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Abstract

The meaning we derive from our experiences is not a simple static extraction of the elements, but 

is largely based on the order in which those elements occur. Models propose that sequence 

encoding is supported by interactions between high and low frequency oscillations, such that 

elements within an experience are represented by neural cell assemblies firing at higher 

frequencies (i.e. gamma) and sequential order is coded by the specific timing of firing with respect 

to a lower frequency oscillation (i.e. theta). During episodic sequence memory formation in 

humans, we provide evidence that items in different sequence positions exhibit relatively greater 

gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related 

to successful temporal order memory. These results provide compelling evidence that memory for 

order, a core component of an episodic memory, capitalizes on the ubiquitous physiological 

mechanism of theta-gamma phase-amplitude coupling.

INTRODUCTION

While many aspects of our cognition and behavior, including language processing, spatial 

navigation and episodic memory, share the requirement to represent, encode and retrieve 

temporal sequences of events, how the brain accomplishes this is still not well understood. It 

has been known for decades that stimuli that activate interconnected neurons can result in 

long-term potentiation (LTP) of the bridging synapse 1, thus supporting an association 

between the two, and compelling new research has provided causal evidence for a link 

between LTP and associative memory formation 2. However, the model of long-term 

potentiation in its current form is not viable for stimuli (or neurons) whose activation is 

separated by more than ~300 ms, and unarguably, much of what we encode and remember is 
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separated by temporal gaps at least an order of magnitude larger than this. Thus, a central, 

unresolved issue is how the brain can bridge and relate stimuli encountered across seconds 

or minutes.

To deal with this conundrum, mechanistic models of sequence encoding posit that temporal 

coding of sequences can be supported by neural oscillations 3–7, or rhythmic fluctuations in 

neuronal excitability (see 8 for review). One influential model of sequence encoding 3,5 

hypothesizes that individual items represented by largely non-overlapping neural cell 

assemblies, when activated, fire in higher frequency bands (i.e. gamma: >30 Hz), while the 

sequential order of those items is coded in a temporally segregated manner along the phase 

of an underlying slower rhythm (i.e. theta: ~3–8 Hz). This ‘phase coding’ model posits that 

during sequence encoding, the current item is represented and encoded by transient higher 

frequency activity, while the relative position of each item in a sequence may be coded by 

the relative phase of a lower frequency oscillation. Theoretically, phase coding allows the 

temporal segregation of activity supporting individual items that are encountered at different 

times across an experience, and critically may also permit temporally extended experiences 

to be represented in a time-compressed manner 6.

There is ample evidence that modulation of gamma power by theta phase (i.e. phase-

amplitude coupling or ‘PAC’) is important for learning and memory 9–13. However, to date, 

there is little evidence that theta phase coding is a mechanism underlying temporal aspects 

of human memory formation. We set out to test this fundamental question by presenting 

participants with six-item sequences each consisting of pictures of trial-unique objects that 

were embedded on a repeating background colored frame (Fig. 1a) while recording brain 

activity using magnetoencephalography (MEG). We later tested participants’ ability to 

recover temporal details of the presented sequence from memory. Thus, we could ask 

whether gamma power associated with each item in a sequence (positions 1–6) is biased 

towards distinct phases of theta, and whether theta phase coding is behaviorally relevant by 

examining it during both successful and unsuccessful temporal order encoding.

RESULTS

Sequence memory performance

During each encoding-retrieval block, participants encoded six 6-item sequences (for a total 

of 36 consecutive object stimuli) before being tested for the temporal order of pairs of object 

stimuli from each presented sequence. Behaviorally, temporal order memory for pairs of 

object stimuli studied within a sequence was well above chance (mean=.74, SD=.12, chance 

was .5) but still in a range that allowed us to compare successful to unsuccessful encoding of 

sequences.

Theta and gamma power and coupling during sequence encoding

Before testing the critical hypotheses concerning whether theta-gamma interactions are 

related to successful sequence memory formation, we first characterized the distribution of 

spectral power in the MEG data in a broad range of frequency bands (1–100 Hz) during 

stimulus encoding (0 to 2.5 seconds), averaging power over time, trials, sensors, and 
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subjects. This provides a global measure of the frequency content of the signal and allows 

identification of reliable peaks in the power spectra, since spectral peaks are necessary for a 

meaningful estimate of phase - and ultimately a reliable estimate of cross-frequency 

coupling 14. We found distinct peaks in both the theta (3–8 Hz) and high gamma (70–100 

Hz) bands during each trial presentation compared to a baseline period (Supplementary Fig. 

1). Using these spectral power peaks to constrain frequencies of interest, we tested whether 

any reliable relationship between theta and gamma oscillations were present in our data (see 

Methods for details). We identified significant theta-gamma PAC in a number of MEG 

sensors distributed across the scalp (One-sample t-test: thresholded at t>3.96, p<.001, 

Supplementary Fig. 2).

Modulation of theta-gamma coupling by sequence position

Next, we asked whether theta-gamma PAC was modulated by sequence position. If items are 

temporally coded by gamma power biased towards distinct phases of theta, then theta-

gamma PAC may be parametrically modulated as a function of an item’s position within a 

sequence. We hypothesized that an item in the initial part of the sequence should be 

associated with a tight theta phase - gamma amplitude relationship because a single item 

would be represented at a singular phase on repeating cycles of theta 4,6. However, as 

subsequent items are encoded, the addition of gamma cycles (representing additional items) 

would result in the widening of the distribution of gamma power over the phase of theta (see 

Fig. 1b for schematic of the hypothesized modulation by position). This would result in an 

overall reduction in our measure of theta-gamma coupling as more items are added into the 

sequence. To quantify this hypothesis, we ran a simulation where for each trial, additional 

gamma cycles (representing additional items in the sequence) were concatenated along the 

phase of a theta oscillation. PAC was then estimated on the simulated data. This verified our 

intuition that if our hypothesis is correct, our PAC measure should linearly decrease across 

trials when estimated separately for each trial within a sequence (Fig. 1c).

Based on the results of the simulation, we examined the MEG data for this pattern of 

decreasing theta-gamma PAC across each 6-item sequence. Then, using the pattern 

estimated by our simulated hypothesis as a predictor variable (Fig. 1c), we performed a 

linear regression on the actual PAC estimates to identify sensors that displayed the predicted 

pattern of results. This analysis identified two clusters of sensors (left lateral and posterior) 

that reliably fit our model at the group-level (Fig. 1d; One-sample t-test: thresholded at 

t(16)>2.1, p<.05; cluster-corrected using permutation test procedure, see Methods). To verify 

that this result was driven by our expected pattern, we extracted PAC estimates from sensors 

showing a significant fit to our model (p<.05, cluster corrected using permutation 

procedure). Visual inspection confirms a linearly decreasing PAC across the sequence, 

consistent with the simulation (Supplementary Fig. 3). Furthermore, regressing out the 

power values (both theta and gamma) had virtually no effect on the PAC model fits (see 

Supplementary Fig. 4; Two-way ANOVA with repeated measures: F(1,5332)=.002, p=.96) 

and thus do not interact with the PAC effects. In summary, we found that theta-gamma PAC 

decreased across items of a sequence, consistent with the idea that sequence encoding may 

be supported by the concatenation of gamma cycles at distinct, consecutive phases of theta 

for each additional item in the sequence.
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Source localization of theta-gamma coupling effects

Theoretical models 4,15 and empirical research in humans 16–21 and rodents 22,23 all point 

towards the hippocampus as being a structure that is critical for the formation of temporal 

associations among items. In humans, fMRI and intracranial EEG recordings with a spatial 

resolution on the order of millimeters have allowed for the precise characterization of 

hippocampal signals. While MEG is well suited for fine temporal analysis of brain activity, 

recent advances in source localization methods have made it possible to localize sources of 

MEG activity to a spatial resolution on the order of single centimeters, or even 

millimeters 24. Additionally, a growing number of papers 25–27 and simulations studies 28,29 

argue that source localization of MEG signals is possible to subcortical structures such as the 

hippocampus. However the parameters required for accurate source localization are still 

actively debated in the literature. Nonetheless, we applied best practice and performed 

source localization on our MEG data. We estimated trial-level time series in source space 

using a linearly constrained minimum variance beamformer approach (see Methods). Then, 

we computed PAC estimates for each trial and each source-space point (whole brain) and 

then fit the trial-wise PAC estimates to the model generated by our simulation (i.e. 

decreasing PAC estimates across a 6-item sequence). This analysis was nearly identical to 

the sensor-level analysis, but performed on source-space time-series estimates throughout 

the whole brain. Remarkably, the only region to reliably emerge from this analysis was a 

region centered in the left hippocampus (Fig. 1e, One-sample t-test: thresholded at t>3.19, 

p<.005; see Supplementary Fig. 5 for other thresholds) and extending posteriorly to a region 

of the parahippocampal and fusiform gyrus. This is consistent with the suspected role of the 

hippocampus and surrounding medial temporal lobe cortical regions in sequence 

encoding 20,30 and with the idea that sequence memory may be supported by an interaction 

between theta and gamma activity in the left hippocampus.

Theta phase coding supports temporal sequence encoding

While the sensor-level and source-space analyses described thus far establish that theta-

gamma PAC is modulated by sequential position in a manner consistent with a theta-gamma 

phase code, they do not directly demonstrate that result. Indeed, one could imagine 

alternative scenarios where the decreasing theta-gamma PAC pattern across sequence 

positions could emerge - a simple example being that the response pattern represents 

accumulating item representations without the orderly representation of their temporal order.

Thus, we conducted analyses to directly test our central hypothesis that objects encountered 

in different positions within a sequence are coded at distinct and consecutive phases of theta. 

To that end, we extracted raw MEG data from the two clusters of sensors that displayed a 

significant fit to the model (p<.05, cluster corrected using permutation procedure) derived 

from our simulated data (Fig. 1d). Separately for these two clusters of sensors, we binned 

gamma power by the phase of theta (18 phase bins) to generate an individual histogram for 

each trial (see Methods for details). We then averaged the theta-binned gamma distributions 

for each cluster across all subjects, but separately for each position and by subsequent 

temporal order memory.
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Examining successfully encoded sequences first, in the left posterior cluster of sensors, we 

found a main effect of position on the distribution of gamma power over theta phase 

(Watson-Williams Test: F(5,96)=16.04, p=1.81e-11) and, critically, the gamma power 

distributions reflected the relative order in which the objects were encoded (Fig. 2a; 

Supplementary Fig. 6). By contrast, for sequences where order memory was later incorrect, 

we observed significant differences in mean phase angle by position (Watson-Williams Test: 

F(5,96)=5.26, p=1.35e-04), but the order of the phase angles was scrambled relative to the 

actual order that the items were experienced (Fig. 2b). Critically, the memory by position 

interaction was also significant (Harrison-Kanji Test: F(5,196)=15.79, p=.01). Together, 

these results suggest that objects in distinct ordinal positions within a sequence may be 

coded in gamma band activity biased towards distinct, and ordered, phases of a theta 

oscillation.

Another way to visualize this effect is to plot the phase biases in polar coordinates. Thus, we 

transformed the theta-binned gamma distributions into polar coordinates (after removing the 

main effect of coupling across positions). We see that, for successfully encoded sequences, 

the order of the angles across positions mirrors the order in which the objects were encoded 

(Fig. 2c), whereas for incorrect sequences, the order of the angles is scrambled relative to the 

actual encoding order (Fig. 2d).

We next averaged the theta-binned gamma distributions for the 6-sequence positions into 3 

bins (1&2, 3&4, 5&6) after subtracting out the main effect of coupling. A statistical contrast 

of each position bin relative to the average of the other two bins shows that gamma power 

was preferentially higher at distinct phase bins of theta (Fig. 3b; Paired-samples t-tests: early 

> middle and late time bins: t1: t(16)=2.38, p=.01, t2: t(16)=3.00, p=.004; middle>early and 

late time bins: t1: t(16)=3.04, p=.004, t2: t(16)=2.16, p=.023; late>early and middle time 

bins: t1: t(16)=2.58, p=.01, t2: t(16)=4.28, p=.0003). However, for sequences where the 

temporal order was later incorrectly remembered, the relative distributions for each position 

bin were not different from one another (Fig. 3c; t’s > 2.1, p’s < .05). Together, these data 

strongly support the idea that successful sequence encoding is accompanied by a theta-

gamma phase coding mechanism, whereby gamma power associated with each sequential 

item is biased toward a distinct, consecutive phase of an underlying theta oscillation.

Ruling out alternative explanations

While the results reported here are consistent with a theta phase coding account of sequence 

memory formation, it is important to rule out alternative explanations for the data. Below, 

we outline a number of control analyses aimed to test whether other features of the data 

could explain the effects.

Temporal dynamics of gamma power and theta phase locking—We considered 

the possibility that variance in gamma power or theta phase locking across sequence 

positions or memory conditions could explain the phase coding effects. To test this, we 

analyzed the time course of gamma power and theta phase locking separately by sequence 

position (binned 1&2, 3&4 and 5&6) and by subsequent memory in the left posterior cluster 

of interest that displayed phase coding. Transient stimulus-evoked gamma power and theta 
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phase locking stabilize by 500 ms post stimulus onset (Supplementary Figs. 7 and 8). There 

were no differences in theta phase locking by position (One-way ANOVA with repeated 

measures: 0–500 ms: F(2,34)=.78, p=.46, 500–2500 ms: F(2,34)=.5, p=.61) and no 

differences by subsequent memory (Two-way ANOVA with repeated measures: 0–500 ms: 

F(1,34)=1.17, p=.29; 500–2500 ms: F(1,34)=.04, p=.96). Gamma power also did not 

significantly vary by sequence position (One-way ANOVA with repeated measures: 0–500 

ms: F(2,34)=.24, p=.78; 500–2500ms: F(2,34)=.13, p=.87) and there was a trend for greater 

gamma power in the forgotten sequences compared to the remembered sequences early (0–

500 ms) but not later (500–2500 ms) (Two-way ANOVA with repeated measures: 0–500 ms: 

F(1,34)=3.12, p=.09; 500–2500 ms: F(1,34)=.95, p=.34). It’s important to highlight that 

absolute gamma power likely did not play a role in the phase coding effects we see here, 

because for each trial, after computing the distribution of gamma power over theta phase, the 

resulting distribution was normalized (to sum to 1). This minimizes the likelihood that the 

phase coding effects were somehow driven by gamma power differences across conditions.

Removing the stimulus evoked response—One major concern when performing 

cross-frequency coupling analyses is that the neural response to the presentation of a 

stimulus could simultaneously result in a burst of high-frequency activity and low frequency 

phase alignment over trials. Thus, an effect that looks like a phase-amplitude interaction may 

actually be driven by two independent processes with a common driver. It is worth noting 

that a burst of high-frequency activity at stimulus onset would need also be accompanied by 

(1) a predictable shift in theta phase across each position in a sequence and (2) only do so on 

successfully encoded sequences to fully account for our results. Nonetheless, to rule out the 

possibility that our effects are in some way driven by an evoked stimulus response, we 

reanalyzed the data without the time window (first 500 ms) containing the evoked potential.

We found that both the decreasing PAC over sequence positions (Supplementary Fig. 9; 

One-sample t-test: including first 500ms: t(16)=6.99, p= 3.07e-06, excluding first 500ms: 

t(16)=6.10, p= 1.53e-05), as well as the phase coding by subsequent order memory effects 

(Supplementary Fig. 10; excluding first 500ms - temporal order correct: Watson William’s 

Test: F(5,96)=9.10, p=1.05e-05; temporal order incorrect: Watson William’s Test 

F(5,96)=6.42, p=2.50e-02; memory by sequence position interaction: Harrison-Kanji Test: 

F(5,196)=11.03, p=.025) were still present and statistically robust.

Phase coding in the inter-trial interval—As a further test to rule out an evoked 

response confound, we ran the same analyses on the time periods between each trial, the 

inter-trial intervals (ITI; 2500–5000 ms post stimulus onset), when participants were 

presumably maintaining prior items and reinforcing associations between items. 

Interestingly, we found that theta-gamma PAC was in fact stronger during the ITI than the 

stimulus presentation interval (see Supplementary Fig. 11a) and the phase coding by 

subsequent memory effects were still present and robust (temporal order correct: Watson 

William’s Test F(5,96)=9.10, p=1.07e-05; temporal order incorrect: Watson William’s Test 

F(5,96)=9.09, p=4.03e-04; position x memory interaction: Harrison-Kanji Test: 

F(5,196)=8.02, p=.07). However, the decreasing PAC by sequence position effect was no 

longer present (Supplementary Fig. 11b). This very intriguing result highlights that phase 
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coding is persistent even after the stimulus was removed from the screen, thus ruling out the 

possibility that the evoked response is in someway responsible for the phase coding pattern 

we observed.

Theta phase shift and phase symmetry controls—Finally, we examined whether 

systematic shifts in theta phase by sequence position or systematic changes in theta phase 

symmetry may contribute to our findings. The results do not reveal any evidence for a 

systematic theta phase shift across sequences (One-way ANOVA with repeated measures: 

F(4,84)=.33, p>=.85; Supplementary Fig. 12) and theta waveforms were equally symmetric 

over sequence positions (Watson-Williams test: F(5,101)=.23, p=.94), but varied in power, 

which is evident by increasing area of the polar phase distributions by sequence position 

(Supplementary Fig. 13).

DISCUSSION

Temporal coding models 31 converge on the idea that the brain may utilize the precise timing 

of neuronal firing to encode information. Theta phase coding models 3,4,6,32,33 specifically 

predict that the order in which a sequence of events occurred in the external world may be 

represented internally in the brain by the timing of neural ensemble firing (in the gamma 

frequency) with respect to the phase of an underlying theta wave. Our results provide 

compelling evidence in humans that a peak in gamma power for each successive item shifts 

along the phase of an underlying theta rhythm during successful, but not unsuccessful, 

sequence encoding. These findings suggest that by associating the ordinal position of a 

gamma-coded item representation with a particular theta phase, the brain may preserve the 

order in which a sequence occurred.

In this study, we assess whether gamma power during the encoding of items in distinct 

sequence positions is preferentially biased towards distinct and consecutive phases of theta. 

Critically, using this paradigm, we are able to separately examine whether phase coding is 

evident during both successful and unsuccessful temporal order encoding. First, we find that 

for all six sequence positions, there is a strong main effect of gamma power over theta phase 

(Fig 2a). Second – in line with our primary predictions – gamma power shifts progressively 

later in the theta cycle for each item in the sequence, and the relative peak gamma power 

reflects the order in which the items were encountered (Figs. 2 and 3). Critically, this ordinal 

phase coding effect is only present during the encoding of sequences later correctly 

remembered. The specificity of this effect to successfully encoded sequences provides 

strong support for the notion that the brain codes recent elements in memory by leveraging 

relative phase differences among distinct items in a sequence. The specificity to remembered 

sequences also helps to rule out concerns that the effects are somehow derivative only of the 

visual and task structure, as the timing of stimulus onset and motor responses are identical 

within sequences later remembered or forgotten. Further, the memory-related phase coding 

effects are present after removing the early stimulus-evoked activity (<500ms), and 

remarkably, even persist into the inter-trial interval when the stimulus is no longer on the 

screen. These results provide strong evidence for the longstanding theory that theta-gamma 

phase coding supports temporal sequence memory.
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In our initial set of analyses, we find that theta-gamma PAC is modulated by the position of 

the object within a sequence. Specifically, using a computational model-driven linear 

regression approach (see Methods), we find that theta-gamma PAC decreases over items in a 

sequence in left lateralized and left posterior MEG clusters (Fig. 1d). While perhaps 

counterintuitive, this pattern of decreasing PAC is predicted by a computational simulation 

of the theta-gamma hypothesis (Fig. 1c) and we show is due to a broadening of the gamma 

distribution over a theta cycle (see Fig. 2). One remaining question is: what is the nature of 

the mechanism that is driving the model fits in our initial set of analyses (i.e. Fig. 1d)? One 

possibility is that the broadening of gamma power across sequential positions is the result of 

the accrual and maintenance of all prior items within a sequence, each nested in a distinct 

phase of an underlying theta oscillation, similar to the model proposed by Lisman and Idiart 

(1995) and formalized in our computational simulation (see Fig. 1b & c). It follows then that 

the representation of additional items would result in a broader distribution of gamma power 

over a theta cycle.

A second possibility, however, is that the effect is driven by a progressive shift in gamma 

power along the phase of theta while items are being encoded (in the absence of gamma 

broadening related to the accrual of item representations). On its own, this pattern would not 

modulate theta-gamma coupling as we measured it. This is because the measure of coupling 

we utilize is sensitive to the width of the gamma distribution over theta, and a mere shift in 

gamma power would not modulate the width of the distribution. However, a forward shift in 

gamma power by sequence position -- in conjunction with the strong main effect of coupling 

we observe in the data – could, in fact, account for the pattern of decreasing PAC by 

sequence position that we observe. For instance, if items in early sequence positions are 

preferentially locked to the trough of theta (i.e. where gamma power is highest for all 

sequence positions in our data), this pattern would result in an exaggerated measure of theta-

gamma coupling for early positions. If items later in a sequence are preferentially coded at 

the theta power peak (i.e. where gamma is lowest for all sequence positions), this would 

result in an attenuated measure of theta gamma coupling. While a subtle, but very important 

point, our initial analyses are actually agnostic to the relative likelihood of either of these 

two possibilities.

Our data are more consistent with the latter model where a position-related forward shift in 

gamma power along the phase of theta supports sequence memory encoding, in the absence 

of accruing gamma-coded item representations. There are two major data points that led us 

to this conclusion. First, if additional items are added into the sequence representation, one 

might expect overall measures of gamma power to increase across the sequence as well. 

Contrary to this expectation, gamma power is relatively flat across the sequence 

(Supplementary Fig. 3). Secondly, one might also expect, that the width of the gamma power 

distribution over theta should broaden as a function of sequence position (as more item 

representations are accrued and maintained). Contrary to this hypothesis, we did not see 

evidence that the width (standard deviation) of the distribution increased across sequence 

positions (One-way ANOVA with repeated measures: F(1,15)=.20, p=.64). Thus, we believe 

that the best explanation for our results is that sequence encoding is supported by a temporal 

shifting of gamma power (representing each item) along the phase of an underlying theta 

oscillation.
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With this conclusion in mind, it is important to point out that in order to examine gamma 

power associated with each sequential position, we examine a time window that is 

coincident with each item presentation – i.e. the time period when that stimulus was 

presented, as well as the immediately following inter-trial interval. In its original conception, 

the Lisman and Idiart model offered a proposed mechanism to support the maintenance of 

multi-item sequences in working memory - after items had been encountered and were 

presumably being actively maintained. If gamma power associated with each item 

representation in a sequence is ordered along an underlying theta wave, then we should be 

able to measure this effect while these items are being encoded. Thus, the current results do 

not preclude the possibility that, during working memory, if one could track the gamma 

power associated with each item into subsequent time periods, that they would still be 

associated with the same phase of theta.

Furthermore, the maintenance of multiple items is likely to be dependent on the task and 

specifically whether items are being ‘actively’ retained in working memory. Our task is not 

necessarily an ‘active’ working memory task in the sense that participants are not required to 

rehearse and maintain the sequence of items during a delay period as in classical working 

memory paradigms. Rather, participants are instructed to remember the temporal order of 

the sequence by forming associative links between neighboring items, which likely involves 

some working memory maintenance along with other associative encoding operations. Thus, 

our current results are agnostic as to whether one would see the continued maintenance of 

phase coding effects during working memory rehearsal. Thus, it is important to point out 

that these results are not necessarily in conflict with the Lisman and Idiart model, and may 

in fact be parsimonious. Future studies should test whether there is a relationship between 

theta-gamma phase coding during sequence memory encoding and theta-gamma activity that 

has been observed during working memory maintenance 9.

The gamma power effects we report here peak between ~70–100 Hz. Critically, recent work 

using simultaneous MEG and iEEG suggests that gamma power <100 Hz is reliably 

detectable 34. Interestingly, recent work in rodents suggests that there is a functional 

distinction between high (~60–100 Hz) and low (25–55 Hz) gamma in the hippocampal 

circuit, such that lower frequency theta-locked gamma ‘sweeps’ may represent the future 

spatiotemporal trajectory of the animal, while fast theta-locked gamma may support the 

coding of ongoing trajectories in real-time 35. Possibly related to this dissociation, in the 

current study, where subjects are encoding trial-unique sequences (i.e. sequences did not 

repeat, and thus could not be ‘predicted’), we observe our memory-related phase coding 

effects in high gamma. Future work could test whether theta phase – low gamma power 

interactions emerges with repeated sequences, possibly indexing the forward prediction of 

upcoming items. While its important to note that our experimental design as well as the 

signals that we record are admittedly very different than the rodent study discussed above, it 

is nonetheless intriguing to consider parallels between the datasets.

While gamma power is relatively stable over positions, we find an increase in theta power 

across the sequence, consistent with prior studies showing theta power increases during 

memory encoding 36,37 and working memory maintenance 38–42. One prior study observed 

theta power increases specifically during delay period maintenance of temporal order 
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information as compared to the maintenance of just the items themselves 38. One possibility 

is that theta power increases reflect control processes related to relational encoding 27,36,38. 

Consistent with this idea, we see that sustained theta power increases occur predominantly 

over frontal regions (see Supplementary Fig. 1), possibly reflecting prefrontal control 

processes involved in representing temporal relations among items 43.

There is a rapidly growing literature linking theta-gamma coupling to human 

memory 9,11,13,44. These studies all converge on the idea that theta-gamma phase-amplitude 

coupling plays a role in the maintenance, as well as the long-term retention of mnemonic 

information. While these prior studies have been critical to advancing our understanding of 

the temporal dynamics of episodic memory formation, the fundamental and important 

question of whether theta phase coding supports sequence encoding has not been tested. To 

our knowledge, these data provide the first empirical evidence in humans that memory for 

event sequences is supported by the precise timing of item-related gamma activity with 

respect to an underlying theta oscillation.

Prior work in rodents has leveraged the spatial specificity of ‘place cells’ 45 to show that 

sequences of hippocampal place cells representing a ‘movement trajectory’ not only fire 

during an experience, but also later ‘replay’ in a similar order on subsequent cycles of a theta 

oscillation 46–48. The current result, by analogy, demonstrates that the encoding of an 

episodic ‘object trajectory’ or temporal sequence of items is also supported by a theta phase 

code. Given these two sets of findings, it is possible that the sequential coding of 

information along the phase of a theta oscillation represents an all-purpose mechanism in the 

brain that allows for temporally separated information to be associated via long-term 

potentiation. These results fill a critical gap in the literature by providing empirical evidence 

from a well-controlled and characterized behavioral paradigm in humans that theta-gamma 

phase-amplitude coupling and more specifically, theta phase coding, supports object 

sequence memory.

METHODS

Subjects—Twenty healthy right-handed native English speakers (4 males, age range: 21–

35, mean age: 28) recruited from New York University and the greater New York 

metropolitan area participated in the MEG experiment. The study was approved by the 

University Committee on Activities Involving Human Subjects and all participants gave 

informed written consent. We excluded two subjects whose performance on the order 

memory test was not statistically different from chance (50%, using binomial test) and one 

subject who did not complete the study due to drowsiness. We excluded these participants, 

leaving 17 subjects for the MEG analyses. No statistical methods were used to pre-determine 

sample sizes but our sample sizes are similar to those reported in 49.

Experimental procedures

Materials—Stimuli consisted of 576 gray-scale pictures of objects collected from various 

online sources. Some examples of stimuli can be seen in the main text (Fig. 1). Colored 

borders for the objects were generated by selecting 24 unique colors from a color continuum 
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ranging from [0,0,0] to [255,255,255] RGB values. Colors were manually chosen to be 

maximally distinct from each other. Color backgrounds were pseudo-randomized and 

stimulus order was randomized across subjects.

Design and Procedure

Encoding—During encoding, participants made pleasantness decisions on trial-unique 

objects that were paired with a colored background frame. Specifically, participants were 

instructed to imagine each object in the color of the background frame and press a button to 

indicate whether or not the combination was pleasant. We chose to use this encoding task to 

encourage participants to associate the color and object, since attention to the context (i.e. 

color) was critical to our hypothesis. To promote successful temporal order memory, we 

additionally instructed participants to associate neighboring objects together by imagining 

them interacting with each other. Subjects were instructed to perform this task irrespective of 

the color changes between some of the items. Pilot data indicated that this instructional 

manipulation was critical to achieving above chance temporal order memory performance in 

a majority of our participants.

During the encoding task, the background color frame remained the same for 6 consecutive 

trials (i.e. a ‘sequence’) and then switched to a new color. There were 6 sequences (totaling 

36 objects) in each encoding block and 16 encoding-test blocks across the experiment. Each 

object was on the screen for 2.5 seconds, followed by a 2 second inter-trial interval (ITI) and 

a .5 second fixation period. The timing of the task was fixed (i.e. not jittered). During the ITI 

and fixation period, the color frame remained on the screen.

Temporal Order Memory Test—After each study block, we tested temporal order 

memory. We used this temporal order test as a proxy for probing intact sequence memory. In 

this test, two previously studied objects were presented side by side (with the previously 

colored background frame now gray). Participants were asked to indicate which of the two 

objects appeared first (earlier) in the sequence and rate their confidence using a 4 alternative 

forced choice design. Thus, there were four possible responses during the test: high 

confidence correct order, low confidence correct order, high confidence incorrect order and 

low confidence incorrect order. The tested objects always occurred in the 2nd and 6th 

position within a sequence and all tested object pairs were separated by 3 intervening trials 

during encoding. The test was self-paced with a mandatory .5 second fixation period 

between each test trial.

MEG recordings and data processing—MEG data were recorded using a 157-channel 

whole-head axial gradiometer system (KIT, Kanazawa, Japan). Three reference channels 

seated above the MEG system were also recorded and used to remove ambient 

electromagnetic environmental noise from the data. MEG data were acquired in DC with a 

sampling rate of 1000 Hz, a low pass filter at 200 Hz and a notch filter at 60 Hz to remove 

line noise. To measure head position, 5 electromagnetic coils were attached to a participant’s 

head during recording. Coil locations were determined by registering scalp coil positions 

with 3D digitized head shape data (software: Source Signal Imaging, Inc.; hardware: 

Polhemus, Inc.), which was collected before MEG recording. The anatomical locations used 
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to register the coils with the head shape data were the nasion and the left and right 

periauricular points. The coils were localized to the MEG sensors at the beginning and end 

of the experiment.

MEG data were preprocessed as follows: raw MEG data were loaded into MATLAB 

(version 7.10, Mathworks) and malfunctioning channels (average per subject: ~2) were 

immediately removed and interpolated with the average of its nearest neighbors. Then, data 

were denoised using a time-shifted principal components analysis approach (temporal shift 

parameter = 100ms), which removed ambient environmental noise using 3 reference 

channels 50. The remaining preprocessing steps utilized the Fieldtrip MEG and EEG 

software package 51 and custom MATLAB scripts. The data were band-pass filtered (default 

settings in eegfilt.m) from 1–100 Hz. Then, the data were epoched from −4 to 4 seconds 

surrounding trial onset to assure adequate time for spectral estimation of both pre- and post-

stimulus activity. The epochs were downsampled to 500 Hz to speed processing time in later 

steps. Finally, to facilitate interpretation of topographic plots, we transformed the MEG data 

from axial to planar gradient. One advantage of this linear transformation is that planar 

signal amplitude is typically largest directly above the source, whereas axial signal 

amplitudes are typically maximal on either side of the neural source of the signal. This 

transformation was performed for all topographic analyses, but not the source-space 

analyses.

After preprocessing, the MEG data were examined for artifacts. The artifact rejection 

approach we took was three-fold: First, excessively noisy trials and channels were removed 

using Fieldtrip’s visual artifact rejection ‘trial summary’ feature. Specifically, channels and 

trials for which the across-trial variance exceeded 3 standard deviations from the mean were 

identified and removed from the analysis. Then, independent component analysis was 

implemented to remove components related to eye blinks, eye movements, and heartbeat-

related artifacts. Finally, remaining trials were visually inspected and epochs containing any 

remaining artifacts were removed from the dataset. The group average proportion of trials 

removed due to artifacts was ~8.6%. Data collection and analysis were blind to the 

conditions of the experiment.

Statistics—All statistical tests are two-sided unless otherwise noted. Data distributions 

were assumed to be normal, but this was not formally tested. Details for the specific 

statistical analyses can be found in the subsections below.

Time-Frequency Power Analyses—A time-frequency analysis was performed for each 

epoch (−4 to 4 seconds, 50 ms sliding window, zero-padded) using a morlet wavelet 

approach (number of cycles=6), estimating spectral power from 1 to 100 Hz in steps of 1 Hz. 

This analysis resulted in time-frequency spectrograms representing oscillatory power for 

each time-frequency-sensor point for each trial and each subject. This relatively long epoch 

window allowed us to analyze data during the ‘stimulus on’ period (0 to 2.5 seconds) as well 

as the inter-trial periods (−2.5 to 0 seconds) while avoiding edge artifacts particularly in the 

low frequencies.
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Cross-Frequency Coupling Analyses—Phase-amplitude cross-frequency coupling 

(PAC) was estimated as follows for each trial for each sensor and subject. The algorithm to 

compute the PAC ‘modulation index’ (referred to as MI or coupling values or estimates) was 

taken from 52. First, to compute gamma amplitude, raw MEG time-series (for each trial and 

sensor) was filtered from 70–100 Hz, which was determined by frequencies that showed a 

peak in the spectral power distribution (Supplementary Fig. 1). The envelope was then 

computed by taking the absolute value of the Hilbert Transform of the filtered time-series. 

To compute theta phase, the raw data was filtered from 3 to 8 Hz in steps of 1 Hz resulting in 

5 filtered time-series (i.e. 3–4, 4–5, etc.). We filtered in steps of 1 Hz instead of the range of 

the band (3–8 Hz) because we wanted to minimize the possibility that changes in the peak 

frequency of the theta band could explain our findings. Phase was computed for each of the 

5 filtered time series by taking the angle of the Hilbert transform of the filtered signal. Then 

we binned gamma power by theta phase (18 bins) during stimulus presentation (0–2.5 

seconds), now averaging across the 5 theta sub bins, resulting in a single theta-binned 

gamma histogram for each trial. We then normalized the distributions, such that the power of 

each histogram summed to one. Finally, we computed Kullback-Leibler divergence for each 

theta-binned gamma distribution and divided by the log(18) i.e. the number of phase bins.

In order to determine statistical significance of the coupling values, we employed a phase 

scrambling permutation procedure as outlined in 44. For each trial, we recomputed the 

coupling analysis described above, but circularly shifted the time-series of phase values by a 

random interval greater than 500 samples (i.e. the sampling rate, 1 second). For each trial 

(and theta phase sub-bin), we repeated this phase-shifting process 100 times to derive a null 

distribution of coupling values. We then converted the coupling estimates to statistical values 

(z-statistics). To calculate within-subject statistics, we computed a t-statistic across trials 

(averaging across theta-sub bin, i.e. one value per trial) for each sensor and subject. Then, to 

calculate group-level statistics, we computed a t-statistic across subjects for each sensor.

Fitting Theta-Gamma Coupling Estimates to the Model—Our initial hypothesis 

was that as items are maintained in and integrated into working memory, additional gamma 

cycles would be concatenated along the phase of theta 5. To simulate this hypothesis and test 

for this pattern in our data, we generated theta (4 Hz) sinusoidal waves (10 cycles to mimic 

our 2.5 second stimulus presentation), adding 1 to 6 cycles of a gamma rhythm (85 Hz) per 

theta cycle. The 6 different simulations represented our hypotheses for the 6 positions within 

a sequence. We then computed the predicted coupling score (i.e. modulation index) for each 

of these simulations. Due to an increase in the width of the distribution of gamma over theta 

as function of sequence trial position, our simulation predicted linearly decreasing coupling 

values across sequence positions (see Fig. 1b,c for visual depiction).

To test for this pattern of broadening gamma over theta in our data, we performed a linear 

regression on the trial-wise estimates of theta-gamma coupling. The predictor (independent) 

variable was our simulated hypothesis (described above) and the dependent variable was a 

vector of observed coupling estimates. To construct the vectors of coupling values, for each 

trial, sensor, and subject, we averaged together the coupling estimates across theta sub-bins 

so that there was a single coupling value per trial. We then performed a separate linear 

regression analysis (independent: model-predicted coupling value, dependent: trial-wise 
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coupling estimate) for each sensor and subject, resulting in subject-level topographic 

statistical maps (t-values) representing the fits of our model to the empirically observed 

coupling estimates. Then to compute group-level statistics, we computed a t-statistic across 

subjects for each sensor (see Fig. 1d). To correct for multiple comparisons, we derived a 

statistical threshold based on the size of a cluster of sensors compared to what one might 

expect by chance. For each sensor and subject, we shuffled the trial labels (1000 times) and 

then refit the model. Then, we recomputed cluster sizes on each iteration to build a null 

distribution of maximum cluster sizes expected by chance and only retained clusters 

exceeding p<.05 of the null distribution of cluster sizes. Only clusters of sensors that 

exceeded this threshold were further analyzed.

To control for power differences across a sequence as a potential confounding factor for the 

analyses described above, we performed a second regression analysis where first, a general 

linear model with theta and gamma power (as separate predictor variables) was constructed 

and regressed against the coupling estimates. We then refit our model (i.e. decreasing 

coupling by sequence position) to the residuals of this model. Thus, any explanatory power 

that theta or gamma power had on theta-gamma coupling was removed (Supplementary Fig. 

4).

Theta-Gamma Model Source Localization Analysis—A linearly-constrained 

minimum-variance beamformer analysis 53 was performed to estimate neural sources of the 

decreasing theta-gamma coupling by sequence position. Briefly, this technique utilizes an 

adaptive spatial filtering algorithm designed to estimate sources of neural activity originating 

from a spatial location in the brain given a particular topographic distribution of MEG 

activity by applying a unit gain constraint to the spatial location of interest and minimizing 

the contribution of all other sources. First, each subject’s data was registered to a canonical 

structural MPRAGE brain from the FSL software package 54. This was achieved by aligning 

anatomical landmarks (nasion, left and right periauricular points) from digitized head shape 

data to the structural brain image for each subject. To estimate source-space time-series data, 

we used a combination of source analysis script from the Fieldtrip software package as well 

as custom MATLAB scripts. A semi-realistic head model was constructed following 

methods described by 55. Then, using the MEG data from all trials (irrespective of sequence 

position), a common spatial filter was estimated for each point in a three dimensional grid 

representing potential neural source locations with 1 centimeter spacing between points. The 

result of this analysis was a vector of spatial weights (1 × 157, i.e. the total number of MEG 

sensors) mapping the contribution of each sensor’s activity to a particular grid (i.e. brain) 

location. Then, to derive source-space time series for each trial (−1 to 3.5 seconds), the 

matrix of sensor-level time series (157 sensors × 2251 time points for each trial) was 

multiplied by the spatial weight matrix, resulting in a single time course for each source 

location for each trial.

Once the all the sensor-level data was projected into source space, we performed an analysis 

very similar to the sensor-level theta-gamma model fit analyses described above. For each 

trial (during stimulus presentation, 0 to 2.5 seconds) and source-space location, we bandpass 

filtered the data in the high gamma band (70–100 Hz; using default filter settings of 

eegfilt.m) and computed gamma amplitude by taking the absolute value of the Hilbert 

Heusser et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2017 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transform of the filtered signal. Then, we derived the theta phase time course by bandpass 

filtering the data in the theta frequency range (3–8 Hz; using default filter settings of 

eegfilt.m) and then computed the angle of the Hilbert transform of the filtered signal. The 

remainder of the analysis was identical to the sensor-level theta-gamma model fitting 

analyses described above. Briefly, for every subject, we computed theta-gamma coupling for 

each trial and source-space point and fit the theta-gamma coupling source-space point to our 

model of decreasing theta-gamma coupling as a function of sequence position. Then, to 

compute group-level statistics, we computed t-statistics across subjects for every source-

space point. The final product was a 3D source-space statistical map of t-values representing 

the group reliability of the fit of theta-gamma coupling to our model of decreasing coupling 

across sequence positions. Note that there is typically a center bias for beamformer source 

localization when a source is localized without respect to a baseline (i.e. pre-stimulus period 

or another condition). Given that the regression analysis we ran is a linear contrast across 

sequence positions, this potential confound is likely not a contributing factor.

Phase Analyses—We hypothesized that for items in different sequence positions, gamma 

power would be biased to different phases of theta, particularly when temporal order was 

successfully encoded. To test this, for each trial, we computed histograms of gamma power 

binned by theta phase (18 bins; power and phase computations are described above in Cross-

frequency Coupling Analyses section) for each sensor. We then averaged across clusters of 

sensors that displayed a significant fit to our model (i.e. decreasing coupling by sequence 

position, p<.05, cluster-corrected using permutation procedure), which resulted in two 

clusters (a left lateral cluster and a left posterior cluster), and then sorted sequences by 

subsequent temporal order memory. To test whether the theta-binned gamma distributions 

differed by sequence position, we used a Watson-Williams multi-sample test for equal 

means implemented from the Circular Statistics Toolbox for MATLAB 56. This test is 

effectively a one-way ANOVA for circular-linear data. To compute significance of the 

interaction between position and sequence memory, we used a Harrison-Kanji Test, a 

circular implementation of a two-way ANOVA. It should be noted that all phase analyses 

described in this section were statistically tested using circular-linear tests unless otherwise 

specified.

In a follow up analysis, we then averaged the trials into 3 bins by sequence position: 1&2 

(early), 3&4 (middle) and 5&6 (late). Finally, we averaged the data across subjects. The 

result of this analysis was 6 histograms (for each cluster of interest) of gamma power binned 

by theta phase for early, middle and late sequence trials and for sequences where later 

temporal order was correct and incorrect (Fig. 3).

To compute theta phase locking (also known as ‘inter-trial’ phase coherence), we followed 

methods outlined in 57 (see Fig. 3c in the referenced paper). Briefly, for each trial, we 

filtered the data at the theta frequency. Then, we computed the Hilbert transform and 

normalized the resulting complex vectors to remove the amplitude component. Finally, for 

each time point, we computed the phase locking value by averaging the normalized vectors 

across trials for a given condition for each subject.
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Testing for systematic shifts in theta phase by sequence position—Another 

possible alternative explanation for our result is that gamma power remains temporally fixed 

with respect to the onset of the stimulus, but there is a systematic shift in theta phase as a 

function of sequence positions, perhaps due to a reset in the phase of theta caused by the 

stimulus presentation. To test for a mechanism of this nature, we simulated sinusoidal time 

series at the theta frequency, where the phase of theta systematically shifted over the 

sequence, and then computed the cross-correlation of the simulated time series for each pair 

of sequence positions (cross-correlation between 1–2, 1–3, 1–4, etc.). If a systematic theta 

phase shift is present in the data, then the peak cross-correlation should also systematically 

increase with increasing lag between items. An analysis of this ‘toy’ example concretized 

our intuition that the temporal lag of the peak correlation would increase with distance 

between sequence positions (Supplementary Fig. 12). We used this framework to test for a 

systematic phase shift in our data at the level of each sequence, and then averaging the peak 

lag values over sequences and over subjects. We performed this analysis specifically for 

correct sequence, as that is where we observed the phase coding effects. The results do not 

reveal any evidence for a systematic theta phase shift across sequences (F(4,84)=.33, p>.5; 

Supplementary Fig. 12). Thus, the phase-amplitude relationship is more likely to be driven 

by a shift in gamma across sequence positions rather than a phase shift in theta.

Testing for systematic changes in theta phase symmetry—Another possible 

explanation for PAC modulation by sequence position is that the shape of the theta 

waveform could systematically change, becoming more or less asymmetric over a sequence 

of items. While the exact pattern of expected results would vary based on the phase 

dynamics, oscillations with symmetric, sinusoidal phase dynamics will map to a circular 

distribution in polar coordinates, while asymmetric oscillations will map to a non-circular 

distribution (see Supplementary Fig. 13 for a visualization of this pattern). To test whether 

an interaction between phase symmetry and sequence position could explain these effects, 

we filtered each trial in the theta band. Then, we computed group-averaged phase-amplitude 

distributions in polar coordinates, averaging separately over each sequence position. The 

results suggest that the theta waveforms were equally symmetric over sequence positions 

(Watson-Williams test: F(5,101)=.23, p=.94), but varied in power, which is evident by 

increasing area of the polar phase distributions by sequence position (Supplementary Fig. 

13). This replicates the prior finding that theta power systematically increases over sequence 

positions. Thus, differences in phase symmetry are not likely to explain this pattern of 

results.

Data availability—The data that support the findings of these studies are available from 

the corresponding author upon request.

Code availability—The code that support the findings of these studies are available from 

the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Theta-gamma model fitting analysis. (a) Schematic of the paradigm. Participants viewed a 

series of trial-unique objects (36 per block) embedded on a colored frame which periodically 

switched every 6 trials. After each block, temporal order memory was probed by presenting 

two items studied within the same color and asking which of the two occurred earlier in the 

sequence. (b) Model of theta-gamma phase coding hypothesis. In this model, items 

(represented in gamma) encountered in the same color are concatenated along the theta 

phase. At switches in color, item representations are hypothesized to be removed. (c) 

Expected pattern of theta-gamma coupling measure (MI: modulation index) across sequence 

positions derived from simulated hypothesis. (d) Group-level topographic statistical map 

(n=17, t-values thresholded at t(16)>2.1, p<.05, cluster corrected using bootstrapping 

procedure) representing fit of model to across-trial theta-gamma coupling estimates. Two 

significant clusters of sensors emerged (p<.05, cluster corrected using permutation 

procedure): 1) a left lateralized cluster and 2) a left posterior cluster. (e) Group-level source 

space statistical map (t-values) representing fit of model to across-trial theta-gamma 

coupling estimates. Coronal (left), axial (middle) and sagittal (right) views are shown (n=17, 

source space statistical map is thresholded at t(16)>3.22, p<.005). uncorrected. PHG = 

parahippocampal gyrus. FG = fusiform gyrus.
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Figure 2. 
Phase analysis of theta-gamma coupling during sequence encoding plotted by position and 

subsequent temporal order memory for left posterior cluster of sensors. (a) Theta-binned 

gamma distributions during successful sequence encoding. Each color represents a distinct 

sequence position and the number above the bin represents the sequence position with the 

highest gamma power at that bin. The inset shows the relative pattern over sequence 

positions for a single phase bin. (b) Theta-binned gamma distributions during unsuccessful 

sequence encoding. (c) Mean angle of theta-gamma coupling for each sequence position for 

successful sequence encoding. The main effect (i.e. strong bias of gamma at all positions to 

the trough of theta) is removed to highlight the relative phase biases. (d) Mean angle of 

theta-gamma coupling for each sequence position for unsuccessful sequence encoding.
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Figure 3. 
Relative biases in gamma power over theta phase by sequence position and subsequent 

memory. (a) Schematic representing our binning strategy. We binned trials into early (1&2), 

middle (3&4), and late (5&6). (b) The distribution of gamma power over theta phase after 

removing the main effect of coupling for each sequence bin when temporal order was 

correct (paired-samples t-test, n=17: early > middle and late time bins: t1: t(16)=2.38, p=.01, 

t2: t(16)=3.00, p=.004; middle>early and late time bins: t1: t(16)=3.04, p=.004, t2: 

t(16)=2.16, p=.023; late>early and middle time bins: t1: t(16)=2.58, p=.01, t2: t(16)=4.28, 

p=.0003; t1=first significant time bin; t2=second significant time bin). (c) The same as B, 

but for sequences where order was incorrect. Stars represent phase bins where the statistical 

contrast (for example, early vs. the average of middle and late) was significant at p<.05. 

Error bars indicate standard error of the mean.
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