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Epistasis—nonlinear genetic interactions between polymorphic

loci—is the genetic basis of canalization and speciation, and epi-

static interactions can be used to infer genetic networks affecting

quantitative traits. However, the role that epistasis plays in the

genetic architecture of quantitative traits is controversial. Here,

we compared the genetic architecture of three Drosophila life history

traits in the sequenced inbred lines of the Drosophila melanogaster

Genetic Reference Panel (DGRP) and a large outbred, advanced

intercross population derived from 40 DGRP lines (Flyland). We

assessed allele frequency changes between pools of individuals at

the extremes of the distribution for each trait in the Flyland pop-

ulation by deep DNA sequencing. The genetic architecture of all

traits was highly polygenic in both analyses. Surprisingly, none of

the SNPs associated with the traits in Flyland replicated in the

DGRP and vice versa. However, the majority of these SNPs partic-

ipated in at least one epistatic interaction in the DGRP. Despite

apparent additive effects at largely distinct loci in the two popu-

lations, the epistatic interactions perturbed common, biologically

plausible, and highly connected genetic networks. Our analysis

underscores the importance of epistasis as a principal factor that

determines variation for quantitative traits and provides a means

to uncover genetic networks affecting these traits. Knowledge of

epistatic networks will contribute to our understanding of the

genetic basis of evolutionarily and clinically important traits and

enhance predictive ability at an individualized level in medicine

and agriculture.

chill coma recovery | genetic interaction networks | genome-wide

association studies | startle response | starvation resistance

Our understanding of genetic architecture of complex traits
has been greatly advanced by genome-wide screens for DNA

variants associated with phenotypic variation. To date, genome-
wide association studies (GWASs) have identified over 6,000
common SNPs robustly associated with human complex traits
and common diseases (1). Two general findings have emerged
from these studies. First, there are typically a large number of
loci associated with each trait, each of which explains a very small
fraction of phenotypic variation (2). Second, loci associated with
each trait collectively account for only a small proportion of
genetic variation, giving rise to the mystery of missing heritability
(3). Fitting all SNPs simultaneously and additively in a linear
model can substantially increase the fraction of genetic variation
explained by DNA variants (4), suggesting the existence of many
weak associations. Another potential explanation under active
investigation is that rare alleles with large effects, non-SNP
variants (e.g., structural variants such as copy number variations
and small indels), and nonsequence epigenetic modifications
together account for the missing heritability (3). However, her-
itability in human studies is usually estimated as two times the

difference between the observed phenotypic correlation between
monozygotic and dizygotic twins, which estimates the fraction of
phenotypic variance caused by additive genetic variation as well
as overestimates the variance caused by dominance and epistasis
(5). The potential inflation of estimates of narrow sense herita-
bility (i.e., heritability caused by only the additive component
of genetic variance) because of genetic interactions in human
studies could lead to substantial underestimates of heritability
explained by DNA variants (6).
Controversy about the relative importance of epistasis in the

genetic architecture of complex traits began with early formulations
of quantitative genetic theory (7, 8) and continues today (9, 10).
The crux of the controversy stems from the disparate goals of
assessing the extent to which interactions affect mean genotypic
values vs. estimating the fraction of total genetic variance caused
by epistatic interactions in outbred populations. There is exten-
sive evidence for epistatic interactions among quantitative trait
loci (QTLs) affecting mean genotypic values in Drosophila, mice,
Arabidopsis, yeast, and chickens (2, 9). Epistatic effects can be as
large as main QTL effects, and they can occur in opposite
directions between different pairs of interacting loci and between
loci without significant main effects on the trait. Knowledge of
interactions between loci can be used to infer genetic networks
affecting complex traits (11), greatly informing the underlying
biology. Epistasis is also the genetic mechanism underlying canali-
zation (genetic homeostasis) (12, 13) and speciation (Dobzhansky–
Muller incompatibilities) (14, 15); therefore, identifying interacting
loci segregating in natural populations is relevant to understanding
both evolutionary stasis and change. Finally, knowledge of
interacting loci will improve predictions of long-term response
to selection and inbreeding depression (and its converse,
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heterosis) in agricultural animal and crop species and in-
dividual disease risk in humans.
However, nonadditive gene action does not translate to non-

additive genetic variance. Pure dominance results in mostly ad-
ditive variance across the entire range of allele frequencies (5);
pure epistasis gives largely additive genetic variance when allele
frequencies are low, and most frequencies are low (10). In prac-
tice, all estimates of additive genetic variance (and hence, narrow
sense heritability) from resemblance among relatives include
fractions of the interaction variance (5). Thus, the only approach
to discover epistatic interactions is a genome-wide screen in a
mapping population, which incurs a severe penalty for multiple
testing and hence, requires unreasonably large samples.
Here, we use the 168 sequenced inbred lines of the D. mela-

nogaster Genetic Reference Panel (DGRP) (16) to evaluate the
contribution of common and rare variants as well as additive and
epistatic gene action to the genetic architecture of three complex
life history traits. We constructed an outbred, advanced intercross
population from 40 DGRP lines, and we assessed allele frequency
changes between extremes of the distribution for each trait by
deep DNA sequencing of pools of individuals. We compared the
results of GWASs in the DGRP lines to changes of allele fre-
quency between extreme scoring individuals of the outbred pop-
ulation. We expected that common SNPs with additive effects
shared between the two populations would be significant in both
and that SNPs associated with the traits that were too rare in the
DGRP to include in the GWAS might be significant in only the
outbred population. Furthermore, we hypothesized that common
SNPs shared between the populations with epistatic effects would
not replicate across populations, because with epistasis, allelic
effects are expected to vary between populations with different
background allele frequencies. Surprisingly, we find that all three
traits have distinct genetic architectures in the two populations
caused by epistasis and that genetic networks inferred from the
epistatic interactions are highly interconnected.

Results

Extreme QTL Mapping in the Flyland Population. We previously
performed a GWAS in the DGRP to identify common SNPs
associated with starvation resistance, startle response, and chill
coma recovery time (16). To complement the search for trait-as-
sociated SNPs in the DGRP, we generated an advanced intercross
outbred population (Flyland) from 40 DGRP lines. We crossed
the 40 lines in a round robin design and subsequently, main-
tained the population by random mating with a large population
size for over 70 generations (Fig. 1A). Thus, SNPs that were pri-
vate to one of the founder DGRP lines are expected to segre-
gate at frequencies of 2.5% in Flyland, enabling estimation of
their effects.
We used extreme QTL mapping (17–20), which maps trait-

associated loci by contrasting allele frequencies among individ-
uals with extreme phenotypes, to identify SNPs associated with
the three traits. Briefly, we phenotyped samples of 2,000 females
from the Flyland population for starvation resistance, startle
response, and chill coma recovery. For each trait, we created two
pools of female flies. For starvation resistance, the 15% longest
surviving flies constituted one pool, whereas the other was a
random sample of 300 females (Fig. 1B). For startle response and
chill coma recovery, the pools consisted of the top and bottom
15% of the phenotypic distribution (Fig. 1 C and D).
We sequenced DNA from each of these pools to at least ∼300×

(Dataset S1, Table S1). Among the segregating SNPs in the
DGRP, we found 1,339,448, 1,605,264, and 1,406,458 to be seg-
regating in Flyland for the starvation resistance, startle response,
and chill coma recovery pools, respectively. We estimated SNP
allele frequencies in the sequenced DNA pools using counts of
high-quality sequencing reads matching the alleles, and we com-
puted the difference in allele frequency between the two DNA

pools for each trait. We identified 276, 61, and 320 SNPs with
significant allele frequency differences between the extreme pools
for starvation resistance, startle response, and chill coma recovery,
respectively, at a stringent Bonferroni genome-wide threshold of
0.05 (Figs. 1E and 2 and Dataset S1, Tables S2–S4). The majority
of significant SNPs had moderate effects, with allele frequency
differences of ∼0.25 in the extreme pools (SI Appendix, Fig. S1).
The significant SNPs were distributed throughout the genome
(Fig. 1E), indicating multigenic and complex genetic architecture
for the traits in the Flyland population.

Distinct Genetic Architecture of Complex Traits in the DGRP and

Flyland. We next asked if the significant SNPs identified in
Flyland recapitulated the genetic architecture determined by

A B
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E

Fig. 1. Extreme QTL mapping in Flyland. (A) The Flyland population was

generated by a round robin crossing design. Progeny of these crosses was

mixed and outcrossed randomly for 70 generations. The last generation

constituted the Flyland population. (B) For starvation resistance, a random

sample of 300 and the 300 longest-living female flies constituted the se-

quenced pools. (C) Distribution of startle response for 2,000 phenotyped

female flies in Flyland. (D) Distribution of chill coma recovery for 2,000 fe-

male flies in Flyland. The top (red) and bottom (blue) 15% scoring flies were

pooled and sequenced. Allele frequencies were estimated in the high and

low pools and compared to identify QTLs. (E) Plots of significance (−log10P;

left axis) and allele frequency differences (ΔQ95; right axis) for extreme QTL

mapping. Points of dark color indicate significant SNPs. The dark-colored

lines connect consecutive sliding windows of 50 kb, with a step size of 5 kb.

In each window, the 95% quantile of the absolute allele frequency differ-

ence is plotted.

15554 | www.pnas.org/cgi/doi/10.1073/pnas.1213423109 Huang et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213423109/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213423109/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213423109/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213423109/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213423109/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1213423109


GWAS in the DGRP and vice versa. Among the significant
Flyland SNPs, 267 (starvation resistance), 53 (startle response),
and 308 (chill coma recovery) were also tested in the DGRP
GWAS (16), but none were even nominally (P < 10−5) significant
in this analysis (Fig. 2). The remaining 9 (starvation resistance),
8 (startle response), and 12 (chill coma recovery) SNPs were too
rare (with fewer than four lines with the minor alleles) to be in-
cluded in the DGRP GWAS. However, 144 (starvation resistance),
52 (startle response), and 164 (chill coma recovery) SNPs had P
values less than 10−5 in the DGRP female GWAS (Fig. 2) (16).
Of these SNPs, 29 (starvation resistance), 28 (startle response),
and 27 (chill coma recovery) were tested in Flyland, and none
reached statistical significance. The remaining SNPs were of
relatively low frequency in the DGRP and either became fixed
for one allele in Flyland or were too rare to be distinguished
from sequencing error.
The complete lack of overlap between significant SNPs in

Flyland and the DGRP cannot be explained by thresholding
P values, because relaxing thresholds in either analysis gives no
more overlap than expected by chance (SI Appendix, Fig. S2). In
addition, we estimated the statistical power to detect the DGRP
SNPs in Flyland and vice versa by simulation. Although Flyland
did not always possess sufficient power to detect the DGRP
SNPs, particularly for those SNPs with small effect sizes and low
allele frequency, the DGRP was adequately powered (>50%) to
detect the majority of Flyland SNPs (SI Appendix, Fig. S3).
Moreover, there was no correlation between the ranks of
P values for SNPs tested in the two populations [Spearman’s
correlation ρ = −0.003 (starvation resistance), ρ = 0.001 (startle
response), and ρ = 0.002 (chill coma recovery)]. Additionally,
signs and magnitudes of effects of alleles were not qualitatively
similar for SNPs that were significant in one population but not
the other. We compared the estimated effects for minor alleles
of SNPs in the DGRP and the change of frequency for the same
allele in the high pool relative to the low pool for each trait in
Flyland. We found no correlation between the effects of the
same alleles in the Flyland and DGRP populations for all three
traits (SI Appendix, Fig. S4).
We next investigated the possibility that different SNPs were

associated with the traits in Flyland and the DGRP, because
clusters of closely linked SNPs were associated with the traits,
and different representatives of each cluster were identified in
the different analyses. We selected SNPs that were within 10 kb
of each significant SNP in Flyland and tested them for associa-
tion with the same trait in the Flyland population. As expected
with local linkage disequilibrium (LD) that still remains after

crossing inbred lines for 70 generations (SI Appendix, Fig. S5),
SNPs near significant signals were generally more strongly as-
sociated with traits than randomly selected SNPs (Fig. 3A and SI
Appendix, Fig. S6). The same was also true for SNPs in close
physical proximity to SNPs with significant signals in the DGRP
population (Fig. 3B and SI Appendix, Fig. S6). Conversely, when
we tested SNPs close to significant Flyland signals for starvation
resistance and startle response in the DGRP population, they did
not differ significantly from randomly selected SNPs (Fig. 3C and
SI Appendix, Fig. S6). For chill coma recovery, there was a small
but statistically significant enrichment of SNPs with stronger
association in the DGRP around Flyland signals (Fig. 3C). The
same relationships were also observed for SNPs selected from
the DGRP analyses when tested in Flyland (Fig. 3D and SI
Appendix, Fig. S6). However, analyses of chill coma recovery in
both the Flyland and DGRP populations revealed a dispropor-
tionate number of significant SNPs on chromosome 2L, and
therefore, it is difficult to disentangle effects caused by LD from
overrepresentation of significant SNPs on this chromosome arm.
We tested whether the enrichment was solely induced by LD by
narrowing the window size for selecting SNPs, which should
strengthen the enrichment. This was not observed (SI Appendix, Fig.
S7), suggesting that the enrichment was likely caused by the dis-
proportionate numbers of SNPs on chromosome 2L that have
a large effect on chill coma recovery in both populations.
Although there was no overlap of SNPs associated with the

three complex traits in the Flyland and DGRP populations, we
considered the possibility that the SNPs, nevertheless, were as-
sociated with the same genes and pathways. We compiled lists of

DGRP common SNPs

2,611,167 

DGRP rare SNPs

            2,898,491 

Flyland SNPs
Total (significant) 

DGRP Significant SNPs

Starvation resistance
115       29 

Startle response

24       28 

Chill coma recovery

137       27 

Starvation resistance
1,247,469 (267) 91,947 (9)

Startle response

1,465,891 (53) 139,347 (8) 

Chill coma recovery

1,305,912 (308)      100,520 (12) 

Fig. 2. No overlap between significant SNPs in Flyland and the DGRP.

Numbers of SNPs overlapping between different categories of SNPs are

shown in boxes. Numbers within each box are for SNPs in the corresponding

category. SNPs belonging to multiple categories are indicated by overlaps

between boxes.
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Selected in Flyland
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Selected in Flyland

 Tested in DGRP

Selected in DGRP 

 Tested in Flyland

A B

C D

Fig. 3. Significance of SNPs around association signals selected in Flyland

and the DGRP. (A) SNPs within 10 kb of significant Flyland SNPs were tested

for associations with each trait in Flyland. The same number of background

SNPs (B) was randomly drawn from the genome and tested for associations

with the traits. P values are from Wilcoxon tests of the difference between

the level of significance in selected (S) and background (B) sets. Similar

analyses were also performed for (B) SNPs selected around DGRP signals and

tested in the DGRP, (C) SNPs selected around Flyland signals and tested in

the DGRP, and (D) SNPs selected around DGRP signals and tested in Flyland.
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genes from FlyBase Release 5.44 (21) that contained at least 1 of
the 1,000 most significant SNPs in the Flyland and DGRP pop-
ulations that were located within 50 bp of exons and 1,000 bp of
transcription start sites. P value cutoffs for the top 1,000 SNPs
were 6.5 × 10−7 (starvation resistance), 1.0 × 10−5 (startle re-
sponse), and 2.8 × 10−7 (chill coma recovery) in Flyland and 1.4
× 10−4 (starvation resistance), 2.6 × 10−4 (startle response), and
1.1 × 10−4 (chill coma recovery) in the DGRP. This result led to
the identification of 282, 237, and 292 genes in Flyland and 230,
220, and 247 genes in the DGRP for starvation resistance, startle
response, and chill coma recovery, respectively. A total of 2
(starvation resistance), 7 (startle response), and 10 (chill coma
recovery) genes were in common between Flyland and the
DGRP. The overlap was not significant for starvation resistance
(permutation P = 0.950) and startle response (P = 0.059) but
was nominally significant for chill coma recovery (P = 0.028).
We next assessed whether there was overrepresentation of

Gene Ontology (GO) terms among the genes associated with each
trait in Flyland and the DGRP individually as well as in the
combined gene set. At a False Discovery Rate (FDR) < 0.10, we
found no overrepresentation of biological process and molecular
function terms for starvation resistance. We did find small en-
richment for several GO terms for startle response and chill
coma recovery (Dataset S1, Table S5), including asymmetric
neuroblast division for startle response (P = 2.6 × 10−4). Among
the 29 annotated genes for this GO term, 4 genes were associated
with startle response in Flyland. One of these four genes and an
additional two genes were associated with startle response in the
DGRP, leading to a significant enrichment of this term in the
combined set of significant genes in Flyland and the DGRP. This
finding suggests that different candidate genes within a common
biological process affect startle response in the two populations.
Nonetheless, such enrichment was rare, and the magnitude was
very small.
Taken together, our results clearly show that association

analyses in the Flyland and DGRP populations detected largely
distinct QTLs for the three traits, indicating that genetic ar-
chitecture at the level of individual QTLs is highly background-
specific in the two populations.

Widespread Epistasis for SNPs Associated with Complex Traits in

Flyland and the DGRP. Both the single-marker regression associ-
ation analyses in the DGRP and the extreme QTL mapping
analyses in Flyland detect additive effects of individual SNPs, but
they do not distinguish between SNPs with strict additive gene
action independent of genotypes at other loci and apparent
additive effects induced by epistasis. Purely epistatic models
can result in covariance between relatives (5) and a substantial
amount of apparent additive variance (10). Therefore, we tested
whether SNPs associated with complex traits in Flyland and the
DGRP had epistatic effects.
We performed GWASs for pairwise interactions for each trait

in the DGRP population in which the focal SNP was one of the
significant SNPs in the Flyland and DGRP populations, and the
GWAS tested for interactions with all other SNPs in the DGRP.
We restricted these analyses to pairs of SNPs for which at least two
lines were represented in the minor haplotype class. Because the
sample size is relatively small, we chose a liberal significance
threshold of P < 1 × 10−5 for the interaction term to summarize
the results. Rather than making inferences on individual significant
interactions, we investigate the overall architecture of epistasis,
tolerating occasional false positives. Remarkably, the majority of
significant SNPs in either Flyland or the DGRP interacted with
at least one other SNP in the DGRP for all three traits (Table 1
and Dataset S1, Table S6–S8). Most of the significant SNPs for
which we could not detect epistasis were relatively rare variants,
and thus, all four haplotypes were not represented in the DGRP
by at least two lines.

Our observation of extensive epistasis shows that estimates of
additive effects of individual SNPs are highly context-dependent.
In the simplest form of epistasis, illustrated in Fig. 4, a change of
allele frequency of the context SNP can significantly affect the
estimated main effect of the SNP being tested. Therefore, we
asked whether SNPs that interacted with SNPs significantly as-
sociated with each trait differed in allele frequency between
Flyland and the DGRP. Among the 56,653 interacting SNPs,
8,918 had significant (FDR < 0.05) and large (FDR > 0.25)
changes in population allele frequencies. Furthermore, SNPs
significantly associated with traits in single-marker analyses gen-
erally interacted with multiple additional SNPs, illustrating higher-
order epistatic interactions. Thus, it is unlikely that the main effect
of an SNP is determined by the allele frequency of a single
interacting SNP. Nevertheless, widespread epistasis and changes
in population allele frequencies suggest that genetic architecture is
highly dynamic and sensitive to the exact allelic composition in
the population.

Epistatic Interactions Reveal Genetic Networks. We hypothesized
that epistatic interactions between SNPs reflect underlying ge-
netic networks. To test this hypothesis, we mapped all interacting
SNPs to annotated genes. First, we asked whether genes inter-
acting with genes harboring SNPs associated with the traits were
common between Flyland and the DGRP. We found substantial
overlap (P < 0.001) for starvation resistance and chill coma re-
covery and little but nominally significant overlap for startle re-
sponse (SI Appendix, Fig. S8). The lack of overlap for startle
response is likely attributable to the relatively small number of
genes associated with this trait. The overlapping interacting genes
formed highly interconnected networks (Fig. 5), suggesting that
common biological networks were perturbed through epistatic
interactions in both Flyland and the DGRP, despite the lack of
overlap of individually associated genes. Second, we assessed
whether epistatic genes were enriched for GO terms and found
several biologically plausible GO terms significant at FDR < 0.10
for all three traits (Dataset S1, Table S9). Third, we asked if the
epistatic genes were overrepresented in the signaling and meta-
bolic pathways from the Reactome and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases (22). We found sig-
nificant enrichment of subnetworks for epistatic genes associated
with starvation resistance (P < 0.005) (SI Appendix, Fig. S9A)
and chill coma recovery (P < 0.005) (SI Appendix, Fig. S9B).
Collectively, these results show that epistatic interactions reca-
pitulate known as well as candidate genetic networks affecting
complex traits.

Discussion

Using the rapid and powerful extreme QTL mapping approach,
we identified a large number of SNPs associated with three
complex traits in an outbred population (Flyland) derived from
a subset of 40 DGRP lines. Surprisingly, none of the SNPs
identified in the Flyland population replicated associations found
for these traits in the DGRP (16). Although a few of the SNPs
associated with the traits in the Flyland population were too rare
in the DGRP to be included in the association analyses, most of
the SNPs were common in both populations. Our systematic
evaluation of potential sources of background-specific effects
provided strong evidence that the genetic architectures in the
two populations were distinct at the QTL, gene, and biological
pathway levels when associations were considered individually.
Such a high degree of context dependence of genetic architec-
ture for complex traits has important implications. First, it sug-
gests that genetic associations need to be interpreted within the
context or background in which they are identified. Second, it
immediately leads to questions about the nature of the contexts
and how they modify genetic architecture.
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There are many characteristics of a population that can define
context and for which the Flyland and DGRP populations differ.
First, the Flyland population is outbred, and thus, it has het-
erozygous as well as homozygous individuals at each locus and an
additional source of genetic variability because of dominance
and/or overdominance. Dominance and overdominance may
explain the inability to replicate the DGRP signals in Flyland,
because extreme QTL mapping is intrinsically less powerful for
these modes of gene action. However, they do not explain the
failure of associations in the DGRP to replicate Flyland signals,
because SNPs detected by extreme QTL mapping have strong
additive effects, which should also be detectable in the DGRP
(SI Appendix, Fig. S3). Second, the pattern of local LD may differ
between Flyland and the DGRP, which would lead to different
patterns of associations, particularly at noncausative loci in LD
with causal variants. There is little local LD in the DGRP (16)
(SI Appendix, Fig. S5), and after 70 generations, the LD in Fly-
land would increase slightly but remain very small (SI Appendix,
Fig. S5). Furthermore, our association analyses were nearly ex-
haustive for all variants identifiable by sequencing, including
causal variants. However, even when LD was taken into account,
distinct genetic architectures were found in the two populations
(Fig. 3 and SI Appendix, Fig. S6). Third, the composition and site
frequency distribution of alleles differ between Flyland and the
DGRP. The DGRP has more SNPs than Flyland, whereas Flyland
has a larger population size and hence, more potential multilocus
genotypes. A large number of SNPs has substantial differences in
allele frequency between Flyland and the DGRP (SI Appendix,
Fig. S10). Some of these differences are caused by the selection
of 40 lines from the DGRP, whereas others are caused by genetic
drift, and potentially natural selection.
Changes in allele frequencies at a locus can alter the estimated

effect of a second locus if the two loci interact epistatically (Fig. 4).

We showed that the majority of SNPs associated with each trait
was involved in at least one pairwise interaction with other SNPs.
Although we focused our analysis of epistasis on only the SNPs
with marginal additive effects in either of the two populations,
the large number of tests performed gave the search essentially
no statistical power to declare significance of any particular in-
teraction. However, the goal of this analysis was not de novo
discovery of epistasis but rather, determination of whether the
epistatic models could better explain the phenotypic variation
given that the identity of one of the candidate SNPs was known.
Therefore, we used the same nominal significance threshold as
the single SNP GWAS in the DGRP (16) to enrich for even weak
epistatic interactions and analyzed global patterns of epistasis
rather than individual significance. Because our search for
epistasis was restricted to the DGRP, we could only evaluate the
effects of additive by additive interactions.
The genetic networks perturbed by epistatic interactions with

SNPs with significant main effects in Flyland or the DGRP were
highly connected. Thus, a major result that emerges from our
analysis is that, despite the apparent additive effects at individual
loci pointing to distinct genes in the two populations, they actually
perturb common genetic networks through epistatic interactions.
Genes in these genetic networks were enriched for biologically
plausible processes and functions as well as signaling and met-
abolic pathways. None of these observations would be expected
if the interactions were largely false positives. Because we only
investigated a small fraction of possible pairwise associations
and the high network connectivity implies even higher-order
interactions, we conclude that the genetic architecture of these
quantitative traits is dominated by extensive epistasis.
There has been controversy about the contribution of epistasis

to the genetic architecture of quantitative traits and response to
directional selection. Numerous studies have reported evidence
for epistatic gene action affecting quantitative traits in humans,
plants, animals, and flies (2). However, epistatic gene action
causes largely additive genetic variance in natural populations in
which the allele frequency spectrum is U-shaped (10), and hence,
it is thought to be of little importance in predicting the response
to directional selection (23). Although the statistical property of
additive variance is useful for genetic improvement of agricul-
tural species, it remains important to distinguish between genetic
variation that is caused by epistasis and the fraction of genetic
variation that can be statistically explained by an additive model.
In fact, variation induced by all of the epistatic interactions
identified in the present study could be largely explained by the
marginal additive effects at the trait-associated loci. Indeed,
statistical models of the genetic architecture of starvation resistance
and startle response showed no evidence for departure from a
purely additive model (24). However, the predictive ability of
genome selection models for these traits (24) was not high (0.23–
0.24), which is expected with extensive epistasis, because allele
frequencies and hence, allelic effects will be different between
the populations used to derive the model and the population in
which the model is tested. Furthermore, for selection to work
primarily on additive variance, it has to act on the population as
a whole. Consider, for example, a trait for which loci A and B are
interacting antagonistically. Selecting for this trait in extreme
subpopulations in which the alternative alleles of locus B are

Table 1. Epistasis between trait-associated SNPs and other SNPs in the genome

Trait

Trait-associated common

SNPs (DGRP + Flyland) Significant epistatic pairs

Trait-associated SNPs with at least one

significant interacting SNP (Flyland + DGRP)

Starvation resistance 411 (144 + 267) 19,629 288 (57 + 231)

Startle response 105 (52 + 53) 1,252 48 (11 + 37)

Chill coma recovery 472 (164 + 308) 57,863 314 (79 + 235)
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Fig. 4. Context-dependent additive effects. A significant epistatic in-

teraction is shown between two SNPs, A and B, each with two alleles (in-

dicated by subscripts 1 and 2). There is no difference in the effect of the two

alleles of SNP A in the B1 genetic background but a large difference in the B2

background. The sizes of the symbols are proportional to the genotype

frequency. (A) SNP A has a large main effect (shown by the regression line)

when the A2B2 genotype has a high frequency. (B) The main effect of SNP A

is diminished when the A2B1 genotype has a high frequency.
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fixed will result in changes of allele frequency at locus A in
opposite directions.
Although our analysis did not explore the entire spectrum of

possible epistatic interactions, we have shown that the majority
of background-specific additive effects can be equally well or
better explained by epistatic interactions between genes that are
organized into highly connected genetic networks. An appreci-
ation for and knowledge of the contribution of epistatic gene
action to quantitative trait phenotypes is required for understanding
the molecular mechanisms of variation for quantitative traits and
developing predictive models at the individualized level. We
speculate that epistatic gene action is also an important feature
of the genetic architecture of quantitative traits in other organ-
isms, including humans. Our analysis paradigm (first identifying
loci associated with a quantitative trait in two populations with
different allele frequencies and then using these loci as foci for
a genome-wide screen for pairwise epistatic interactions) can be
applied to any organism for which such populations exist. For
example, human GWASs have been plagued by a lack of replicated
associations across populations in even large studies (25, 26). We
argue that this finding is expected under epistatic gene action
and variable allele frequencies. This hypothesis is testable by
analysis of these data using our framework.
In the future, understanding the full extent of genetic interaction

networks for quantitative traits will enrich our understanding of
their underlying biology.

Methods
Creation of Flyland and Phenotyping. We crossed 40 DGRP lines (RAL_208,

RAL_301, RAL_303, RAL_304, RAL_306, RAL_307, RAL_313, RAL_315, RAL_324,

RAL_335, RAL_357, RAL_358, RAL_360, RAL_362, RAL_365, RAL_375, RAL_379,

RAL_380, RAL_391, RAL_399, RAL_427, RAL_437, RAL_486, RAL_514, RAL_517,

RAL_555, RAL_639, RAL_705, RAL_707, RAL_712, RAL_714, RAL_730, RAL_732,

RAL_765, RAL_774, RAL_786, RAL_799, RAL_820, RAL_852, and RAL_859) in

a round robin design, giving 40 F1 genotypes. We crossed females of RAL_208

tomales of RAL_301, females of RAL_301 tomales of RAL_303, and so on until

females of RAL_859 were crossed to males of RAL_208. We placed one male

and one female of each genotype into each of 10 bottles, removing the

parents after 2 d. For each subsequent generation, we collected 40 males and

40 females from each bottle and randomly allocated them to 10 bottles to

minimize genetic drift. Thus, the census size of the Flyland population is n =

800 per generation. Beginning at generation 70, we collected 6,000 Flyland

females and phenotyped 2,000 flies for startle response, chill coma recovery,

and starvation resistance exactly as described previously (16). We collected the

300 top- and 300 bottom-scoring individuals for startle response and chill coma

recovery time and 300 unstarved plus 300 longest lived individuals from the

starvation treatment, and we froze them for subsequent DNA extraction.

Genomic DNA Isolation. Genomic DNA was extracted from 100 mg flies using

Genomic-tip 100/G columns (Qiagen) according to the manufacturer’s

instructions. The flies were ground in liquid nitrogen using a mortar and

pestle to a fine white powder. Digestion Buffer (19 mL Buffer G2; Qiagen),

75 μL RNase A (20 mg/mL; 5 Prime), and 600 μL Proteinase K (20 mg/mL;

5 Prime) were added to the homogenized flies and incubated at 55 °C for

2 h. Following centrifugation, the lysate was loaded onto the 100/G columns

that had been equilibrated with Buffer QBT (Qiagen). The column was

washed two times with Buffer QC (Qiagen), and the DNA was eluted with

prewarmed (55 °C) elution buffer (Buffer QF; Qiagen). The DNA was pre-

cipitated with 100% isopropanol, and the pellet was washed with 70%

ethanol. The DNA pellet was rehydrated in Tris-EDTA buffer (pH 8.0; Ambion)

and quantified using picogreen on the Qubit fluorometer (Invitrogen).

Illumina Library Construction. We sequenced each of the six extreme genomic

DNA samples to a total of 300× coverage with six technical replicates of 50×

coverage each to generate a total of 36 libraries. Libraries were barcoded

using Illumina Multiplexing oligos (Illumina), enabling two to be sequenced

per HiSEq. 2000 lane.

High-molecular weight double-strand genomic DNA samples were used to

construct Illumina paired-end libraries according to the manufacturer’s

protocol (Illumina). Briefly, 1 μg genomic DNA in 100 μL volume was sheared

into fragments of ∼300 bp with the Covaris S2 or E210 system (settings: 10%

duty cycle, intensity of 4,200 cycles per burst, 90 s; Covaris). Fragments were

processed through DNA End-Repair in 100 μL containing sheared DNA, 10 μL

10× buffer, 5 μL End Repair Enzyme Mix, and H2O (NEBNext End-Repair

Module) at 20 °C for 30 min; A-tailing was performed in 50 μL containing

End-Repaired DNA, 5 μL 10× buffer, and 3 μL Klenow Fragment (NEBNext

dA-Tailing Module) at 37 °C for 30 min, and each step was followed by

A B

Fig. 5. Networks of epistatic interactions. Interaction networks are depicted for (A) starvation resistance and (B) chill coma recovery. Nodes depict genes, and

edges significant interactions. Red nodes are genes containing significant SNPs from the Flyland analysis. Blue nodes are genes containing significant SNPs

from DGRP analysis.
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purification using a QIAquick PCR purification kit (Qiagen). Resulting frag-

ments were ligated with Illumina Index PE adaptor oligo mix and the NEB-

Next Quick Ligation Module. After ligation, size selection was carried out by

using 3% Ready agarose gels running in 1× TBE (BioRad). Gel slices were

excised from ∼370 to 420 bp, and the size-selected DNA was purified using

a Qiagen MinElute gel extraction kit and eluted in 30 μL EB buffer (Qiagen).

PCR with Illumina PE Index primers was performed in 50-μL reactions con-

taining 25 μL 2× Phusion High-Fidelity PCR master mix, 10–20 ng size-se-

lected fragment DNA, 1.0 μL each primer, and H2O. The standard

thermocycling for PCR was 30 s at 98 °C for the initial denaturation followed

by 12–18 cycles of 10 s at 98 °C, 30 s at 65 °C, and 30 s at 72 °C and a final

extension of 5 min at 72 °C. Agencourt XP Beads (Beckman Coulter

Genomics) were used to purify the PCR products. After bead purification,

PCR products were quantified using PicoGreen, and their size distribution

was analyzed using the Agilent Bioanalyzer 2100 DNA Chip 7500; 15-μL

aliquots at 10 nM of each pool of two libraries were passed for Illumina

sequencing.

Sequencing. Shotgun DNA libraries were sequenced on Illumina’s HiSeq2000

with V3 chemistry. Briefly, sequencing libraries were quantified with an

Agilent 2100 Bioanalyzer. Cluster generations were performed on an Illu-

mina C-Bot with Illumina’s pair end flow cell; 2 × 100 cycles of sequencing

with 7 cycles index sequencing were carried out according to the manu-

facturer’s standard protocol. Two barcoded libraries are run together in one

lane on the HiSeq flow cell. Imaging analysis and base calling were done with

RTA software on HiSeq2000. CASAVA 1.7 was then used to demultiplex the

sequences into a set of fastq files that were used in the mapping analysis.

Extreme QTL Mapping. Illumina sequence reads were aligned to the Dmel 5.13

reference genome with the Burrows-Wheeler Aligner (BWA) (27) using de-

fault parameters. GATK (28) software was used to locally realign regions

around indels, remove duplicate sequence reads, and recalibrate base

quality scores. Local realignment was performed on the combined BAM files

of the two pools for each trait. Alignments were piled up at each base po-

sition in the genome by SAMTools (29). We considered SNPs segregating in

DNA pools for each trait by the following criteria: alleles were present in the

founding strains; coverage of Q13 bases was between 20 and 1,500; at

least 80% of the coverage was at least Q13; the two most frequent alleles

constituted at least 95% of all observed alleles; minor alleles were present

by at least 2.5% in one of the pools; the Chernoff bound of the P value for

the null hypothesis that the observed minor alleles were caused by se-

quencing error (30) was smaller than 10−5; and strand bias was not signifi-

cant (P > 10−5) in both pools. Allele frequencies were estimated by

calculating the proportion of reads supporting the alleles. We tested for

a difference in allele frequencies between the two pools by computing

Z   =   ðp1 −p2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0ð1−p0Þ
�

1
n+

1
d1
+

1
d2

�

r

. P values were obtained by compar-

ing the Z statistics to the standard normal distribution. p1 and p2 are the

estimated allele frequencies in the high and low pools, respectively; p0 is the

allele frequency under the null hypothesis H0: p1 = p2 estimated from the

average of p1 and p2; n is the number of flies (n = 300) in the pools; and d1

and d2 are the sequencing depths for the high and low pools, respectively.

Identification of Epistatic Interactions. We used FastEpistasis (31) to test for

pairwise epistasis between significant SNPs in Flyland and the DGRP with

other SNPs in the DGRP genome. Results from FastEpistasis were refined to

have P values from an F distribution as opposed to the default asymptotic χ2

test, and they were furthered filtered for epistatic interactions for which the

two locus genotype was represented by at least two lines.

Annotation of SNPs and Analysis of Trait-Associated and Epistatic Genes. We

annotated SNPs using the FlyBase annotation (release 5.44) (21). We

considered SNPs within 1,000 bp of the transcription start site and within

50 bp of exons to be in a gene. When SNPs fell within more than one gene,

we annotated the SNPs with multiple genes. For GO analyses, we obtained

GO annotations of genes from FlyBase and performed hypergeometric

tests for enrichment of genes in all GO terms that contained at least 20

genes in the background gene list, which consisted of genes that con-

tained at least one segregating SNP in the DGRP. We identified subnet-

works enriched for epistatic genes using the R-spider web server (22). R-

spider compiles the global network from KEGG and Reactome and tests for

significance of the subnetwork with the maximal number of input genes

through a Monte Carlo simulation-based inference (22). We considered

only the model where epistatic genes were directly connected without any

missing nodes.
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