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Abstract

Genotypic fitness landscapes are constructed by assessing the fitness of all possible com-

binations of a given number of mutations. In the last years, several experimental fitness

landscapes have been completely resolved. As fitness landscapes are high-dimensional, their

characterization relies on simple measures of their structure, which can be used as statistics

in empirical applications. Here we propose two new sets of measures that explicitly capture

two relevant features of fitness landscapes: epistasis and constraints. The first set contains

new measures for epistasis based on the correlation of fitness effects of mutations. They have

a natural interpretation, capture well the interaction between mutations, can be obtained

analytically for most landscape models and can therefore be used to discriminate between

different models. The second set contains measures of evolutionary constraints based on

“chains” of forced mutations along fitness-increasing paths. Some of these measures are

non-monotonic in the amount of epistatic interactions, but have instead a maximum for

intermediate values. We further characterize the relationships of these measures to the ones

that were previous proposed (e.g. number of peaks, roughness/slope, fraction of non-additive

components, etc). Finally, we show how these measures can help uncovering the amount

and the nature of epistatic interactions in two experimental landscapes.

1 Introduction

Fitness landscapes have been a very successful metaphor to study evolution. Most simply, the

idea of Sewall Wright (1932) to view evolution as a hill-climbing process proved to be appealing

∗Email: luca.ferretti@gmail.com
†Email: guillaume.achaz@upmc.fr

1

ar
X

iv
:1

50
7.

00
04

1v
1 

 [
q-

bi
o.

PE
] 

 3
0 

Ju
n 

20
15



and inspired a vast amount of theoretical work in phenotypic and molecular evolution (Orr, 2005;

de Visser and Krug, 2014). Furthermore, this metaphor contributed to the scientific exchange

with other fields, especially with computer science (Richter, 2014) and physics (Stein, 1992).

In evolutionary biology, fitness landscapes have been used to study adaptation. In the classi-

cal metaphor, an evolving population is abstracted into a particle that navigates in the landscape

(Orr, 2005). In a strong selection weak mutation regime (Gillespie, 1983), the evolutionary paths

followed by the populations are restricted to paths of increasing fitness, which can sometimes

even be completely deterministic. In this perspective, it has been emphasized that many fun-

damental features of adaptation depend on whether the landscape is smooth or rugged. Among

other things, the ruggedness and the properties of fitness landscapes have been related to spe-

ciation processes (Gavrilets, 2004; Chevin et al., 2014), to the benefits of sexual reproduction

(Kondrashov and Kondrashov, 2001; de Visser et al., 2009; Otto, 2009; Watson et al., 2011), and

more generally, to the repeatability of the adaptation process (e.g. Kauffman (1993); Colegrave

and Buckling (2005); Chevin et al. (2010); Salverda et al. (2011)).

Consequently, it is now clear that several aspects of evolutionary processes directly depend on

the structure of the fitness landscapes in which the organisms are evolving. Furthermore, Wright’s

idea of genotype-fitness landscapes moved from a metaphor to an object of experimental studies,

as several fitness landscapes were experimentally resolved (de Visser and Krug, 2014). In that

regard, characterizing the structure of experimental and model fitness landscapes is a key step

in our ability to decipher evolution at the finest scale. However, because fitness landscapes are

objects of (very) high dimensionality, their characterization relies on simple scalar measures (i.e.

statistics) that are able to capture the important features of the landscapes. In this study, we

propose two new sets of measures for fitness landscapes that have an immediate interpretation

in biology in terms of epistasis and evolutionary constraints.

One of the most basic ingredients that characterize the structure of fitness landscapes is

epistasis. Epistasis is the interaction between the effects of mutations at different loci. It is

usually defined as the non-multiplicative part of the fitness effects of combined mutations, that

is the non-additive part, in log-scale. In the presence of epistasis, the fitness effect of a mutation

at a given locus depends on the genetic background and consequenty, a mutation at a given

locus changes the distribution of fitness effects of other mutations at other loci. For the 2-loci

2-alleles case, assuming that the genotype with the smallest fitness is labeled 00, epistasis can

be expressed (in logscale) as the departure from additivity : e = f(11) + f(00)− f(10)− f(01),

where f(ij) is the malthusian fitness of the genotype ij (e.g. Phillips (2008)).

Assuming random fitness values (i.e. NK landscapes), Kauffman (1993) showed a positive

correlation between the amount of epistatic interactions and the ruggedness of a landscape, de-

fined as the density of peaks (genotypes with no fitter neighbors). As the number of loci that

interact together grows, the landscape is more rugged, and more local peaks end evolutionary

paths. At the maximum number of epistatic interactions, the fitnesses of each genotype are
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completely uncorrelated, resulting in a so-called House-of-Cards model (Kingman, 1978; Kauff-

man and Levin, 1987), for which several measures on paths of increasing fitness were derived

(Kauffman and Levin, 1987; Franke et al., 2011; Hegarty et al., 2014; Berestycki et al., 2013)

Experimental fitness landscapes make possible to test predicted properties of evolutionary

trajectories through evolution experiments, together with sequencing (Achaz et al., 2014). Cur-

rently available fitness landscapes are based on mutations in a few loci, typically 4-10 (Szendro

et al., 2013; Weinreich et al., 2013). Since the number of genotypes scales as the product of the

number of alleles at all loci, testing all the combinations of mutations in an organism (or even in

a protein) is beyond the reach of any reasonable future experiment. However, small landscapes

have been resolved and analyzed. An exciting opportunity raised by the recent release of these

experimental landscapes is to find the adequate model(s) that is (are) able to generate landscapes

that share similar features with the observed ones. In that regard, characterizing the structure

of small fitness landscapes is today a key step for our understanding of evolution in the presence

of realistic interactions among mutations.

The high dimensionality of fitness landscapes make them almost impossible to visualize (al-

though some attempt were proposed, see McCandlish (2011) or Brouillet et al. (submitted)).

As a consequence, the analyses of fitness landscapes will mostly rely on measures that capture

important features of their structures. Several measures were proposed previously and used to

analyze experimental fitness landscapes (reviewed in Szendro et al. (2013)). The most natural

one that was historically used to appreciate the ruggedness of a landscape is its number of peaks

(Weinberger, 1991). Intriguingly, although ruggedness is more adequately represented by both

types of extrema, only little attention has been payed to the number of sinks (genotypes with

only fitter neighbors). We therefore suggest that peaks and sinks are both adequate measures

of the landscape ruggedness. Most models generate landscapes with the same mean number of

peaks and sinks; however, small landscapes can have a different number of peaks and sinks due

to random sampling. Furthermore, there is no theoretical reason for a symmetry between peaks

and sinks in real fitness landscapes.

Other measures such as r/s ratio (ratio of the roughness over additive fitness), fraction of sign

epistasis, etc. (see detailed description in the Appendix) were also proposed to characterize the

structure of fitness landscapes. As they all represent direct or indirect measures of epistasis, all

these measures were shown to be pairwise correlated in experimental fitness landscapes (Szendro

et al., 2013). In that regard, other measures related to evolution but somehow uncorrelated

to the amount of epistasis are also needed to investigate the nature of the interactions in the

landscapes.

Here, we describe two new measures that can be used to characterize the structure of fitness

landscapes (Figure 1). The first one, γ, is the single-step correlation of fitness effects for mutations

between neighbor genotypes (Figure 1b). It is a direct measure of epistasis, i.e. it measures how

much the fitness effect of a mutation is affected when a genotype experiences another mutation.
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As all correlation measures, γ ranges from −1 to +1 and is a very natural quantity to describe the

amount of epistasis (ruggedness) in the landscape. The second one, chains, aims at quantifying

the amount of constrained evolution in the landscapes. In the limit of strong selection and low

mutation rates, when a hill climbing evolutionary path reaches a genotype that has a single

fitter neighbor, the next step of the path is essentially deterministic. In this case, only one of the

mutations available in the landscape can improve the fitness. If several genotypes with a single

way out are connected together they form a chain of “obligatory” mutational events that often

ends on a peak (Figure 1c), but could also end on an intermediate genotype.
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1 peak, 2 sinks

->1
 ~ 0.9

->3
  ~ 0.0

  ~ 0.7

->2
  ~ 0.1

1 chain tree

(2 origins, 4 steps and depth 3)

a) b) c)

Figure 1: Measures of fitness landscapes. We depict on the same fitness landscape (of 3 loci with 2

alleles each) three measures.

(a) Peaks, here in green, are genotypes with no fitter neighbors whereas sinks are genotypes with only

fitter neighbors.

(b) γ is the pairwise correlation in fitness effect of mutation between neighbor genotypes. It measures

how much another mutation in a genotype affects the focal mutation, averaged across all mutations and

the whole landscape. Here the average correlation is good (γ ≈ 0.7). γ→i is the correlation in fitness

effect of mutation i between neighboring genotypes. In the example, mutations at locus 1 are almost

independent of the genotypes (γ→1 ≈ 0.9), whereas the effects of the mutations at locus 3 show almost

no correlationa across genotypes (γ→3 ≈ 0).

(c) In this landscape, there is a single chain tree that is composed of 4 steps (genotypes with a single

fitter neighbor), 2 origins and a depth (the largest number of steps chained together) of 3.

The two measures target different features of the landscapes: γ aims at quantifying the

amount of epistasis, independently of its nature, whereas chains discriminate between different

types of epistasis. In the following, we will present both measures in detail, then discuss their

relations with the existing measures and finally quantify them on two experimental landscapes.

We also present the mean value of these measures for several landscape models, like the House

of Cards (HoC), the Rough Mount Fuji (RMF) and NK landscapes as well as Ising and Eggbox
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models. Details on previous measures and model landscapes used here are given in the Appendix.

2 Epistasis as correlation of fitness effects: γ

2.1 Definition

In this section, we will derive and discuss a new measure that is a natural description of the

amount of epistasis in fitness landscapes. This new measure, denoted by γ, is simply the correla-

tion of fitness effects of the same mutation in single-mutant neighbors (see Figure 1b and Figure

2). It measures how the effect of a focal mutation is altered by another mutation at another

locus in the background, averaged across the whole landscape.

g g[i]

g[j] g[ij]

sj (g) sj (g[i])

g g[i]

g[j] g[ij]

g g[i]

g[j] g[ij]

magnitude epistasis sign epistasis reciprocal sign epistasis

1 >  > 0 1 >  > -1/3 0 >  > -1

a) definitions

b) types of epistasis

g g[i]

g[j] g[ij]

Figure 2: (a) Notation: γ is the correlation between the fitness effects sj(g) and sj(g[i]) over all genotypes

g and mutations i, j in the landscape. (b) Types of epistasis, possible values of γ and examples of the

corresponding fitness graphs.

In the following, we will define it properly in mathematical terms for the bi-allelic case. We

denote the (log-scaled) fitness of a genotype g by f(g). We also define g[i], the genotype g
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where the locus i is mutated. The fitness effect of a mutation at locus j, i.e. the log-scale

selection coefficient of the mutation, is denoted by sj(g) = f(g[j])− f(g). The new measure γ is

then defined as the correlation between two fitness differences sj(g) and sj(g[i]) measured from

genotypes that are one mutation away, as illustrated by Figure 2a.

Noting that the average of sj(g) across all genotypes and mutations in the landscape is 0, we

define γ as:

γ = Cor[s(g), s(g1)] (1)

=
Cov[s(g), s(g1)]

Var[s(g)]

=

∑

g

∑

i

∑

j 6=i sj(g) · sj(g[i])

(L− 1)
∑

g

∑

j(sj(g))
2

where g1 indicates a generic genotype that differs from g by a single mutation. For multiallelic

landscapes, the same definition γ = Cor[s(g), s(g1)] can be immediately generalized to any

number of alleles.

Even though γ is originally defined in term of fitness effects of the mutations, it can be easily

recomputed by only using the fitness values themselves. If we denote ρd = Cor[f(g), f(gd)] the

correlation between fitness of genotypes apart from distance d, it is possible to rewrite γ by the

simple formula (see proof in the Appendix):

γ =
ρ1 − ρ2
1− ρ1

(2)

Besides its general interest, this formulation allows us to measure γ in the presence of missing

data. Indeed, fitness correlation functions do not need fitness data for all combinations of some

set of mutations in order to be estimated.

2.2 Interpretation

To make clear that the above measure is a metric of epistasis, we rewrite the above equation as

γ = 1−
E[(s(g)− s(g1))

2]

2E[s2]
(3)

= 1−
E[e2]

2E[s2]

= 1−

∑

g

∑

i

∑

j 6=i(sj(g)− sj(g[i]))
2

2(L− 1)
∑

g

∑

j(sj(g))
2

When there is no epistasis, the fitness effects do not depend on the background and γ = 1,

i.e. perfect correlation between fitness effects. The deviation of γ from 1 is proportional to the

square of eij = f(g[ij]) − f(g[i]) − f(g[j]) + f(g), which is a standard measure of the amount of

epistatic effect (for 2-alleles 2-loci), normalized by the average squared fitness effect. Thanks to

6



its normalization, this measure of epistasis is not affected by the scale and the absolute level of

fitness, but only by relative differences in fitness. Shifting fitnesses by a multiplicative or additive

factor does not change this measure.

The measure γ is defined as a correlation, therefore it is bounded by −1 ≤ γ ≤ 1, with γ = 1

in the case of no epistasis. The value of γ is related to the prevalent type of epistatic interactions

(see proof in the Appendix), which are summarized in Figure 2b:

• magnitude epistasis refers to pairwise interactions that do not change the signs of fitness

effects. Magnitude epistasis would still result in a positive correlation between fitness

effects, therefore γ would still be positive even if smaller than 1: 1 > γ ≥ 0;

• sign epistasis refers to pairwise interactions where the fitness effects of one mutation change

sign after the other mutation. Sign epistasis would contribute with terms of both signs to

the correlation, therefore resulting in values centered around 0: 1 > γ ≥ −1/3;

• finally, reciprocal sign epistasis refers to pairwise interactions where both fitness effects

change sign. Reciprocal sign epistasis would imply a negative correlation between fitness

effects, and therefore a negative value of γ: 0 > γ ≥ −1.

The deviation of the mean value of γ from 1 for simple landscape models measures epistasis

as a function of the parameters of the models (see the Appendix for details on the derivations;

the reader unfamiliar with the models will also find a brief presentation there). For example, in

NK landscapes the epistasis grows with the parameter K describing the number of loci involved

in each interaction and in fact we have the approximate equation

E[γ] ≃ 1−
K

L− 1
. (4)

For the HoC model, i.e. a maximally uncorrelated landscape, we have K = L− 1 and therefore

E[γ] ≃ 0, (5)

i.e. this model shows strong random epistasis.

For RMF models, which are combinations of an additive landscape and a completely uncor-

related one, the correlation of fitness effects is

E[γ] ≃ 1−
2σ2

HoC

µ2
a + σ2

a + 2σ2
HoC

(6)

where µa and σa are the mean and variance of the additive fitness effects and σ2
HoC is the

variance of the uncorrelated HoC component. Therefore, in this case, the measure of epistasis is

proportional to the variance contribution of the uncorrelated component.
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2.3 Epistasis for specific mutations

The correlation of fitness effects is also a useful measure of the interaction between specific

mutations. Some simple generalizations of the γ measure are:

• γi→, which describes the epistatic effect of a mutation in locus i on other loci:

γi→ = Cor[s(g), s(g[i])] =

∑

g

∑

j 6=i sj(g) · sj(g[i])
∑

g

∑

j 6=i(sj(g))
2

, (7)

• γ→j , which describes the epistatic effects of other mutations on locus j:

γ→j = Cor[sj(g), sj(g1)] =

∑

g

∑

i 6=j sj(g) · sj(g[i])

(L− 1)
∑

g(sj(g))
2

(8)

• γi→j , which is a matrix that describes the epistatic effect of locus i on locus j:

γi→j = Cor[sj(g), sj(g[i])] =

∑

g sj(g) · sj(g[i])
∑

g(sj(g))
2

(9)

These measures can also be generalized easily to multiallelic landscapes by considering pairs of

mutations at different loci.

The measure γi→, γ→j and especially γi→j are useful for exploratory and illustrative purposes,

since they summarize the interactions between mutations in a clear and compact way, as it can

be seen in Figure 7.

It is also possible to use the more direct measure E[e2ij ] as an alternative to γi→j . The

difference lies in the normalization: γi→j = 1 − E[e2ij ]/2E[s
2
j ], therefore γi→j treats both large

and small mutations in the same way while E[e2ij ] is larger for large mutations. The choice of the

most appropriate measure depends on the question, i.e. if the focus is on the interactions across

all mutations, or only the largest ones.

2.4 Decay of the correlation with distance

The γ measure provides information on the amount of epistasis but cannot discriminate be-

tween different types or models of fitness landscapes, as it occurs for any single measure of

the amount/strength of epistatic interactions. In fact, there are many landscapes with widely

different structure but with the same γ. For example, a HoC model realization would have γ = 0

as would a landscape composed by an equal mixture of additive and reciprocal sign epistatic

interactions (like in an EMF model).

However, a natural and interesting extension of this measure is given by the full decay of the

correlation of fitness effects with distance d, which correspond to the cumulative epistatic effect
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of d mutations and can be defined as:

γd = Cor[s(g), s(gd)] (10)

=

∑

g

∑

i1

∑

i2>i1
. . .

∑

id>id−1

∑

j 6=i1,i2...id
sj(g) · sj(g[i1i2...id])

(

L−1
d

)
∑

g

∑

j(sj(g))
2

where γ1 = γ. As with γ, γd can be expressed in terms of the fitness correlation functions at

distance d, ρd:

γd =
ρd − ρd+1

1− ρ1
(11)

The decay of γd with the Hamming distance d is an interesting object of study in itself ,

since it describes how the epistatic effects of different mutations interact with each other and

their cumulative effect. The mean of γd can be computed analytically in most models of fitness

landscapes - see the first section of the Appendix - and it brings extra information on the structure

of the landscape. Different models have a different behaviour (Figure 3): RMF and HoC models

show an abrupt fall already at d = 1 and then a flat profile, while NK models have a gradual,

approximately exponential decay with rate K/(L− 1) (Supplementary Figure 1). Models based

on The Ising model (based on pairwise reciprocal sign epistasis) decays linearly until −1, while

the eggbox (maximally epistatic, anticorrelated) oscillates between −1 and 1.

Note that the fact that γ2 ≤ 1 together with equation (11) implies that there is a general

bound on the decay of the fitness correlation functions with distance. In detail, the bound is

|ρd+1 − ρd| ≤ 1− ρ1 (12)

i.e., the decay of fitness correlation functions is bounded by the 1-step correlation function.

2.5 Correlation in signs (γ∗)

In many experimental situations, fitness is not clearly measurable on an absolute scale, but it is

possible to rank the genotypes in order of increasing fitness, or at least to state if a mutation is

deleterious or beneficial.

The fitness landscape can be then represented as an acyclic oriented graph, i.e. an oriented

network where links between genotypes represent single, fitness-increasing mutations. Hereafter,

we will refer to this graph as the fitness graph. As an example, the fitness graphs corresponding

to different types of epistasis for 2 loci are illustrated in Figure 2b.

In this context, it is still possible to measure epistasis via the same method by employing a

modified measure γ∗ which uses just the sign of the fitness effects, instead of their value. We

define s∗j (g) as the sign of sj(g). A more robust variant would be

s∗j (g) =



















+1 for sj(g) > ǫ

0 for − ǫ ≤ sj(g) ≤ ǫ

−1 for sj(g) < −ǫ

(13)
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−1
.0

−0
.5

0.
0

0.
5

1.
0

d

NK

RMF

additive

HoC

Isingeggbox

γ d

Figure 3: Behaviour of the average correlation of fitness effects γd at different distances in model land-

scapes with L = 5. The NK landscape has K = 2 and the RMF is a mixture of 60% additive component

and 40% HoC. Analytical formulae are given in the Appendix.
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where ǫ is a tolerance parameter (possibly depending on the genotype, and larger than the

experimental errors). The measure γ∗ is defined as before:

γ∗ = Cor[s∗(g), s∗(g1)] =

∑

g

∑

i

∑

j 6=i s
∗
j (g) · s

∗
j (g[i])

(L− 1)
∑

g

∑

j(s
∗
j (g))

2
(14)

If the landscape has no neutral mutations, we can show that this measure is related to

other commonly employed measures for fitness graphs. Consider all possible pairwise mutational

motifs in the fitness graph and classify the type of epistasis in each motif as magnitude epistasis,

sign epistasis and reciprocal sign epistasis (see Figure 2b). We denote the fraction of motifs in

each class by φm, φs and φrs respectively. We have the relation (see proof in the Appendix)

γ∗ = 1− φs − 2φrs (15)

What is even more interesting is that both in models and in real landscapes, the results of

γ and γ∗ are often numerically close and highly correlated (see below). The only exception is

represented by landscapes with weak epistatic interactions dominated by magnitude epistasis,

where γ∗ = 1. This suggests that γ∗ could be used in place of γ for landscapes where only fitness

ranks are known. These measures represent therefore a bridge between fitness graph-based

measures and quantitative measures based on absolute fitness.

3 Constraints in mutation order: chains

Many fitness landscape measures are correlated with the amount and strength of epistasis in the

landscape. However, landscapes with similar epistasis could have widely different structure of

epistatic interactions, origin and evolutionary properties. One of these properties is the amount

of constraints on the possible evolutionary paths.

A natural measure of evolutionary constraints is given by the abundance and structure of

maximally constrained paths. Our aim is to characterize these paths in a simple and effective

way. For that, we focus on genotypes with only a single beneficial mutation. All fitness-increasing

paths that pass through such genotype will share this mutation. Some landscape have “chains”

of consecutive mutations with this properties (see Figure 1c). We now examine the abundance

and size of these chains as measures of evolutionary constraints.

We define a chain step as a mutation g → g′ that is the only possible fitness-increasing

mutation from the genotype g. Chain steps can occur one after another, forming a linear path

of obligatory mutational steps, that we call a chain. Several chain steps can lead to the same

genotype, but a genotype can have at most one outgoing chain step. For this reason, chains

can form tree-like structures, that we call a chain tree. A chain tree is formally the set of all

genotypes which are forced to evolve along obligatory paths up to a common final genotype, i.e.
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a maximal groups of connected chain steps. This definition implicitly assumes a strong selection

regime (Gillespie, 1983), as there is no fixation for mutations of negative fitness effect. In an

additive landscape, there is a single chain tree containing only those genotypes one mutation

away from the (single) peak. Note that other landscapes can contain more than one chain tree

(or none). We compute also the number of origins, that are all genotype that are initial points of

a chain (that obviously excludes intermediate steps). And finally, we compute also the maximal

depth of all chains in the landscape, that is, the maximum number of consecutive steps. In an

additive landscape, the depth of the only chain tree is 1.

3.1 Out-degree distribution of fitness graphs

Chains are a natural choice for a measure of evolutionary constraints in the framework of fitness

graphs. In particular, chain steps are strongly related to the out-degree distribution of the fitness

graph corresponding to the landscape.

In fact, there is a one-to-one correspondence between chain steps and genotypes with a single

fitness-increasing mutation. The number of fitness-increasing mutations from a given genotype

is the out-degree of the genotype in the fitness graph. Therefore, chain steps are simply nodes

of out-degree 1.

One of the most well-studied measures of fitness landscapes is the number of peaks. Since

there are no fitness-increasing mutations from a peak, peaks are simply nodes with out-degree 0.

Therefore, the number of peaks is actually the first bin of the out-degree distribution. Similarly,

the number of sinks correspond to the number of genotypes with out-degree L (the last bin of

the out-degree distribution). The number of chain steps is the second bin of the out-degree

distribution of the fitness graph, and is therefore a natural step further in the characterization

of the distribution of out-degree.

For the small empirical landscapes currently available (L = 4−10), chains contain most of the

local information about evolutionary constraints. For larger landscapes, nodes with out-degree

2, 3, or more would also be relevant to assess the amount of constraints. For these landscapes,

the full out-degree distribution could be an interesting object of study.

In Figure 4, are reported the out-degree distributions for four types of epistatic interactions

(none, random, pairwise incompatibilities and compensatory at higher order) that correspond

to four different theoretical landscape models (Additive, HoC, Ising and Eggbox). Results show

that the out-degree distribution usually differs for different types of interactions. However, it is

noteworthy to mention that Ising and HoC models show the same average out-degree distributions

even though the nature of their epistatic interactions are fundamentally different as well as their

overall structure (see Figure 8 and details of the models in the Appendix).

Interestingly, only the number of chain steps is contained in the out-degree distribution.

Indeed neither chain depth nor the number of chain origins can be computed from just the

12
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Figure 4: Out-degree distributions for model landscapes. The distributions of out-degree (number

of fitter neighbors for all loci of the landscape) for four different types of interactions. On the left panel,

we report results for a single realization whereas, the right panel reports averages over 1,000 replicates.

out-degree distribution. Both values really depend on the structure of the chain tree itself. A

star-like tree, as we expect in additive landscapes, will have several origins and only a depth of 1,

whereas a deep chain with a single origin is expected under an IMF model (Ising Mount Fuji is a

mixture of additive with Ising pairwise interactions, see details of the models in the Appendix).

In this last case, the chain corresponds to the subsequent replacements of alleles at neighboring

loci starting from one edge up to the other. Chain depth and the number of origins somehow

relate to correlations in the outdegree of nodes in the fitness increasing paths. This stresses the

interest of studying both the out-degree distribution and the chain trees in fitness landscapes.
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3.2 Connection between chains and the amount of epistasis

In an additive landscape, all the L genotypes around the peak are origins of a chain tree that

ends at the peak. This starlike chain tree of depth 1 around the peak is the only chain tree in

these landscapes. In contrast, in a HoC model, there are many small and slightly deeper chain

trees; their number is of the order of 2L/(L+1) (see proof in the Appendix). Therefore, it would

be tempting to conclude that the number of chain trees (as well as other measures of chains) are

correlated to the amount of epistasis. However, this is not the case.

For example, in an RMF model with equal additive contribution, it is possible to derive exact

theoretical results for the mean of some chain tree measures –most relevant, the number of chain

steps. Equations are presented in appendix B. The results are illustrated in Figure 5, where the

mean of several chains measures are reported as a fraction of additive component in the RMF

model. Because the HoC component is fixed (fixed σHoC), the higher µa, the more additive is

the model (µa is the mean additive effect of mutations) ; consequently, when µa → ∞, the model

becomes additive whereas it converges to an HoC model when µa → 0.

Furthermore, even though chain measures for other models (e.g. IMF and EMF) cannot be

computed analytically, they can be retrieved from simulations (Figure 6). Interestingly, several of

the chain measures appear to be non-monotonic with respect to epistasis in the RMF model and

even more so in the IMF model. Both the number of steps and the chain depth tend to have a

maximum for intermediate values of epistasis, when the contributions of the additive component

and of the interactions are comparable (Figures 5 and 6). Interestingly the type of interaction

plays a important role in the structure of the chains, as only short chains are observed for the

RMF and EMF models whereas long chains are observed for the IMF model. Furthermore, the

size of the landscape also changes the dependence between epistasis and chain measures (depth

and abundance) (Figure 5).

3.3 Generalized chains

We can generalize the concept of chain by including cases where there is more than one fitness-

increasing mutation from a given genotype, but all paths starting with these mutations eventually

lead to the same genotype.

We can define a generalized chain step as a pair of genotypes g → g′ such that all fitness-

increasing paths from g pass through g′. Note that in this case, a step can encompass one or more

genotype(s) between g and g′, whereas there is none in the original definition. A generalized

chain can then be defined as a sequence of generalized chain steps. To compute the depth, we

count all genotypes chains go through.

Generalized chains can also be interpreted in terms of constraints on evolution, but they are

intrinsically non-local so they are not related to the out-degree distribution of the fitness graph.

Instead, the total size (number of genotypes in the chain steps) of the generalized subchain ending
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Figure 6: Epistasis and chain measures for different landscape models with L=5. The landscapes are

build from an additive component with mean µa and variance σa = µa/10 and an epistatic component.

The epistatic component is: (RMF) an HoC model with σ2
HoC = 1; (IMF) an Ising model with mean

incompatibility cost µc = 1 and variance σ2
c = 0.1; (EMF) an eggbox model with mean fitness effect

µE = 1 and variance σ2
E = 0.1. We plot epistasis as measured by γ and r/s, and chains as the number

of chain steps and the maximum depth.

at a genotype g′ corresponds to the size of the exclusive basin of attraction of the genotype, the

set of genotypes that will inevitably evolve through g′. Any path of increasing fitness starting

at these genotypes will go through the genotype g′.

This is particularly interesting for peaks, for which it captures their exclusive basins of at-

traction. Non exclusive basins of attraction are usually defined as genotypes from which the

peak can be found (Kauffman, 1993) and their size is commonly interpreted as a measure of the

evolvability in the landscape. The exclusive basin of attraction of a peak measures how many

genotypes have an obligatory end point, i.e. how many genotypes are forced to evolve towards

a single final state.
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4 Relations between measures

In this section we discuss the relations existing between the newly proposed measures and the

existing ones.

We expect that the new measures of epistasis γ and γ∗ would be correlated to other measures

of epistasis. In fact, we already discussed how they are related to some of the existing measures.

In particular, (i) for pairs of loci, γ is directly related to the common definition of epistasis e as

1 − γ ∝ e2: in fact, for the whole landscape we have γ = 1 − E[e2]/2E[s2], while for a pair of

mutations γi→j = 1−E[e2ij ]/2E[s
2
j ]; (ii) for the whole landscape, γ can be rewritten as a function

of the fitness correlation functions ρd as γd = (ρd − ρd+1)/(1− ρ1); (iii) γ
∗ is directly related to

the number of square motifs with sign and reciprocal sign epistasis as γ∗ = 1− φs − 2φrs.

Furthermore, it is possible to show that γ is a function of the Fourier spectrum of the land-

scape, provided that the standard orthonormal basis is used for the Fourier series. If we denote

by WJ the normalized weight of the coefficients of order J in the Fourier spectrum, i.e. the

sum of the squared coefficients of all J-loci interactions normalized by the sum of all squared

coefficients, the relation is

γd = 1−
2
∑L

J=2 J
[

∑

{m odd}

(

d
m

)(

L−1−d
J−1−m

)

/
(

L−1
J−1

)

]

WJ

∑L
J=1 JWJ

(16)

(see proof in the Appendix). Our measure of epistasis is therefore

γ = 1− 2

∑L
J=2 J(J − 1)WJ

∑L
J=1 J(L− 1)WJ

(17)

which resembles another measure of epistasis
∑L

J=2 WJ/
∑L

J=1 WJ (Szendro et al., 2013), show-

ing again the close relation with previous measures of epistasis. The main difference is the weight

of higher-order interactions: the contribution of J-loci interactions to γ grows like J2 for large

J , so that the effect of interactions is stronger if they involve more loci.

We also discussed how the number of chain steps, the number of peaks and sinks correspond

to three different components of the out-degree distribution of the fitness graph. On the other

hand, we also suggested that there is no direct relation between the amount of epistasis and the

number of chains.

To evaluate in a more systematic way the relations between these and other measures, we

perform a correlation analysis similar to Szendro et al. (2013) but using models instead of exper-

imental landscapes. We select the number of peaks, the number of sinks, the roughness/slope

ratio (ratio between epistatic “noise” and additive component, see Appendix), γ and γ∗ as mea-

sures of epistasis, plus the number of chain steps and the maximum chain depth. We compute the

Spearman correlation coefficients of all pairs of measures in the RMF landscape model varying

the model parameters (in particular, the ruggedness).
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peaks sinks r/s γ γ∗ steps depth

RMF model

peaks 1 - - - - - -
sinks 0.53 1 - - - - -
r/s 0.60 0.62 1 - - - -
γ 0.73 0.71 0.76 1 - - -
γ∗ 0.77 0.73 0.71 0.88 1 - -

steps 0.09 0.01 0.001 5 · 10−4 4 · 10−5 1 -
depth 0.007 0.11 0.08 0.07 0.08 0.34 1

IMF model

peaks 1 - - - - - -
sinks 0.69 1 - - - - -
r/s 0.72 0.45 1 - - - -
γ 0.73 0.46 0.99 1 - - -
γ∗ 0.72 0.73 0.72 0.73 1 - -

steps 0.25 0.01 0.09 0.09 2 · 10−4 1 -
depth 4 · 10−5 0.08 0.02 0.02 0.20 0.68 1

EMF model

peaks 1 - - - - - -
sinks 1.00 1 - - - - -
r/s 0.74 0.74 1 - - - -
γ 0.74 0.74 0.97 1 - - -
γ∗ 0.99 0.99 0.74 0.74 1 - -

steps 0.97 0.96 0.71 0.71 0.95 1 -
depth 0.93 0.93 0.67 0.68 0.91 0.96 1

Table 1: Spearman ρ2 correlation of pairs of measures across 104 realizations of the RMF, IMF and

EMF models with L = 5, σHoC = 1 (for RMF), µI = 1 and σI = 0.2 (for IMF), µE = 1 and σE = 0.2

(for EMF), σa = µa/10 and µa log-uniformly distributed in [0.01,10]. These numbers correspond to the

scale used in Figure 6.
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The pairwise correlations (Table 1) confirm the intuition that the measures related to epistasis

are all strongly correlated, the strongest correlation being between γ and γ∗ as expected. For

RMF and IMF, the correlation between these measures and the chain measures, on the other

hand, is especially low. This is not the case for the EMF model. This shows that the chain

measures quantify some landscape properties that is not simply correlated to the amount of

epistasis.

Interestingly, the behavior of chains with epistasis is also apparent when we compare them

across different models of epistatic interactions. In Figure 6, we show what happens in fitness

landscapes with an additive contribution plus different epistatic models (HoC, Ising and Eggbox).

The comparison between measures of epistasis and chain shows clearly that there is no simple

relation between them, as all three models of interactions have different behavior. Chain measures

appear to depend strongly on the nature of the epistatic interactions, and therefore could provide

useful, independent information. The strong correlations between chain measures and epistasis

observed for EMF relates to the observation that the chain measures are almost a two-steps

constant function for EMF with a variable component of additive model.

5 Measures on two experimental landscapes

As an example of application of the new measures γ and chains, we use them to analyze two

complete experimental landscapes of size L = 5. These landscapes are illustrated in Figure 7.

The first landscape is the landscape of antibiotic (cefotaxim) resistance of β-lactamase muta-

tions in an Escherichia coli plasmid from Weinreich et al. (2006) (Figure 7 left). The 5 mutations

have a very strong effect that together give a 4 × 104 increase in antibiotic resistance and were

therefore selected together. Given the huge selective advantage of the combined mutations, this

landscape is single-peaked, where the peak corresponds to the five-point mutant. It also has a

single sink, that interestingly does not correspond to the wild type.

The second is one of the four L = 5 complete sublandscape (csI) (Franke et al., 2011) of

a larger landscape (L = 8) of deleterious mutations in Aspergillus niger from de Visser et al.

(1997) (Figure 7 right). This landscape is a combination of unrelated deleterious mutations where

epistatic interactions were not filtered by natural selection. This landscape has 4 peaks and 2

sinks; in fact, at present it is one of the most rugged among the completely resolved landscapes.

As the landscapes were derived in completely different settings (co-selected beneficial for β-

lactamase and random deleterious for Aspergillus), we might not be surprised to find that these

landscapes exhibit very different structures. Indeed theoretical arguments support the intuition

that landscapes of co-selected mutations differ radically from landscape of random mutation

(Draghi and Plotkin, 2013; Greene and Crona, 2014; Blanquart et al., 2014). The difference

in ruggedness between β-lactamase and Aspergillus landscapes is confirmed by the values of γ

(0.85 vs 0.33) and r/s (0.43 vs 0.89).
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Figure 7: Values of several measures applied to two experimental landscapes. a) Illustrations of the

landscapes using Magellan (Brouillet et al., submitted). b) (left) Interactions between pairs of mutations

γi→j : blue = no interaction, white = strong random interaction, red = strong interaction in sign; (right)

Decay of γd with Hamming distance. c) Chain steps in the landscape. d) Measures for the landscape.
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To further explore the landscapes, we compute the γi→j matrices to illustrate and summarize

the interactions between mutations (Figure 7b). In the β-lactamase landscape, there are some

clear interactions between mutations (between the 2nd or the 4th and the 1st mutations, or

between the 5th and the 4th) but none of these interactions is characterized by strong sign

epistasis (no red cell). On the other hand, the Aspergillus landscape contains several examples

of interactions dominated by strong sign epistasis (for example, between the 2nd or the 4th and

the 1st or the 5th mutations).

Similar conclusions come from the analysis of the decay of γ with distance. The decay in the

β-lactamase landscape is immediate but decays slowly after the first mutation (Figure 7b left),

resembling the behavior of RMF models.

An interesting example of the power of γd is represented by the Aspergillus landscape (Figure

7b right). This landscape shows a non-monotonic decay, with correlation γd bouncing up and

down. This indicates a clear compensatory structure of reciprocal sign epistasis, which is not

only due to pairwise compensation, but extends to distance 4, i.e. to the whole landscape.

In fact, the behavior of γd suggests a mixture of an RMF landscape and an extreme case of

compensatory interactions, like the Eggbox model. This surprising result does not come out in a

straightforward way while looking at other measures, even when looking at the Fourier spectrum

(Neidhart et al., 2013). Indeed, although the coefficient of the highest order in the Fourier

decomposition measures the amount of eggbox, it compares to coefficients of smaller orders that

have a complex intermingling when epistasis is not purely reciprocally signed at all orders. These

coefficients contribute as well to the behaviour of γd.

Finally, for both landscapes, the number of steps and the maximum depth of chains are higher

than expected theoretically. For the β-lactamase landscape, the strength of epistasis suggests

that this model should be close enough to an additive model that there should be a single chain

of depth 1 and five steps ending at the peak, while we observe two chains with nine steps and

their maximum depth is 3. This suggests that epistasis in this landscape is not random, but

is structured in a way that constrains evolution and that is not captured by any of the models

presented here. On the other hand, the number of steps and the depth of the single chain in the

Aspergillus landscape are higher but not too different from the values expected for a RMF or

EMF landscape, which is consistent with the above suggestion that this landscape resembles a

mixture of RMF and EMF.

6 Discussion

In this work, we presented two new sets of landscape measures which have a simple interpretation

and cover a range of potential applications. These measures among others have been implemented

in MAGELLAN, a graphical tool to explore small fitness landscapes (Brouillet et al., submitted).

The first application is the measure of epistasis in a comparable way across landscapes. The
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correlation of fitness effects γ is a natural measure for this. This measure can be used also

for pairs of mutations, to explore the strength of epistatic interactions between mutations in a

compact way.

In terms of γ, there is a natural scale for the strength of epistatic interactions, from purely

additive interactions (γ = 1), through strong random interactions (γ = 0) to a fully compensatory

landscape (γ = −1). Interactions in landscapes with γ < 0 are dominated by strong sign and

reciprocal sign epistasis between most loci, therefore we expect such landscapes to be rare and

possible only for some sets of mutations, as selection tends to favor mutations with positive

interactions. In fact, the two experimental fitness landscapes analyzed have positive values of γ.

Yet, the amount/strength of epistasis in the landscape by de Visser et al. is remarkably high:

γ = 0.33 means that the fitness effect of a mutation in a given genotype, is a poor predictor

of the fitness effect of the same mutation in a neighbor genotype that only differs by a single

mutation.

Correlations of fitness effects are not only useful to quantify epistasis. Their decay γd contains

information on the nature of epistatic interactions and can reveal interesting signals. A clear

example of that is the Aspergillus landscape studied here. The correlations γd for this landscape

show an oscillatory behaviour instead of the expected decay for random epistasis (i.e. HoC like)

or for incompatibilities (i.e. Ising like), pointing towards a strong contribution of “eggbox-like”

epistasis (reciprocal sign epistasis across multiple mutations). While the presence of pairwise

reciprocal sign epistasis is not strange - it is actually quite common in compensatory interactions

- the fact that reciprocal sign epistasis involves the whole landscape is quite surprising. In other

words, starting from a first mutation chosen to be deleterious, it is not unreasonable that the

second mutation could have a compensatory effect, but the mechanism behind the deleterious

effect of the third mutation and the compensatory effect of the fourth mutation is obscure. It

relate to complex pathways of interactions at the molecular level.

Many measures can only be computed if one has fitnesses for all combinations of the set of

mutations (or subsets of). For example, the number of peaks lose meaning in a landscape with

missing data, since the definition of a fitness maximum requires the knowledge of the fitness of

all its neighbors. Since the fitness correlation functions ρd can be computed even with missing

data, the correlation of fitness effects can be estimated from equation (11) even for very sparse

landscapes. The sparseness of the landscape could increase the error on the estimate, however

this effect could be compensated by the larger size of the landscape. Landscapes containing a

larger number of mutations would be also more representative of real gene or protein landscapes.

For some landscapes, only fitness ranks or the beneficial/deleterious nature of the fitness

effects can be experimentally determined. Our measure γ∗ is appropriate for these landscapes.

While γ depends not only on positive and negative epistasis, but it is sensitive to its strength,

γ∗ is based essentially on the fitness graph and therefore depends only on the sign of epistasis.

γ and γ∗ are strongly correlated across fitness landscape models. Thus a mismatch between γ
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and γ∗ in real landscapes could point to some peculiar nature of epistatic interactions.

Finally, the γ and γd measures could also be useful to estimate parameters of theoretical land-

scape models from empirical data, thanks to the availability of approximate analytical formulae

for these quantities. For example, assuming that the underlying model of a landscape is the

NK model, the measures K̂ = (L− 1)(1− γ) is an approximately unbiased Method-of-Moments

estimator of the parameter K, i.e. E[K̂] ≃ K (see eq. 4). A similar approach can be used for

the parameters of other landscape models. The potential of these measures for model inference

and goodness-of-fit tests is yet to be studied.

The other novel measures that we proposed are the number of steps and depth of chains,

i.e. mutations that are obligatory under the strong selection regime in the landscape. These

measures have an immediate evolutionary interpretation, in terms of evolvability and constraints,

yet they show peculiar properties. The most relevant one is that they are often non-monotonic

in epistasis, as we have shown analytically. The lack of correlation between epistasis and chains

shows that these new statistics can be used to obtain independent information about nature of

the interaction, instead of their strength.

Interestingly, the number of chain steps, the chain depth (Figure 6) and the total number of

accessible paths (Szendro et al., 2013) seem to be peaked at intermediate values of epistasis . All

these measures are related both to evolvability - deep chains show that fitness-increasing paths

are open - and to constraints - chains represent obligatory paths in evolution. This suggests an

evolutionary interpretation of these peaks in terms of the tradeoff between evolvability (higher

at low epistasis) and constraints (stronger with high epistasis). Previous measures that were

shown numerically and by some analytical approximations to be non-monotonic include the

total number of accessible paths (Szendro et al., 2013) and the number of exceedances, i.e. the

number of available fitness-increasing mutations after an evolutionary step (Neidhart et al., 2014),

which are also related to evolvability and constraints. It is worth mentioning that chains and

exceedance are both related to the out-degree distribution after one step of increasing fitness.

This suggests that beyond the out-degree distribution, it is perhaps worth characterizing the

sequences of out-degrees, e.g. the out-degree distribution along evolutionary paths.

Real landscapes tend to have longer chains than expected according to theoretical landscape

models with random epistasis. This is the case for both experimental landscapes studied here.

This is especially apparent and interesting in the landscape by Weinreich et al., since it implies

some highly non-random structure of epistatic interactions for this set of mutations. This re-

sult has been found independently by randomization tests (Weinreich, personal communication)

and cannot be seen in complex measures of epistasis like the Fourier spectrum or the decay of

correlations γd, however our chain measures were able to capture this signal.

The notion of obligatory steps can be easily widen using the above definition of generalized

chains. However, it is worth mentioning that the generalized chains say little about the local con-

straints in the fitness landscape. Quite on the contrary, they give information on exclusive basins
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of attraction for peaks. Therefore, typically, sizes of exclusive basins of attraction (generalized

chains) are very informative about the convergence in state (similar endpoints regardless of the

path). The larger the exclusive basins, the less uncertainty remains on the state, given a starting

genotype. Quite on the contrary, strict chains report local information of the landscape. They

measure how path are constrained but do not necessarily predict what will be the final state. An

interesting perspective would be to redefine the chains on the mutations themselves and not on

the genotypes (e.g. mutation at locus i is always followed by a mutation at locus j, independently

of the genotype). Quite clearly, strict chains are informative about the convergence in path in

the landscape (similar path regardless of the endpoints) rather than the convergence in state.

Chains are natural measures both from the evolutionary point of view and from the mathe-

matical point of view, since they are related to the out-degree distribution of the fitness graph.

For the small complete landscapes currently available, the number of peaks, chains and sinks

summarize most of the information present in the out-degree distribution. However, for larger

landscapes or for incomplete ones, other components of the out-degree distribution (or other

properties, like its variance) could be useful as measures for a finer characterization of fitness

landscapes.

We are still far from predicting evolution on real landscapes based on their measures, partly

because of the incomplete knowledge of the structure of real landscapes, and partly because of the

lack of measures with a natural evolutionary interpretation. In the future, we expect to witness

a strong increase in the number of published empirical landscapes that will be experimentally

resolved. The measures that we propose here will therefore find applications in the understanding

and classification of these landscapes, as well as in studies of model landscapes. The correlation

of fitness effects is a natural measure of epistasis that is comparable across landscapes, while the

decay of correlations with mutation distance and the new chain measures will be useful tools to

discriminate and classify these landscapes. Chains also highlight the interplay of constraints and

evolvability that influence evolution on complex landscapes.
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Berestycki, J., É. Brunet, and Z. Shi, 2013. The number of accessible paths in the hypercube.

arXiv preprint arXiv:1304.0246 .

Blanquart, F., G. Achaz, T. Bataillon, and O. Tenaillon, 2014. Properties of selected mutations

and genotypic landscapes under fisher’s geometric model. arXiv 1405.3504.

Brouillet, S., H. Annony, L. Ferretti, and G. Achaz, submitted. Magellan: a tool to visualize

small fitness landscapes. http://wwwabi.snv.jussieu.fr/public/Magellan/Magellan.main.html

Campos, P. R., C. Adami, and C. O. Wilke, 2002. Optimal adaptive performance and de-

localization in nk fitness landscapes. Physica A: Statistical Mechanics and its Applications

304:495–506.

Chevin, L.-M., G. Decorzent, and T. Lenormand, 2014. Niche dimensionality and the genetics

of ecological speciation. Evolution 68:1244–56.

Chevin, L.-M., G. Martin, and T. Lenormand, 2010. Fisher’s model and the genomics of adapta-

tion: restricted pleiotropy, heterogenous mutation, and parallel evolution. Evolution 64:3213–

31.

Colegrave, N. and A. Buckling, 2005. Microbial experiments on adaptive landscapes. Bioessays

27:1167–73.

Draghi, J. A. and J. B. Plotkin, 2013. Selection biases the prevalence and type of epistasis along

adaptive trajectories. Evolution 67:3120–31.
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A Appendices

A.1 Common landscape measures

In this section we present some common landscape measures that can be applied as statistics for

experimental landscape data. Notation: a genotype g is a sequence of alleles g = (A1A2A3 . . . AL)

of length L. For biallelic landscapes, Ai ∈ {0, 1} and Si = 2Ai − 1.

Some of the most common measures for fitness landscapes f(g) are:

• number of peaks (Weinberger, 1991): it is the number of genotypes such that all their

neighbours have lower fitness, i.e. the number of local fitness maxima.

• r/s (roughness/slope) ratio (Aita et al., 2001): the landscape is fitted to a linear model

(a linear combination of Ais plus a constant) by least squares. The slope s is the average

modulus of the coefficients of the Ais. The roughness r is the quadratic mean of the

residuals of the regression. The measure of epistasis is their ratio r/s.

• fraction of epistatic interactions (Weinreich et al., 2005; Poelwijk et al., 2007): the fraction

of all pairs of mutations from all possible genotypes that show magnitude, sign or reciprocal

sign epistasis.

• number of accessible paths (Weinreich et al., 2006): assume that the absolute fitness maxi-

mum corresponds to the genotype g = (111 . . . 1). Count the number of paths of mutations

0 → 1 starting from g = (000 . . . 0) to (111 . . . 1) such that fitness increases after each mu-

tation. This is the number of direct accessible paths to the maximum from its antipodal

genotype.

• Fourier expansion and spectrum (Stadler, 1996; Weinreich et al., 2013; Neidhart et al.,

2013): The coefficients ai1...iJ of the Fourier expansion are uniquely defined in terms of the

Fourier decomposition

f(g) = f0 +
1

2N/2

L
∑

J=1

∑

{i1...iJ}

ai1...iJSi1 . . . SiJ (18)

where {i1 . . . iJ} are ordered sets. The Fourier spectrum is defined by the sum of squared

coefficients for interactions of J loci: BJ =
∑

{i1...iJ}
a2i1...iJ . Epistasis is usually measured

by
∑

J≥2 BJ/
∑

J≥1 BJ .

More details can be found in the review by Szendro et al. (2013).

A.2 Models of fitness landscapes

In this section we briefly illustrate some common models of fitness landscapes that will be used

in this study. Most of them are illustrated in Figure 8. Please note that we only considered
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here models of L biallelic loci. A mathematical formulation of these models is given in the next

section.

A.2.1 The Additive model (a.k.a. multiplicative model)

This is a model for non-interacting mutations with independent fitness effects. The fitness is

simply the product of the fitness contributions of each locus: fitness effects of different mutations

are multiplied. In log-scale, this corresponds to summing the fitness effect of each mutation;

for this reason this models is called “additive”. Here, the fitness effects of different mutations

are randomly drawn from a Gaussian distribution with mean µa and variance σ2
a. As there

an independent contribution of each locus, the dimension of interaction is 1 (since each locus

“interacts” only with itself).

In terms of Fourier decomposition, in this landscape all coefficients of second order and higher

are zero.

A.2.2 The House-of-Cards (HoC) model

This is a model for random, uncorrelated fitness landscapes (Kingman, 1978). The fitness of

each genotype is independent on the fitnesses of other genotypes. Here, it is randomly drawn

according to a Gaussian of mean 0 and variance σ2
HoC . As this models corresponds to full

interaction between the loci, the dimension of interaction is L.

In terms of Fourier decomposition, the coefficients are random variables with a marginal

Gaussian distribution centered in 0.

A.2.3 The Rough Mount Fuji (RMF) model

This model interpolates between additive and uncorrelated fitness landscapes by adding the two

(Aita et al., 2000). The fitness is computed as the sum of an additive contribution and a HoC

contribution. Here, the model is tuned by three parameters: mean µa and variance σ2
a for the

additive part and variance σ2
HoC for the HoC part. (In the literature, this model is often defined

with constant additive fitness effects, i.e. σ2
a = 0). The model converges to an additive model

when σ2
HoC ≪ µ2

a+σ2
a and to a HoC model when σ2

HoC ≫ µ2
a, σ

2
a. The dimension of interactions

is a mixture of dimension 1 and dimension L.

The Fourier decomposition is a linear function of the landscape, so it is a combination of the

additive and the HoC decompositions.

A.2.4 The NK model

This landscape model with N = L loci interpolates between additive and uncorrelated fitness

landscapes by combining uncorrelated fitness contributions (i.e. small HoCs) from L groups of

K + 1 loci in an additive way (Kauffman and Weinberger, 1989). There are different ways to
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choose the groups of interacting loci and while several properties such as mean number and mean

height of local optima depend only weakly on the particular choice made (Weinberger, 1991),

others seem to behave quantitatively different for some interaction choices (Schmiegelt and Krug,

2014). Nonetheless it has been shown that the fitness correlation function is strictly independent

of the interaction choice (Campos et al., 2002) and consequently γ does not depend on it either,

while the number of chains may still be influenced by it. The number of interacting loci is K+1

and the interpolation is controlled by the parameter K ∈ {0, 1 . . . L− 1}: K = 0 corresponds to

an additive model with independent contributions from each locus, while K = L−1 corresponds

to an HoC model. The dimension of interaction is K + 1.

A.2.5 The Ising and the IMF models

This model originates from statistical physics (Mézard et al., 1987), but has an immediate inter-

pretation in terms of pairwise allele incompatibilities. In this model, each pair of interacting loci

with different alleles causes a reduction in fitness. Here, loci interact only if they are neighbors

in the genotype sequence (locus i interacts only with locus i− 1 and i+ 1) and the first and the

last locus have a single interaction (loci are arranged on a string). The fitness cost for each pair

is drawn from a Gaussian with mean µc and variance σ2
c . More general models based on allelic

incompatibilities correspond to the Sherrington-Kirkpatrick model and other spin glass models

in statistical physics (Mézard et al., 1987). The dimension of interaction is 2 as interactions

only occurs between pairs. We also combined incompatibility interactions (Ising model) with an

independent fitness contribution (additive model) in an “Ising Mount Fuji” (IMF) model in the

same way the RMF is set.

In terms of Fourier decomposition, in this landscape all coefficients of third order and higher

are zero.

A.2.6 The Eggbox and the EMF models

This model represents the extreme example of reciprocal sign epistasis of highest dimension. In

this model, all genotypes in the landscapes have either low or high fitness. All the neighbours

of a high-fitness genotype have low fitness, and vice versa. Therefore, in this landscape, each

mutation is either deleterious (from high to low fitness) or compensatory (from low to high

fitness). Fitnesses are given by a Gaussian with mean f0 ± µE/2 and a small variance σ2
E . The

dimension of interactions in this landscape is L. We also combine the eggbox interactions with

independant contributions in an “Eggbox Mount Fuji” (EMF) landscape that is built like the

RMF or the IMF.

In terms of Fourier decomposition, this landscape is dominated by the contribution of the

Lth-order term (that is, the term of highest order).
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A.3 Formulae for γd in model landscapes

We assume an observed fitness f(g) given by the model

f(g) =

L
∑

i=1

µiAi + fe(g) + εg (19)

that is, an additive contribution
∑L

i=1 µiAi, an epistatic contribution fe(g) from some fitness

model, plus the effect of measurement errors εg. We assume these errors to be unbiased and

uncorrelated: E[εg] = 0, Cov[εg, εg′ ] = δgg′σ2
g where δgg′ is the Kronecker delta, i.e. δgg′ = 1

when g = g′ and 0 otherwise.

We define the mean squared additive effect µ2 =
∑L

i=1 µ
2
i /L and the mean squared experi-

mental error σ2
ε =

∑

g σ
2
g/2

L.

The expected value of γd can be computed approximately by taking the ratio of the expected

values of numerator and denominator of eq. (10) rearranged as eq. (3), instead of the expected

value of the ratio (the ≃ sign in all our formulae refers to this approximation). The result is

E[γd] ≃ 1−
E[(se(g)− se(gd))

2] + 4σ2
ε

2µ2 + 2E[(se(g))2] + 4σ2
ε

(20)

with se(g) = fe(g[j]) − fe(g) being the analogue of s(g) restricted to the epistatic contribution.

Note that E[(se(g)− se(gd))
2] = 2(1−E[γed])E[(se(g))

2] if γed is the γd statistic of the epistatic

contribution fe(g).

A.3.1 Additive model

In these models fe = 0 and the only reduction in correlation is due to experimental noise:

E[γd] ≃ 1−
2σ2

ε

µ2 + 2σ2
ε

(21)

A.3.2 RMF and HoC models

In these models, fe(g) corresponds to the HoC model, i.e. they are i.i.d. random variables.

Denote by σ2
HoC the variance of the distribution of fitnesses in the HoC model:

E[γd] ≃ 1−
2σ2

HoC + 2σ2
ε

µ2 + 2σ2
HoC + 2σ2

ε

(22)

Since µ2 = µ2
a + σ2

a for a Gaussian distribution of additive fitness effects, we obtain equation (6)

for d = 1 and σ2
ε = 0.

A.3.3 NK models

In these models, fe(g) =
∑L

i=1 Fi where the Fis are i.i.d. random variables that depend on i and

other K indices, randomly chosen. The Fis have mean f0 and variance σ2
NK .
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The fitness correlation function ρd is known exactly for the pure NK model (Campos et al.,

2002): ρd = (L−K−1)!(L−d)!
L!(L−K−d−1)! . With eq. (11) it is straightforward to compute E[γed] from this.

The variance E[se(g)
2] is given by 2(K + 1)σ2

NK because on average K + 1 of the Fi change in

a single mutation, each of these differences having twice the variance of the fitness contribution

(since the variance of the difference of two i.i.d. variables is twice their variance). The final

result is

E[γd] ≃ 1−

2(K + 1)σ2
NK

(

1−
(L−1−d

K )
(L−1

K )

)

+ 2σ2
ε

µ2 + 2(K + 1)σ2
NK + 2σ2

ε

(23)

Substituting µ2 = σ2
ε = 0 and d = 1 yields equation (4).

A.3.4 Ising model

In the following, we define Si = 2Ai−1 ∈ {−1,+1}. Using the above notations, in these models,

fe(g) =
∑

i JiSiSi+1 where the incompatibility coefficients Ji are randomly extracted from a

Gaussian distribution with mean µc and variance σ2
c . We define J2 = E[J2

i ] = µ2
c + σ2

c .

A mutation at locus i will invert contributions of the terms containing Ji and Ji−1 adding

8J2 to E[(se(g))
2]. At the edge of the genome, loci interacts with only one neighbor, so this is

reduced by a factor of 2, thus E[(se(g))
2] = 8(L−1)J2

L .

Only mutations at j−1 and j+1 affect the value of sj(g)−sj(gd). Choosing d mutations out

of L−1 and applying the hypergeometrical distribution, there are probabilities
(L−3

d−2)
(L−1

d )
and

2(L−3

d−1)
(L−1

d )
to choose both or exactly one of them, respectively. Each relevant mutation changes the effect

of mutating j by ±4J . Thus (ignoring boundaries) E[(se(g) − se(gd))
2] ≈ 16J2 2(L−3

d−2)+2(L−3

d−1)
(L−1

d )
=

32J2 d
L−1 . On the boundary only one mutation can influence sj , resulting in a reduced contribu-

tion of 16J2 d
L−1 and so together:

E[(se(g)− se(gd))
2] = 32J2 d

L− 1

L− 1

L
= 32J2 d

L

and therefore the result is

E[γd] ≃ 1−
16dJ2/L+ 2σ2

ε

µ2 + 8(L− 1)J2/L+ 2σ2
ε

(24)

A.3.5 Eggbox model

In this model, fe(g) = f0 + µE

2

∏L
i=1(−1)Ai , i.e each mutation switches the fitness from the

highest value (f0 + µE/2) to the lowest (f0 − µE/2) or the other way. The difference in the

epistatic fitness effects from two genotypes separated by an odd number of mutations is ±µE ,

while it is 0 from two genotypes separated by an even number of mutations, therefore

E[γd] ≃ 1−
µ2
E

(

1− (−1)d
)

+ 2σ2
ε

µ2 + µ2
E + 2σ2

ε

(25)
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A.4 Formulae for chains in RMF

We consider a RMF model with equal additive fitness contribution s for each mutation, in addi-

tion to an HoC model with distribution p(f) and cumulative distribution C(f) =
∫ f

−∞
p(x)dx.

Sorting the genotypes in order of their additive fitness, there are
(

L
k

)

genotypes at the kth

level with L − k mutations with positive additive fitness effect and k with negative one. The

average number of chain steps can be obtained as the sum over all possible steps of the probability

of being a chain step. It is

#steps =

L
∑

k=0

(

L

k

)[

k

∫

dx p(x)(1− C(x+ s))C(x+ s)k−1C(x− s)L−k +

+ (L− k)

∫

dx p(x)(1− C(x− s))C(x− s)L−k−1C(x+ s)k
]

=

=L

∫

dx p(x)[2− C(x− s)− C(x+ s)] · [C(x+ s) + C(x− s)]L−1 (26)

The number of origins and of chain trees can be obtained in a similar way using the Cayley

tree/Bethe lattice approximation. In this framework, we approximate locally the hypercube by a

Cayley tree, i.e. a tree with L branches at each node. This means that we neglect the overlapping

between the next-to-nearest neighbours of the genotype considered and we assume them to be

(L− 1)2 independent genotypes instead of L(L− 1)/2.

The probability that a genotype is the origin of a chain is product of the probability of having

out-degree 1 and that all the other neighbours of lower fitness have out-degree different than 1:

#origins =

L
∑

k=0

(

L

k

){

(L− k)

∫

dx p(x)(1− C(x− s)) · (C(x− s)− p+(x, s, k))
L−k−1(C(x+ s)− p−(x, s, k))

k+

+k

∫

dx p(x)(1− C(x+ s)) · (C(x+ s)− p−(x, s, k))
L−k(C(x− s)− p+(x, s, k))

k−1

}

(27)

where we define the probabilities that a neighbour genotype is the starting or ending point of a

chain step ending at level k:

p+(x, s, k) =

∫ x−s

dy p(y)C(y + s)kC(y − s)L−k−1 (28)

p−(x, s, k) =

∫ x+s

dy p(y)C(y + s)k−1C(y − s)L−k (29)

The probability that a genotype is the endpoint of a chain is the difference between the

probability of being the final genotype of a chain step and the probability of being an intermediate
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point in a chain. The results are

#endpoints =

L
∑

k=0

(

L

k

)[

1−

∫

dx p(x) (1− p+(x, s, k))
L−k

· (1− p−(x, s, k))
k

]

(30)

#intermediates↑(s) =

L
∑

k=0

(

L

k

)

(L− k)

∫

dx p(x)(1− C(x− s)) ·

[

C(x− s)L−k−1C(x+ s)k+

− (C(x− s)− p+(x, s, k))
L−k−1

· (C(x+ s)− p−(x, s, k))
k

]

(31)

#intermediates = #intermediates↑(s)−#intermediates↑(−s) (32)

#chain trees = #endpoints−#intermediates (33)

These formulae could be further simplified if p(f) is the Gumbel distribution (Neidhart et al.,

2014).

A.5 Proofs

A.5.1 Relation between γ and type of epistasis

The most extreme values of γ for different types of epistasis are obtained in the case L = 2.

Denote by f00, f10, f01, f11 the log-fitness values. The function γ is defined as

γ =
2[(f11 − f10)(f01 − f00) + (f11 − f01)(f10 − f00)]

(f11 − f10)2 + (f01 − f00)2 + (f11 − f01)2 + (f10 − f00)2

Since γ is a correlation, −1 ≤ γ ≤ 1. γ is a continuous function and it is also invariant

under permutations of loci and alleles, so from now on we will restrict to the subspace with

f00 ≤ f01 ≤ f10. Each of the three partitions of this subspace corresponding to magnitude, sign

and reciprocal sign epistasis is connected, therefore the image of each one of them under γ is an

interval.

By definition, magnitude epistasis results in γ ≥ 0 since all fitness jumps have the same sign.

The extreme values 0 and 1 are both realized: γ = 0 in landscapes with f00 = f01 = f10 < f11,

while γ = 1 in landscapes with f11 = f10 + f01 − f00. Therefore, for magnitude epistasis,

0 ≤ γ ≤ 1.

Reciprocal sign epistasis require that all fitness jumps change in sign after a mutation, there-

fore results in γ < 0 by definition. The extreme case γ = −1 is realized in the landscape

f01 = f10 > f00 = f11, while the other extreme case γ → 0 is realized for the landscapes with

f00 < f01 = f10 > f11 for (f00 − f01) → 0. Therefore, for reciprocal sign epistasis, −1 ≤ γ < 0.

Finally, sign epistasis can have both signs of γ. It is easy - although tedious - to show

that there are no critical points of γ inside the space of landscapes with sign epistasis (with

L = 2), therefore the extremal values should appear on the border. There are essentially two
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borders: (f11 − f10) → 0 and f11 = f01. On the first border, we have γ > 0 and the upper

limit is γ → 1 for the landscapes with f00 = f01 < f10. On the second border, we have

γ = − 2(f10−f11)(f11−f00)
(f11−f10)2+(f10−f00)2+(f11−f00)2

that reaches the minimum value γ = −1/3 at the landscapes

with f10 − f11 = f11 − f00 (imposing the derivative with respect to f10 to be null). Therefore,

for sign epistasis, −1/3 ≤ γ < 1.

A.5.2 Relation (11) between γd and the fitness correlation function

Denote the fitness correlation function at distance d by ρd = Cor[f(g), f(gd)]. We use the identity

sj(g)sj(g[i1i2...id]) = f(g[j])f(g[ji1i2...id])− f(g)f(g[ji1i2...id])

−f(g[j])f(g[i1i2...id]) + f(g)f(g[i1i2...id])

Averaging over the all mutations and all genotypes, then dividing by Var[f(g)], the above terms

give rise to:

E[sj(g)sj(g[i1i2...id])] = 2(E[f(g)f(gd)]− E[f(g)f(gd+1)])

= 2(Cov[f(g), f(gd)]− Cov[f(g), f(gd+1)])

= 2(ρd − ρd+1)Var[f(g)]

Summing over genotypes and mutations, the numerator of (10) becomes 2LL
(

L−1
d

)

2(ρd−ρd+1)Var[f(g)].

The denominator of (10) can be computed in a similar way by choosing d = 0, obtaining
(

L−1
d

)

2LL · 2(ρ0 − ρ1)Var[f(g)]. γd is their ratio

γd =
ρd − ρd+1

ρ0 − ρ1

and since ρ0 = Cor[f(g), f(g)] = 1, we obtain the result (11).

A.5.3 Relation (15) between γ∗ and the fractions of square motifs

We consider a landscape without ties (i.e. all genotypes have different fitness values). In this

case, (s∗j )
2 = 1 and therefore γ∗ = 1

2LL(L−1)

∑

g

∑

i,j 6=i(s
∗
j (g) · s

∗
j (g[i])) = E[s∗(g) · s∗(g1)] where

the average is over all genotypes and pairs of mutations, or equivalently over all square motifs

and over their sides. The average over the two sides of a motif is E[s∗(g) · s∗(g1)] = (1+1)/2 = 1

with magnitude epistasis, (1− 1)/2 = 0 with sign epistasis and (−1− 1)/2 = −1 with reciprocal

sign epistasis. To obtain the global average, we multiply these results by the fraction of motifs

of each kind, i.e. γ∗ = 1 · φm + 0 · φs − 1 · φrs. Since they sum to 1, we have φm = 1− φs − φrs

and substituting it we obtain the relation (15).

A.5.4 Number of chain steps in the HoC model

The average number of chain steps is given by the number of mutations in the landscape, L · 2L,

multiplied by the probability that the mutation is a chain step. This is the probability that among
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the initial genotype and all its neighbours, the final one is the most fit and and the initial one is

second in the fitness rank. Since fitness values are random and uncorrelated, the probability that

a value is maximum among L+1 is 1/(L+1) and the conditional probability that another value is

second is 1/L, therefore we have that the average number of steps is L ·2L/L(L+1) = 2L/(L+1).

A.5.5 Relation (16) between γ and the Fourier spectrum

We define n̄(J, d) = ⌊min((J − 2)/2, (d − 1)/2)⌋. Since the Fourier basis is orthonormal, each

component of the spectrum gives an independent contribution to the numerator and denomina-

tor of γ. The contribution of each BJ to the denominator of (3) is 4J since there are J nonzero

mutations with fitness effect ±2ai1...iJ each. For the numerator, there is again a factor J con-

tributions (from nonzero mutations) multiplied by the square of the fitness effect of each term

(averaged over the choice of the other d mutations). The fitness effect is ±4ai1...iJ if an odd

number of the d mutations lie within the indices i1 . . . iJ , and 0 otherwise. The probability that

this number is odd is given by the sum of odd terms of the hypergeometric distribution with

parameters d, J − 1, L− 1, therefore we have

E[γd] ≃ 1−

2
∑L

J=2 JBJ

(

∑n̄(J,d)
n=0

( d

2n+1)(
L−1−d

J−2n−2)
(L−1

J−1)

)

∑L
J=2 JBJ

(34)

and since WJ = BJ/
∑N

I=1 BI , we have the equation (16).
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a) Additive ( A=1, A=0.1) b) House of Cards ( =1)

c) Kauffman NK ( ) d) Rough Mount Fuji ( =1, =0.1, =1)

e) Ising Model ( C=1, C=0.1) f ) Eggbox ( E=1, E=0.1)

Genotype Sink Peak

gain

loss

Figure 8: Models of fitness landscapes. Realizations of random landscapes obtained from the models

discussed in the introduction, using Magellan (Brouillet et al., submitted).
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