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Episodic Nonlinear Event Detection

in the Canadian Exchange Rate
Melvin J. HINICH and Apostolos SERLETIS

This article uses daily observations for the Canadian dollar–U.S. dollar nominal exchange rate over the recent flexible exchange rate period

and a new statistical technique, recently developed by Hinich, to detect major political and economic events that have affected the exchange

rate.
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1. INTRODUCTION

As the Bank of Canada’s former governor, Gordon Thiessen

(2000–2001, p. 47), put it,

One of the issues that has often surfaced over the years is the exchange rate for
the Canadian dollar. Indeed, over the past couple of years, it has been a topic
of considerable public discussion. That discussion has revolved around such
questions as: Should we continue floating, or should we peg our currency to the
U.S. dollar? In fact, should we even keep our own currency, or should we adopt
the U.S. currency?

The attention to the exchange rate regime stems mostly

from the decline of the Canadian dollar against the U.S. dollar

through the 1990s, but also from the recent creation of a single

European currency, the euro, to replace the national currencies

of 12 member countries of the European Monetary Union. The

debate in Canada has revolved around exchange rate alterna-

tives, particularly around the issue of whether a floating cur-

rency is the proper exchange rate regime or whether we should

fix the exchange rate between the Canadian and U.S. curren-

cies, as we did from 1962 to 1970 (see, e.g., Murray and Pow-

ell 2002; Murray, Powell, and Lafleur 2003).

Exchange rate fluctuations are difficult to reconcile with lin-

ear models that focus on commodity prices, productivity, in-

terest rate differentials, and demand and supply shocks (see

Schembri 2001). In this article we use a method, recently pro-

posed by Hinich (1996) for detecting episodic nonlinearity in

time series data, to detect major political and economic events

that have affected the Canadian dollar–U.S. dollar nominal ex-

change rate. In particular, we pursue a reverse form of event

study in which we let data analysis determine the events rather

than hypothesize about an event and then use statistics to “prove

our hypothesis.” We show that there are periods of nonlinearity

that cannot be captured by standard volatility models. We ar-

gue that the development of a new statistical model for third-

order and higher dependent processes that appear to be station-

ary white noise will increase our understanding of exchange

rate movements.

The article is organized as follows. The next section out-

lines the testing methodology used. Section 3 describes the data

and presents the evidence, and Section 4 demonstrates that the

statistical structures present in the data cannot be captured by

ARCH-type models. The final section provides a brief summary

and conclusion.
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2. THE HINICH PORTMANTEAU

BICORRELATION TEST

Hinich (1996) suggested a modified version of the Box–

Pierce (Box and Pierce 1970) portmanteau Q-statistic for au-

tocorrelation and a third-order portmanteau statistic, which can

in a sense be viewed as a time-domain analog of the bispec-

trum test. A full theoretical derivation of the test statistics and

a number of Monte Carlo simulations to assess their size and

power have been given by Hinich (1996) and Hinich and Pat-

terson (1995).

Let {x(t)} denote a time series sampled at a fixed rate. As

is the custom in the nonengineering time series literature, the

time unit is suppressed and t is an integer. In this article the

time series is daily Canadian exchange rate relative to the U.S.

dollar. The method is to break the observed series into frames

of equal length and apply a number of statistics to each frame,

generating a multivariate time series of frame statistics, which

are then used to detect events depending on the algorithm used.

The method is a simplification and generalization of the meth-

ods used to process radar and sonar signals. The method also

can be applied to the whole series.

Let tp denote the time of the first observation in the pth frame

will length T . Thus the (p + 1)th frame begins at tp + T . The

data in each frame are standardized by subtracting the sample

mean of that frame and dividing by the frame’s standard devia-

tion. Let {zp(t)} denote the standardized data in the pth frame.

The bicorrelation test statistic introduced by Hinich (1996) for

detecting third-order correlation in a time series is

Hp =

L∑

r=2

r−1∑

s=1

(T − s)−1B2
p(r, s),

where

Bp(r, s) =

T −r∑

t=1

zp(t)zp(t + r)zp(t + s).

The distribution of Hp is approximately chi-squared with

L(L − 1)/2 degrees of freedom for large T if L = T c(0 <

c < .5) under the null hypothesis that the observed process is

pure white noise (iid). The parameter c is chosen by the user.

Thus, under the pure white noise null hypothesis, U = F(Hp)

has a uniform (0,1) distribution, where F is the cumulative dis-

tribution function of a chi-squared distribution with L(L−1)/2
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degrees of freedom. The program operates on the transformed

variate U = F(Hp).

Based on the results of Monte Carlo simulations, using c =

.4 is recommended to maximize the power of the test while

ensuring a valid approximation to the asymptotic theory even

when T is small. Simulations for the size of this test statistic

presented by Hinich and Patterson (1995) have shown that the

test is conservative for small sample sizes.

The test is of a null of pure white noise against an alternative

that the process has m nonzero correlations or bicorrelations in

the set 0 < s < r ≤ L (i.e., there exists second or third-order

dependence in the data-generating process), and relies on the

zero bicovariance property of pure noise. The test is particularly

useful in detecting nonlinear dependencies, because it has much

better small-sample properties and does not have such stiff data

requirements as many of its competitors, such as the BDS test

(Brock, Dechert, and Scheinkman 1987; see Brock Hsieh, and

LeBarron 2001 for a useful survey).

Rather than reporting the H statistic as a chi-squared variate,

the T23 program written by Hinich reports the statistics as p

values using the appropriate chi-squared cumulative distribu-

tion value to transform the computed statistic to a p value.

3. THE DATA

The analysis presented here is based on daily mid-price spot

exchange rates of the Canadian dollar relative to the U.S. dol-

lar for the period January 2, 1973–June 16, 2006 (a total of

8,401 observations). As shown in Figure 1, the Canadian nom-

inal exchange rate experienced four long swings in this period:

(1) a 30.76% depreciation from January 2, 1973 to February 4,

1986; (2) a 26.04% appreciation from February 4, 1986 to Jan-

uary 7, 1992; (3) a 28.99% depreciation form January 7, 1992

to February 27, 2002; and (4) a 43.31% appreciation from Feb-

ruary 27, 2002 to June 16, 2006 (the last day in our sample).

In what follows, the raw exchange rates are transformed into

a series of 8,400 log-returns (see Fig. 2), which can be inter-

preted as a series of continuously compounded daily returns

(see Brock et al. 1991).

There is no significant correlation in the data, but there is

third-order nonlinearity in the data. The Hp statistic for the

pure white noise hypothesis for the whole dataset is <.001 us-

ing a bootstrapped p value of p = .901E−02 set to have a false

alarm (size) of .5%. This threshold is the 1 − 99.5% quantile of

the U = F(Hp) statistics computed for 250 random draws with

replacement of the whole dataset. If we were to use the stan-

dard approach in statistics and econometrics when the null is

rejected, then we would attribute the nonlinearity to the whole

series assuming that the process is stationary. There is no obvi-

ous nonstationarity in the data, but we show that the nonlinear-

ity is due to bursts of third-order dependence in the data that are

not correlated in any way with the variances and ranges of the

data in the frames.

The data are split into a set of 240 nonoverlapping frames

of length 35 observations (i.e., approximately 7 trading weeks);

the program does not use the last frame if it is not full. This

frame length is long enough to validly apply the tests and yet

short enough for the data-generating process to have remained

roughly constant. The results are basically the same if we dou-

ble or triple the frame length, but then we would have greater

uncertainty about when the event occurred. Figure 3 shows the

Figure 1. Time Series of the Canadian Dollar–U.S. Dollar Nominal Exchange Rate.
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Figure 2. Exchange Rate Returns.

standard deviations of the log-returns for the 240 nonoverlap-

ping frames. As can be seen, the volatility slowly increases over

the period, which, however, does not affect our statistical analy-

sis, because we are using frames with 35 observations.

We can apply the tests to either the raw returns for each frame

or the residuals of an autoregressive (AR) fit of each frame us-

ing the same order for the AR process. The AR fit is made to

remove serial correlation in the frame, which would invalidate

the null hypothesis of independence of the H test. The justifi-

cation for considering the residuals is to demonstrate that the

nonstationarity must be a consequence of the nonlinearity that

is episodically present in the data rather than a form of linear

dependence (which has been removed); thus only significant H

statistics will cause a rejection of the null of pure noise. We

used a second-order AR process, AR(2), to whiten each frame.

A sampling with replacement bootstrap was used to deter-

mine a threshold for the H statistic with test size set to .5%.

A total of 200 sets of 35 residuals from the AR(2) fit of each

frame were selected at random with replacement. The 1 − .5%

quantile was computed for the 200 U = F(Hp) statistics for

these resample frames. The bootstrapped threshold was 1.97%.

A similar bootstrap method was used to find the .5% threshold

for the Hinich (1996) modification of the Box–Pierce test for

serial correlation. The bootstrapped threshold was 1.19%. No

frame had a significant bootstrapped portmanteau test for cor-

relation using a four-lagged sum of squared correlations.

A total of 10 significant frames from the 240 frames of the

residuals were found using a .5% threshold for the p values of

the H statistics. (These 10 significant frames represent 4.16%

of the total number of frames.) As can be seen in Figure 4,

the R2 values for the frames are small, generally <0.4. The

patterns of the significant frames are shown for the 1 − p val-

ues in Figure 5. The first significant frame started on May 12,

1976, and the final one started on July 6, 1991. Thus episodic

nonlinearity kept occurring in the Canadian dollar–U.S. dollar

exchange rates after the period studied by Brooks, Hinich, and

Molyneux (2000).

It is interesting to note the absence of episodic nonlinearity in

the Canadian exchange rate after 1991, when Canada adopted

inflation targeting as its monetary policy regime. In particular,

in February 1991 the Bank of Canada’s Governor and the Min-

ister of Finance jointly announced a series of declining inflation

targets, with a band of + and −1 percentage point around them.

The targets were 3% by the end of 1992, falling to 2% by the

end of 1995, to remain within a range of 1–3% percent there-

after. The 1–3% percent target range for inflation was renewed

in December 1995, in early 1998, and again in May 2001, to

apply until the end of 2006.

4. AUTOREGRESSIVE CONDITIONAL
HETEROSCEDASTICITY MODELS

The class of autoregressive conditional heteroscedasticity

(ARCH) models, a nonlinear modeling strategy originally sug-

gested by Engle (1982), has been widely used to model finan-

cial time series. This class of models relaxes the assumption

of the classical linear regression model that the variance of the

disturbance term is both conditionally and unconditionally con-

stant. These models have been found to accurately describe a

number of the important characteristics of data from diverse fi-

nancial disciplines.
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Figure 3. Standard Deviations of the 35-Day Frames.

Figure 4. R2’s of the 35-Day Frames.
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Figure 5. The 1−p Values for the Significant H Statistics.

A model that allows the conditional variance to depend on

the past realization of the series is the ARCH model, introduced

by Engle (1982), according to which the conditional variance is

assumed to depend on lagged values of squared residuals, as

follows:

σ 2
t = w0 +

p∑

i=1

αie
2
t−i,

with p ≥ 0. Note that the disturbances in the ARCH(p) model

are serially uncorrelated but not independent, as they are related

through second moments. An extension of the ARCH model is

the generalized ARCH (GARCH) model proposed by Boller-

slev (1986). In the GARCH(p,q) model, we have

σ 2
t = w0 +

p∑

i=1

αie
2
t−i +

q∑

j=1

βjσ
2
t−j ,

where w0 > 0, αi ≥ 0 , i = 1, . . . , p, and βj ≥ 0, j = 1, . . . , q .

Here, the conditional variance is assumed to depend on lagged

values of squared residuals and also on lagged values of it-

self; an AR component is introduced. Recently, Hansen and

Lunde (2005) compared 330 ARCH-type models in terms

of their ability to describe the conditional variance in the

deutschemark–dollar exchange rate and found no evidence that

the GARCH(1, 1) was outperformed by more sophisticated

models.

Assuming, consistent with our test results so far that the

AR(2) model renders the residuals uncorrelated, we now check

whether the finding of nonlinearity might be a false rejection

due to GARCH(1, 1) effects. Toward that end, we transform

the returns into a set of binary data denoted by {yp(t)}, where

yp(t) = 1 if zp(t) ≥ 0 and yp(t) = −1 if zp(t) < 0. If the vari-

ation in the data is due solely to an ARCH or GARCH process,

then the 0 and 1 series will be a Bernoulli process, because

the et ’s are independently distributed.

Besides the H statistic, the T23 program computes a num-

ber of statistics for each window, including the mean, standard

deviation, skewness, kurtosis, and, if an AR(p) fit is applied to

each frame, the R2 for the fit. In addition, a portmanteau cor-

relation test statistic, called the C statistic, which is a modified

version of the Box–Pierce Q-statistic, is reported. Unlike the

Box–Pierce Q-statistic that is usually applied to the residuals

of a fitted ARMA model, the C statistic is a function of the

standardized observations and the number of lags used and de-

pends on the sample size. Despite these differences, both statis-

tics perform the same function—to detect the presence of linear

dependence in the form of significant autocorrelation (known

as second-order correlation in statistical terms).

The tests were applied to the same 240 frames for the binary-

transformed data for each series using a .5% threshold for the

p values of the C statistic. The bootstrapped threshold for the

C statistics was 1.97%. Figure 6 displays the significant C sta-

tistics for the binary-transformed residuals. There are three sig-

nificant frames for the C statistic, which is 1.25%. The results

show more significant frames than would be expected purely by

chance given the very strict .5% nominal threshold level boot-

strapped for the C statistic. Hence the previous rejection of lin-

earity is unlikely to be a result simply of GARCH effects in an

otherwise linear model.
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Figure 6. The 1−p Values for the Significant C Statistics.

5. CONCLUSION

Detecting nonlinearity in time series data has become an im-

portant area of statistical and econometric research. Various

new methodologies have been developed to test for the presence

of nonlinearity as a consequence of the increasingly widely

held view that the economic and political systems are nonlin-

ear. For example, evidence of nonlinearity has been reported by

Hsieh (1989), Brooks (1996), Brooks et al. (2000), Brooks and

Hinich (2001), Serletis and Shahmoradi (2004), and Pinno and

Serletis (2005). In fact, Brooks et al. (2000) and Brooks and

Hinich (2001) have presented evidence that the nonlinearity is

episodic.

In this article we extended the work of Brooks et al. (2000)

and Brooks and Hinich (2001) on the Canadian dollar–U.S. dol-

lar nominal exchange rate to a longer period using daily data

over the recent floating exchange rate period, of January 2, 1973

to June 16, 2006. We show that there are periods of nonlinear-

ity that cannot be captured by standard volatility models. We

believe that when surprises hit the market, they generate a pat-

tern of nonlinear exchange rate movements relative to previ-

ous movements, because the traders are unsure of how to react

and hence they respond slowly, whereas normal news generates

much quicker responses. Our results indicate that a different

but as-yet unknown market response mechanism is generating

foreign exchange rates, suggesting that there is now a need to

develop a statistical model for third-order and higher dependent

processes that appear to be stationary white noise.

Moreover, our results have implications for what stylized

facts theoretical models of exchange rate determination should

be attempting to explain. Of course, a better understanding of

exchange rate movements is relevant to the recent debate in

Canada of whether a floating currency is the proper exchange

rate regime or whether Canada should consider alternative mon-

etary arrangements. In this regard, and to the extend that we de-

tected no episodic nonlinearity in the Canadian exchange rate

after 1991, when Canada adopted inflation targeting as its mon-

etary policy regime, we conclude that Canada should continue

the current exchange rate regime (allowing the exchange rate to

float freely with no intervention in the foreign exchange market

by the Bank of Canada), as well as the current monetary policy

regime (of inflation targeting).

[Received October 2003. Revised November 2004.]
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