reward space
R. At time t the agent observes state st ∈ S, selects an
action at ∈ A, which results in a scalar reward rt ∈ R and

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2433



a transition to the next state st+1 ∈ S. We consider infinite
horizon problems with a discounted return objective Rt =
∑∞

t′=t γ
t′−trt′ , where γ ∈ [0, 1) is the discount factor. The

goal of the agent is to find an optimal policy π : S → A that
maximizes its expected discounted return.

2.1 Deep Q-Networks

A well-established technique to address the aforementioned
RL task is Q-learning, where the choice of Q-function is
crucial to its success. DQN successfully uses deep neu-
ral networks as Q-function to approximate the action values
Q(s, a; θ), where the term θ is parameters of the network and
(s, a) represent a state-action pair. Two important ingredients
used in DQN are target network and experience replay [Lin,
1992]. The parameters of the neural network are optimized
by using stochastic gradient descent to minimize the loss

(rt + γmax
a′

Qθ̄(st+1, a
′)−Qθ(st, at))

2, (1)

where the term θ̄ represents parameters of a target network.
Many extensions have been proposed to improve DQN.

Double-DQN (DDQN) [Van Hasselt et al., 2016] decouples
action selection and Q-function value estimation by using
two Q-Networks. Prioritized experience replay [Schaul et
al., 2016] increases the replay probability of experiences that
have a high expected learning progress measured by tempo-
ral difference errors. Dueling networks [Wang et al., 2016]

use two split networks to compute state function and advan-
tage function. Optimality Tightening method (OT) [He et al.,
2016] combines the strength of deep Q-learning with a con-
strained optimization approach to tighten optimality and en-
courages faster reward propagation.

In general RL problems, researchers prefer to use paramet-
ric methods (e.g. DQN, A3C [Mnih et al., 2016]) due to their
good ability in generalizing to novel states in stochastic en-
vironment. However, it takes longer training time due to the
inefficiency of existing gradient-based optimization methods
(e.g. stochastic gradient descent). Agent suffers from low
data efficiency because the experiences are absorbed into pa-
rameters slowly. Indeed, real-life sample efficiency restricts
robotic agents from acquiring a large amount of training data
in time. Therefore, inefficiency of using samples is the prob-
lem that most of the deep RL algorithms need to address.

2.2 Episodic Control

Near-deterministic environments are common in daily
life [Blundell et al., 2016]. Previous works [Lengyel and
Dayan, 2007; Blundell et al., 2016; Pritzel et al., 2017;
Gershman and Daw, 2017] propose to use episodic memory
in near-deterministic environment to improve data efficiency
in RL problems. [Lengyel and Dayan, 2007] suggests that
episodic memory could be used to record experiences, where
an agent can later imitate the sequences of actions that pre-
viously obtained high returns, and the method is referred to
episodic control. Model free episodic control (MFEC) [Blun-
dell et al., 2016] is proposed to adopt episodic control to
learn good policies in one-shot fashion in high-dimension
games. Later, [Gershman and Daw, 2017] propose Episodic
RL which uses episodic memory to construct value estimates.

Specifically, episodic RL approximates action values by re-
trieving samples from memory and then averaging future re-
turns. Recently, [Pritzel et al., 2017] proposes neural episodic
control (NEC), which makes use of differentiable neural dic-
tionary to store slow-changing keys and fast-updating values
and then retrieves useful values by context-based lookup for
action selection.

However, table-based algorithms (e.g. MFEC and NEC)
lack good generalization, while scalable deep RL methods
(e.g. DQN, A3C) also have the problem of slow optimiza-
tion. Compared with human brain, which is believed to uti-
lize both striatum (i.e. reflex) and hippocampus (i.e. mem-
ory) in decision making [Blundell et al., 2016; Pennartz et
al., 2011], aforementioned algorithms only rely on a single
learning system. We argue that table-based episodic control
and DQN are complementary to each other. We can use stria-
tum to achieve good generalization and use hippocampus to
accelerate training process via memory module and latch on
good policy quickly.

3 Episodic Memory Deep Q-Networks

In general, episodic memory is used for direct control, but
in this paper, we utilize episodic memory to accelerate the
learning of DQN. We aim to address the following aspects in
DQN.

1. Slow reward propagation. Value-bootstrapping meth-
ods, such as Q-learning, only provide updates of one-
step reward or close-by multi-step rewards (as in the case
of TD(λ) [Singh and Sutton, 1996]), leading to low data
efficiency. This can be improved by introducing monte-
carlo (MC) return as learning target. However, MC re-
turn has much higher variance than TD target. There-
fore, how to make good use of MC return to better prop-
agate reward without introducing high variance is a crit-
ical problem.

2. Single learning model. Most of RL algorithms depend
on a single learning model. Scalable deep reinforce-
ment learning methods (e.g. DQN, A3C) simulate stria-
tum in human brain and learn neural decision systems,
while table-based methods (e.g. MFEC, NEC) simulate
hippocampus in human brain and store experiences into
memory system and act upon them. In this paper, we
argue that both of the methods should be considered
together during training to better imitate the working
mechanism of human brain.

3. Sample inefficiency. Interacting with real environment
is expensive. It takes DQN millions of interactions with
the simulated environment to converge. Although the
high cost of sampling can sometimes be mitigated by
prioritized experience replay [Schaul et al., 2016] and
modeling the environments in model-based RL [Sutton,
1991; Heess et al., 2015; Gu et al., 2016], other mech-
anisms could also help direct learning by having more
efficient ways to make use of samples.

We propose Episodic Memory Deep Q-Networks
(EMDQN) which utilizes table-based episodic memory to
accelerate agent’s training. Our agent is able to rapidly latch

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2434



on highly rewarding policies even though it maintains neural
networks that require many steps of slow optimization for
state generalization.

Our work is partly inspired by the competitive and coop-
erative relationship between striatum and hippocampus [Pen-
nartz et al., 2011]. Our algorithm leverages the strength of
both systems. Specifically, it uses neural network to estimate
action value and provides two learning systems or targets for
our agent. One system simulates striatum that provides an
inference target which we denote by S; another system sim-
ulates hippocampus that provides a memory target which we
denote by H . We propose a new loss function combining the
two targets using appropriate weights α and β:

L = α(Qθ − S)2 + β(Qθ −H)2, (2)

where Qθ is known as value function parametrized by θ and
it acts as the decision system in our agent. As the inference
target S is expected to be inferred by the agent itself, the one-
step bootstrapped target is a good candidate:

S(st, at) = rt + γmax
a′

Qθ(st+1, a
′). (3)

The memory target H is defined as the best memorized return
as follows:

H(st, at) = max
i

Ri(st, at), i ∈ {1, 2, ..., E}, (4)

where E represents the number of episodes that the agent has
experienced, and Ri(s, a) represents future return when tak-
ing action a under state s in i-th episode. Specifically, H is
a growing table, which is indexed by state-action pairs. Each
transition tuple (s, a, r) along the episode is cached. At the
end of the episode, H is updated using the transition tuples
in the reverse order. In our method, H is only used for train-
ing purposes. For action selection, we only consider Qθ and
select the action which yields the highest Q-value.

Similar to [Blundell et al., 2016], we maintain a state buffer
for each action and use random projection technique for state
compact representation. State is projected by function φ into
a low-dimension vector by multiplying a Gaussian random
matrix. According to Johnson-Lindenstrauss lemma, the ran-
dom projection approximately preserves relative distances in
original space [Johnson and Lindenstrauss, 1984]. Instead
of using random projected vectors for k-nearest neighbors
(KNN) search like NEC and MFEC for value estimation, we
only use them for exact-matching search, which allows us
to project states to lower-dimension vectors for quick table
lookup. For novel state-action pairs, we add the correspond-
ing key-value to the memory table. For existing state-action
pairs, we update their values using the greater of the existing
values and the future returns in current episode. Formally, we
update memory table as follows:

H(st, at) =

{

max{H(st, at), R(st, at)}, if(st, at) ∈ H

R(st, at), otherwise

(5)
where R(st, at) is Monte-Carlo return in current episode. We

define λ = β

α
as the relative weights of S and H . Thus, the

new objective function is:

Process

Process

Process

CNN & FC

Random 
Projection

s

Memory

regularize

make decisions 
and roll out

write episodic 
memory

Figure 1: EMDQN architecture on a single action.

min
θ

∑

(si,ai,ri,si+1∈D)

[

(Qθ(si, ai)− S(si, ai))
2

+λ(Qθ(si, ai)−H(si, ai))
2
]

,

(6)

where D represents a mini-batch of experiences.
An issue in Eq. (6) is that we cannot always find the value

of H(si, ai) from the episodic memory table during training
since some state-action pairs have not been added into H .
To tackle this problem, we simply ignore the memory target
when (s, a) pairs are not found in H . This fits our intuition
because people will never have episodic memory on things
that have not happened.

Faster reward propagation EMDQN uses the maximum
return from episodic memory to propagate rewards, com-
pensating the disadvantage of slow-learning resulted by sin-
gle step reward update. For near-deterministic environments,
each reward contained in episodic memory is by far the op-
timal. Therefore, using memory target H , the rewards in the
best trajectories can be propagated to parameters of Qθ(s, a).
Our algorithm differs from Eligibility Trace [Singh and Sut-
ton, 1996] in that it keeps both bootstrapped TD target and
full MC return separately rather than combining λ-return to
form a new target. By learning from both targets, it quickly
propagates unbiased MC return and takes advantage of low
variance from TD target. Notably, episodic memory is more
than unbiased MC return. It provides more concentrated
learning signals and lower-variance targets than vanilla MC
return since the episodic memory records the historical best
MC return.

Combination of two learning models We combine
episodic memory and DQN to better simulate the learning
process of human brain. The two terms in the objective func-
tion (6) represent learning from inference target and episodic
memory target respectively. We can weigh the two learning
models by adjusting the value of λ: when λ is given a small

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2435



value, the method is similar to regular DQN; when given a
large value, the method is closer to EC. In this way, we make
flexible use of two learning methods in the learning process.
The value of λ can be adjusted higher appropriately when
memory module is required and can be adjusted lower when
general decision system is needed. Compared with methods
that use a single model, our method is closer to the learning
process of human brain. It is worth noting that EMDQN tack-
les generalization problem of data-efficient NEC by absorb-
ing state features into neural networks, while NEC has many
redundant state representations in its lookup table in order to
find nearest neighbors.

High sample efficiency EMDQN introduces a mechanism
to capture more information of samples. During training, it
distills the best return from episodic memory and incorpo-
rates the knowledge into neural network, which makes use
of the samples more efficiently. In the existing RL algo-
rithms, all samples, regardless of the rewards, are sampled
uniformly, which leads to poor training performance because
non-zero rewards seldom appear. By distilling the best re-
turn of samples in every training step, our method can give
more updates on non-zero reward samples. Note that our
method differs from prioritized experience replay [Schaul et
al., 2016]. Prioritized-DQN changes update priority of train-
ing samples. Instead, our algorithm changes the update target
for each sample. This cannot be emulated by re-weighting the
transitions in a prioritized-DQN. For example, a state might
appear in multiple high-rewarding traces and thus getting dif-
ferent targets in a prioritized-DQN, while in our approach
there is only a single entry in H for this state.

3.1 EMDQN Architecture

Figure 1 shows the EMDQN architecture. The state s rep-
resented by four history frames is processed by convolution
neural networks, and forward-propagated by two fully con-
nected layers to compute Qθ(s, a). The overall networks
architecture is the same as the original DQN [Mnih et al.,
2015]. State s is multiplied by a random matrix drawn
from Gaussian distribution and projected into a vector h, and
passed into memory table to look up corresponding value
H(s, a), and then H(s, a) is used to regularize Qθ(s, a). For
efficient table lookup, we use kd-tree [Bentley, 1975] to con-
struct the memory table. All experience tuples (φ(s), a, r)
along each episodic trace are cached. When updating the ta-
ble, we replay each episodic trace in reverse order. Similar
to the target network in DQN, we maintain a target memory
table to provide stable memory value. The target memory
table is updated at every K training steps using previously
cached transitions. During learning, the gradients from both
value-bootstrapped targets and memory targets in Eq. (6) are
back-propagated to update parameter θ.

4 Experiments

We evaluated EMDQN on the benchmark suite of 57 Atari
2600 games from the arcade learning environment [Belle-
mare et al., 2013]. EMDQN follows all of the networks and
hyper-parameter settings as DQN as presented in [Mnih et al.,

Figure 2: Testing scores for EMDQN(red), DQN(blue) on represen-
tative games. The scores are smoothed using moving average over 4
epochs. Each game is run 5 times with different random seeds.

Figure 3: Training curves on 200M frames.

2015]. Rewards are clipped to [−1, 1] when computing the
true discounted return Rt. The coefficient λ was tuned com-
paring values of {0.01, 0.05, 0.1, 0.2, 0.5, 1.0} on the games
‘Alien’, ‘Atlantis’, ‘Beamrider’, ‘Gopher’, ‘Zaxxon’ but we
found that larger value of λ will deteriorate the performance.
Therefore, we finally fix the value of λ at 0.1 to regularize Q
value during training. We suspect that using a dynamic gating
value instead of a fixed λ may give better performance, which
we plan to investigate further in future work. For more effi-
cient table lookup, we use random projection technique and
project the states into vectors where the dimensions dimh

equals to 4. Specifically, we generate a matrix with values
drawn from the distribution N(0, 1√

dimh

) and fix the matrix

during training. Our state buffer size is set to 5 Million for
each action, and the recent least updated state will be substi-
tuted when the buffer is full. The memory table is updated
in every 10000 training steps. The experiments show that for
most games episodic memory can be found with high prob-
ability (often larger than 0.95) during the training process,
which leads to good regularized effect. We clip the gradient
of (Qθ(si, ai)− S(si, ai))

2 and (Qθ(si, ai)−H(si, ai))
2 in

Eq. (6) to [−1, 1] respectively.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2436



4.1 Evaluation

In the previous work of NEC [Pritzel et al., 2017], different
agents trained using 40 Million (40M) frames are compared.
Among the seven methods (include DQN, Q∗(λ) [Harutyun-
yan et al., 2016], Retrace(λ) [Munos et al., 2016], Prior-
itized Replay, A3C, NEC, MFEC), the episodic memory
based methods (NEC and MFEC) get state-of-the-art re-
sults. For fair comparison, we also train our EMDQN using
40M frames and compare EMDQN with NEC and MFEC to
demonstrate the learning ability at the early training stage.

We train our agent for 40 epochs, each containing 1M
frames. During evaluation, our agent runs for 30 episodes,
each of which lasts up to 5 minutes (which corresponds to
18000 frames), and takes the averaging score as final result.
Following same practice as [Blundell et al., 2016], our agent
starts with different initial random conditions by taking 30
no-op operations for each episode to avoid over-fitting. Fol-
lowing [Van Hasselt et al., 2016], we use human-normalized
scores to summarize the performance of our algorithm.

We show our results on 40M frames in Table 1 and the
training curves of DQN and EMDQN in Figure 2. Note that
our method trained on 40M frames surpasses DQN trained
on 200M frames and NEC trained on 40M frames. While
it is known that the learning ability of NEC will always de-
crease with longer training time due to the generalization
problem [Pritzel et al., 2017], EMDQN does not suffer from
this problem. We show in Figure 3 that EMDQN can lever-
age the good generalization property of DQN and can keep
superior learning ability in later training, covering the afore-
mentioned shortage of NEC. We also note that the mean score
of EMDQN surpasses those of all our baselines by a large
margin. This is because our method performs extremely well
on those games that always encounter repeated states (e.g.
VideoPinball, Atlantis, Assault), which has a better match
solving with episodic memory. Since our contribution is or-
thogonal with other techniques, we believe our approach can
be combined with other DQN-relevant techniques. In addi-
tion, we test our algorithms on a variety of Atari benchmarks
to demonstrate the overall performance as opposed to just
cherry-picking a few examples.

We also investigate in the difference between episodic
memory and monte-carlo return. To show their difference,
we demonstrate an additional technique: monte carlo deep q-
networks (MCDQN). MCDQN uses monte-carlo discounted
future return as a substitute of episodic memory to regularize
the DQN. From Figure 3, we observe that EMDQN has bet-
ter learning ability than MCDQN on the games that we test.
The essential difference between EMDQN and MCDQN is
that EMDQN decouples the monte-carlo return from current
q-networks. Instead, EMDQN stores the best monte-carlo re-
turn that the agent has seen. Therefore, we claim that the
interaction shown in Figure 1 between episodic memory and
DQN is crucial.

To see the effects of longer training time, we show the
training curves on 200M frames on four typical games. Since
the curves of NEC and MFEC are publicly unavailable,
we consider the following agents: DQN, DDQN, MCDQN,
EMDQN. Due to time constraint, we only run with different
seeds for 40M training curves. For 200M training curves, we

Mean Median

DQN(40M) 151.2% 52.7%
MFEC(40M) 142.2% 61.9%
NEC(40M) 144.8% 83.3%
EMDQN(40M) 528.4% 92.8%

DQN(200M) 227.9% 79.1%
DDQN(200M) 330.3% 114.7%

Table 1: Mean and median human-normalized scores at 40 Million
frames over 57 Atari games.

Figure 4: Left column: score curves of DQN and EMDQN; Middle
column: the value of q, y and em of DQN; Right column: the value
of q, y and em of EMDQN.

run all agents with the same seed. We find that EMDQN is
superior to all other agents on both final results and data effi-
ciency by a large margin. We also note that EMDQN outper-
forms MCDQN, showing the advantage of episodic memory
over vanilla monte-carlo return.

4.2 Consistent Learning Targets

To gain more constructive insights about episodic memory
(EM), we intend to conduct an in-depth analysis for the train-
ing process. Since the objective function (6) consists of the
Q-function, the DQN target and the EM target, we denote
them by q, y and em respectively and show their value curves
during training in Figure 4. In the middle column, without the
constraint of episodic memory, the curves of q and y almost
overlap with each other, and the q values always diverge a lot
with the values of episodic memory at the beginning. One
possible reason is that DQN tends to get stuck into a local
minimum and learns a Q-function that goes against the ac-
tual episodic memory at the beginning. In contrast, with the
constraint of episodic memory, the trends of q and episodic

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2437



Figure 5: Left column: moving average scores; Right column: Q
value during training.

memory are consistent and keep rising together.

We also find that the variance of q-function curves in
EMDQN is lower than that of DQN in most cases. The agent
can always learn from the best historical trajectory during
training because the episodic memory records it. By doing
so, the variance of learning signals is reduced. In contrast,
the variance of learning signals in DQN is very high as the
signals vary from sample to sample.

We find that the performance of Battlezone decreases
slightly in the later training stage. We suspect that this can
be made up for by reducing the value of λ in the later training
stage since a larger λ can encourage more exploitation and
less exploration. This is an interesting insight which is worth
more discussion in future investigation.

4.3 Results on Alleviating Overoptimism

DQN is known to sometimes learn unrealistically high action
quality values that lead to divergence, because the algorithm
includes a maximization step over estimated action quality
values [Thrun and Schwartz, 1993; Van Hasselt et al., 2016].

One solution to the problem is Double-DQN [Van Hasselt
et al., 2016], which uses different neural networks for action
selection and Q-value estimation. Although our method does
not focus on alleviating the over-optimism problem, we sur-
prisingly find that EMDQN has the potential to alleviate this
problem by itself. Here we show some examples demonstrat-
ing that EMDQN can naturally alleviate overoptimism with-
out using double Q-learning. We run both EMDQN and DQN
for 200 epochs on two games and show their training curves
in Figure 5. Note that in both games, the action-value of DQN
blows up during training, leading to catastrophic drops of
evaluation scores. In contrast, EMDQN does not suffer from
overestimation and the learning is more stable. The reason
is that when Q-function starts to overestimate, the episodic
memory will pull down the Q-value. The degree of pulling
depends on the value of λ. In this paper, we fix the value of λ
during training. However, we believe that dynamically con-
trolling the value of λ according to Q-value will give better
results in alleviating overoptimism.

Note that the analysis here is not the major reason for the
improvement of our method. The main contribution in this
paper is sample-efficiency improvement in the early training
stage by using episodic memory to get faster reward propaga-
tion.

5 Discussion

Our work is related to the optimality tightening method [He et
al., 2016] which uses lower and upper bounds as constraints
on the value function. One might argue that the episodic
memory in this paper is a special case of their upper bound.
However, this is not the case. On one hand, the upper bound
in [He et al., 2016] is derived using backward reward, while
the episodic memory target in our approach is derived from
forward reward. These two are quite different. Combining
the two methods could make a better use of both backward
and forward reward to get more improvements. On the other
hand, [He et al., 2016] considers only local reward propaga-
tion, while EMDQN provides full reward propagation.

We use episodic memory aiming to improve performance
of DQN in near-deterministic environment. While in stochas-
tic environment, the episodic term here can also be considered
as a regularizer. EMDQN uses argmaxaQθ(s, a) for action
selection, which will take expected Q-values into account in
stochastic environment. Moreover, we can dynamically ad-
just the value of λ to weigh episodic memory learning target.
It will be an interesting future work to consider how to en-
hance the episodic estimate in stochastic environment.

It should be noted that the combination of the two learn-
ing systems is non-trivial. Instead, we are trying to build a
consistent bond between these two methods. The approach
proposed here, building this bond through learning targets, is
simple but quite efficient. We show that this biologically in-
spired combination is promising in RL research field. To the
best of our knowledge, EMDQN is the first work that com-
bines these two different approaches. It will be interesting to
develop other algorithms to combine a parametric approach
and non-parametric approach in the future.

6 Conclusion

In this paper we show that our algorithm can significantly im-
prove sample efficiency of both deep Q-learning and episodic
control. We also provide an in-depth analysis on how episodic
memory influences the training process of DQN. On top of
major experimental outcomes, we also discover that EMDQN
can also alleviate overoptimism of deep Q-learning by itself.
In the future, there needs to be more research done on how to
1) dynamically tune the value of λ; 2) apply our method on
stochastic environments; 3) combine parametric control and
non-parametric control.

References

[Amarjyoti, 2017] Smruti Amarjyoti. Deep reinforcement
learning for robotic manipulation-the state of the art. arXiv
preprint arXiv:1701.08878, 2017.

[Bellemare et al., 2013] M. G. Bellemare, Y. Naddaf, J. Ve-
ness, and M. Bowling. The arcade learning environment:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2438



An evaluation platform for general agents. Journal of Ar-
tificial Intelligence Research, 47:253–279, jun 2013.

[Bentley, 1975] Jon Louis Bentley. Multidimensional binary
search trees used for associative searching. Communica-
tions of the ACM, 18(9):509–517, 1975.

[Blundell et al., 2016] Charles Blundell, Benigno Uria,
Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z
Leibo, Jack Rae, Daan Wierstra, and Demis Hass-
abis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

[Gershman and Daw, 2017] Samuel J Gershman and
Nathaniel D Daw. Reinforcement learning and episodic
memory in humans and animals: An integrative frame-
work. Annual Review of Psychology, 68:101–128,
2017.

[Gu et al., 2016] Shixiang Gu, Timothy Lillicrap, Ilya
Sutskever, and Sergey Levine. Continuous deep q-
learning with model-based acceleration. In Proceedings of
The 33rd International Conference on Machine Learning,
pages 2829–2838, 2016.

[Harutyunyan et al., 2016] Anna Harutyunyan, Marc G
Bellemare, Tom Stepleton, and Rémi Munos. Q (\lambda)
with off-policy corrections. In International Confer-
ence on Algorithmic Learning Theory, pages 305–320.
Springer, 2016.

[Hasselt, 2010] Hado V Hasselt. Double q-learning. In Ad-
vances in Neural Information Processing Systems, pages
2613–2621, 2010.

[He et al., 2016] Frank S He, Yang Liu, Alexander G
Schwing, and Jian Peng. Learning to play in a day:
Faster deep reinforcement learning by optimality tighten-
ing. arXiv preprint arXiv:1611.01606, 2016.

[Heess et al., 2015] Nicolas Heess, Gregory Wayne, David
Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradi-
ents. In Advances in Neural Information Processing Sys-
tems, pages 2944–2952, 2015.

[Johnson and Lindenstrauss, 1984] William B Johnson and
Joram Lindenstrauss. Extensions of lipschitz mappings
into a hilbert space. Contemporary mathematics, 26(189-
206):1, 1984.

[LeCun et al., 1995] Yann LeCun, Yoshua Bengio, et al.
Convolutional networks for images, speech, and time se-
ries. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[Lengyel and Dayan, 2007] Máté Lengyel and Peter Dayan.
Hippocampal contributions to control: The third way. In
NIPS, volume 20, pages 889–896, 2007.

[Lin, 1992] Long-H Lin. Self-improving reactive agents
based on reinforcement learning, planning and teaching.
Machine learning, 8(3/4):69–97, 1992.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through

deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pages
1928–1937, 2016.

[Munos et al., 2016] Rémi Munos, Tom Stepleton, Anna
Harutyunyan, and Marc Bellemare. Safe and efficient off-
policy reinforcement learning. In Advances in Neural In-
formation Processing Systems, pages 1054–1062, 2016.

[Pennartz et al., 2011] CMA Pennartz, R Ito, PFMJ Ver-
schure, FP Battaglia, and TW Robbins. The hippocampal–
striatal axis in learning, prediction and goal-directed be-
havior. Trends in neurosciences, 34(10):548–559, 2011.

[Pritzel et al., 2017] Alexander Pritzel, Benigno Uria, Sri-
ram Srinivasan, Adrià Puigdomènech, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell.
Neural episodic control. arXiv preprint arXiv:1703.01988,
2017.

[Schaul et al., 2016] Tom Schaul, John Quan, Ioannis
Antonoglou, and David Silver. Prioritized experience re-
play. In Proceedings of the International Conference on
Learning Representations (ICLR), 2016.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[Singh and Sutton, 1996] Satinder P Singh and Richard S
Sutton. Reinforcement learning with replacing eligibility
traces. Recent Advances in Reinforcement Learning, pages
123–158, 1996.

[Sutton, 1991] Richard S Sutton. Dyna, an integrated archi-
tecture for learning, planning, and reacting. ACM SIGART
Bulletin, 2(4):160–163, 1991.

[Thrun and Schwartz, 1993] Sebastian Thrun and Anton
Schwartz. Issues in using function approximation for re-
inforcement learning. In Proceedings of the 1993 Con-
nectionist Models Summer School Hillsdale, NJ. Lawrence
Erlbaum, 1993.

[Van Hasselt et al., 2016] Hado Van Hasselt, Arthur Guez,
and David Silver. Deep reinforcement learning with dou-
ble q-learning. In AAAI, pages 2094–2100, 2016.

[Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hes-
sel, Hado van Hasselt, Marc Lanctot, and Nando de Fre-
itas. Dueling network architectures for deep reinforcement
learning. In Proceedings of The 33rd International Con-
ference on Machine Learning, pages 1995–2003, 2016.

[Watkins and Dayan, 1992] Christopher JCH Watkins and
Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2439


