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The Cascadia subduction zone is a region that 
has repeatedly ruptured in great thrust earth- 
quakes of moment magnitude greater than 8 
(l, 2). Recently, slip events have been detect- 
ed on the deeper (25- to 45-km) part of the 
northern Cascadia subduction zone interface 
by observation of transient surface deforma- 
tion on a network of continuously recording 
Global Positioning System (GPS) sites (3). 
The slip events occur down-dip from the 
currently locked, seismogenic portion of the 
subduction zone (4), and, for the geographic 
region around Victoria, British Columbia, 
(Fig. 1), repeat at 13- to 16-month intervals 
(5). These slips were not accompanied by 
earthquakes and were thought to be seismi- 
cally silent. However, unique nonearthquake 
signals that accompany the occurrence of slip 
have been identified using data from the re- 
gional digital seismic network. These pulsat- 
ing, tremorlike seismic signals are similar to 
those reported in the forearc region of Japan 
(6, 7), but the signals observed in Cascadia 
correlate temporally and spatially with six 
deep slip events that have occurred over the 
past 7 years. At other times, this tremor ac- 
tivity is minor or nonexistent. These tremors 
have a lower frequency content than nearby 
earthquakes, and they are uncorrelated with 
the deep or shallow earthquake patterns in the 

Geological Survey of Canada, Pacific Geoscience Cen- 
tre, 9860 West Saanich Road, Sidney, British Colum- 
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region. They have been observed only in the 
subduction zone region and specifically in the 
same region as the deep slip events. We refer 
to this associated tremor and slip phenome- 
non as episodic tremor and slip (ETS). 

The seismic tremors described here are 
different from small earthquakes. The fre- 
quency content is mainly between 1 and 5 Hz, 
whereas most of the energy in small earth- 
quakes is above 10 Hz. A tremor onset is 
usually emergent and the signal consists of 
pulses of energy, often about a minute in 
duration. A continuous signal may last from a 
few minutes to several days. Tremors are 
strongest on horizontal seismographs and 
move across the seismic network at shear 
wave velocities. A tremor on an individual 
seismograph is unremarkable and does not 
appear different from transient noise due to 
wind or cultural sources. It is only when a 
number of seismograph signals are viewed 
together that the similarity in the envelope of 
the seismic signal at each site identifies the 
signal as ETS (Fig. 1). 

The tremor activity migrates along the strike 
of the subduction zone in conjunction with the 
deep slip events at rates ranging from about 5 to 
15 km per day. Sometimes there is a gradual 
migration, but at other times there is a sudden 
jump from one region of the subduction fault to 
another. Tremors vaxy in amplitude, and the 
strongest can be detected as far as 300 km from 
the source region. During an ETS event, tremor 
activity lasts about 10 to 20 days in any one 
region and contains tremor sequences with am- 
plitudes that are at least a factor of 10 larger 
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slips to within 2 days. The duration of the 
slips, estimated from slope breaks in the 
ALBH time series, varied from 6 to 20 days. 
Seismic data were then examined at corre- 
sponding times to check for tremor activity. 
In each case, it was observed that sustained 
tremor activity on southern Vancouver Island 
coincided with the occurrence of slip (Fig. 2). 
For five of the slip events, tremors continued 
to migrate north along the axis of Vancouver 
Island, moving beyond the region of diagnos- 
tic GPS coverage. 

To test a one-to-one correspondence, we 
examined continuous digital seismic data 
from the beginning of 1999 to the end of the 
2003 tremor event to look for tremor activity 
outside the time windows of the slip events. 
No substantial activity was found for south- 
ern Vancouver Island, although a few periods 
with scattered low-amplitude tremor activity 
were observed in most months. Sustained 
large-amplitude tremor events have also been 
observed in northern and mid-Vancouver Is- 
land, as continuations of tremors migrating 
from the south and as independent tremor 
events. This implies that the ETS process 
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occurs over the full length of the northern 
Cascadia subduction zone, but GPS coverage 
at the northern end is sparse, and surface 
displacements indicative of slip at depth have 
not been identified. 

The cause of the tremor is not clear. Obara 
(6) has suggested fluids as a source for sim- 
ilar tremors in Japan. Because the tremor 
observed in Cascadia is mainly composed of 
shear waves, and because it correlates with 
slip that is relieving stress due to convergence 
(3), a shearing source seems most likely. 
However, because of the abundance of avail- 
able fluids from the subducting plate in the 
subduction forearc (9), fluids may play an 
important role in the ETS process by regulat- 
ing the shear strength of rock. 

If the one-to-one correlation between tran- 
sient slip and seismic signatures proves to be 
robust, then the tremorlike seismic signals 
can provide a real-time indicator of the oc- 
currence of slip. Because slip events on the 
deep slab interface increase the stress across 
the locked plate interface located up-dip, it is 
conceivable that a slip event could trigger a 
large subduction thrust earthquake (10, 11). 

Consequently, the onset of ETS activity 
could lead to recognized times of higher 
probability for the occurrence of megathrust 
earthquakes in the Cascadia subduction zone. 
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surface displacement patterns have been satis- 
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to 4 cm on the plate interface bounded by the 
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tween the slip events and the tremor activity 
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in the east-west component of the Victoria 
GPS site (ALBH) with a symmetric 180-day 
sawtooth function, which replicated an aver- 
age slip time series (8). This approach al- 
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Fig. 1. (A) Map of seismic network sites (numbered circles) and approximate source region (shaded 
ellipse) for tremors used for correlation with observed slips. It has been observed that tremors and slip 
migrate parallel to the strike of the subduction zone to the north and south, as well as through this 
shaded region. (B) Sample seismic records of tremor activity at selected sites. It is the similarity of the 
envelope of the seismic signal on many seismographs that identifies ETS activity. 

Fig. 2. Comparison of 4Q 
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mean elevated east- 
ward trends between the slip events, which are marked by the reversals of motion every 13 to 16 
months. The bottom graph shows the total number of hours of tremor activity observed for southern 
Vancouver Island within a sliding 10-day period (continuous seismic data were examined from 1999 
onward). Ten days corresponds to the nominal duration of a slip event. The graph ends 10 March 2003, 
with the slip and tremor activity that was predicted for the spring of 2003. 
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