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Abstract

Biological functions typically involve complex interacting molecular networks, with numerous feedback and regulation
loops. How the properties of the system are affected when one, or several of its parts are modified is a question of
fundamental interest, with numerous implications for the way we study and understand biological processes and treat
diseases. This question can be rephrased in terms of relating genotypes to phenotypes: to what extent does the effect of a
genetic variation at one locus depend on genetic variation at all other loci? Systematic quantitative measurements of
epistasis – the deviation from additivity in the effect of alleles at different loci – on a given quantitative trait remain a major
challenge. Here, we take a complementary approach of studying theoretically the effect of varying multiple parameters in a
validated model of molecular signal transduction. To connect with the genotype/phenotype mapping we interpret
parameters of the model as different loci with discrete choices of these parameters as alleles, which allows us to
systematically examine the dependence of the signaling output – a quantitative trait – on the set of possible allelic
combinations. We show quite generally that quantitative traits behave approximately additively (weak epistasis) when
alleles correspond to small changes of parameters; epistasis appears as a result of large differences between alleles. When
epistasis is relatively strong, it is concentrated in a sparse subset of loci and in low order (e.g. pair-wise) interactions. We find
that focusing on interaction between loci that exhibit strong additive effects is an efficient way of identifying most of the
epistasis. Our model study defines a theoretical framework for interpretation of experimental data and provides statistical
predictions for the structure of genetic interaction expected for moderately complex biological circuits.
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Introduction

Molecular genetics and systems biology have taught us that cells

and organisms function as interacting molecular networks [1,2]

Yet, population genetics studies of correlations between pheno-

typic traits and genotypes find that phenotypic variation is to a

surprising degree attributable to alleles acting independently of

each other – an effect largely responsible for the heritability of

traits in sexually reproducing populations [3,4]. Understanding

how strongly interacting molecular-genetic networks come to

behave this way on the population level remains a fundamental

open problem. To make progress we need to understand a) the

extent of interaction between specific alleles at different loci which

defines the so called ‘‘ physiological epistasis’’ [5]; and b) the extent

to which epistatic sets of alleles appear in natural populations as

manifested by the epistatic component of the observed genetic

variance – the so called ‘‘ statistical epistasis’’ first defined by R.A.

Fisher [6,7]. The latter would, on the theory side, require

understanding of the dynamics of natural selection in population

in the presence of epistasis and recombination [8,9]. Here we shall

focus on the question of physiological epistasis: given a set of alleles

that affect a given trait, what can we say about the probability of

finding a certain level of genetic interaction? Direct measurements

of physiological epistasis among mutations at multiple loci has

become feasible only recently [10,11] and still present a

formidable challenge. Theoretical investigations of the interactions

can in this context provide a useful insight into the expected generic

behavior. Previous work, for example, has used metabolic flux

analysis combined with the quantitative genetics approach [4] to

investigate (within models of metabolism) the molecular basis of

dominance ([12–14]).

Present work is based on the idea that alleles at different genetic

loci can be represented by discrete values of different parameters

of a mathematical model describing the behavior of a molecular

network. This enables a systematic exploration of the ‘‘genotype’’

to ‘‘phenotype’’ mapping represented by the model and a

quantitative characterization of the strength of epistasis that may

be expected for different allele sets. As a representative example we

shall consider invertebrate phototransduction [15] which allows us

to take advantage of a recently developed quantitative model of

this moderately complex system [16]. Invertebrate phototransduc-

tion involves a G-protein and phospholipase-C mediated signaling

cascade which in response to the absorption of a single photon

generates a spike-like ‘‘Quantum Bump’’ depolarization caused by

transient Ca2z influx into the cell. The magnitude and latency of

this response are two examples of quantitative traits associated

with this system. The model, which has been demonstrated to

capture quantitatively the properties of the system, involves a

considerable number of parameters quantifying protein concen-

trations and the kinetics of molecular processes. To the extent that

these numbers are ultimately encoded in DNA sequence that

defines the relevant proteins and controls their expression, it is

reasonable to associate each model parameter with a genetic locus

and we shall simply assume that different ‘‘alleles’’ at that locus
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correspond to different numerical values of the parameter. It is of

course possible that a given parameter is affected by more than

one locus, but because this generalization is straightforward we

shall assume a simple one to one relationship. For the same reason,

we shall not explicitly consider diploidy and dominance and work

within a haploid model. Introducing two alleles, i.e., coefficients, at

each of L different loci, leads to a representation of the system as

one of the 2L points of a L-dimensional hypercube. For a

moderately large value of the number of loci, the behavior of the

system, i.e. any of the quantitative traits and hence its phenotype,

can be determined numerically. With this procedure, one can

construct the complete genotype to phenotype mapping.

It is useful to set the problem of epistasis into the context of the

general problem of understanding parameter dependence of

quantitative traits as described by systems biology models. In

most cases this dependence is characterized through the sensitivity

analysis [17] which examines response to small perturbations

about the operating point in the parameter space typically

identified via fitting. Recent work [18–20] has found that the

sensitivity to small perturbations generically possesses ‘‘sloppy’’

modes: local directions in the multidimensional parameter space

that have very little effect on the trait in question. The problem

considered here is different in two ways. First, as we shall see

below, non-trivial epistasis arises when alleles under consideration

correspond to very different values of the parameter, so that

epistasis involves global dependence on the parameters, rather

than the local sensitivity. Second: our definition of epistasis on a

hypercube embedded into parameter space aims to extract

information relevant to population genetic context (e.g. the case

of sexually reproducing population) where parameter space is

explored in a combinatorial way through re-assortment of discrete

alleles, corresponding to the genetic polymorphisms that exist in

the population.

The strength of phenotypic variation induced by an allele

emerges as a key parameter that characterizes the genetic

landscape of the trait [13]. Consider a locus with an allele pair

corresponding to parameter values with ratio ed. Interaction

between several such loci can, in the limit of small d, be very

simply understood mathematically in terms of the Taylor series.

This limit in the leading order of course also reproduces the

sensitivity analysis ([1618]). In this limit, the additive part of the

gene interaction goes as the first power of d, whereas the terms

representing the epistatic interaction between n loci scales as dn. In

this sense, non-additive parts simply reflect the effect of nonlinear

character of the relation between genotype and phenotype. At

larger d the extent to which the effect of an allele at one locus

depends on all other loci, i.e. on the genetic ‘‘background’’, can be

substantial, but varies considerably between loci. We shall provide

a quantitative characterization of these epistatic effects. Making

connection with the problem of genotype/phenotype mapping

commonly encountered in the Genome Wide Association [21–24]

studies, our analysis suggests that relatively strong additive loci

form a good reduced set for investigating epistatic contribution to

genetic variance [25].

Model

Invertebrate phototransduction system
Our theoretical analysis is based on a quantitative model of

invertebrate phototransduction [15,26,27] developed by the

authors and described in Ref. [16]. The absorption of one photon

occurs in one of the many (*104) microvilli compartments of a

retinal cell and leads through a cascade of reactions to a transient

inward electric current, called quantum bump (QB). The signaling

cascade can be adequately described by a network consisting of

four main modules, represented in Fig. 1a. The input module

starts with the activation of rhodopsin by a photon, leading to

metarhodopsin, which then catalyses nucleotide exchange on the

a-subunit of a heterotrimeric Gq protein. The activated Gq protein

activates one phospholipase C (PLCb) molecule. PLCb induces

hydrolysis of PIP2 leading to the production of diacyl-glycerol,

DAG, which acts (directly or indirectly) as the activator (A�), see

‘‘module A’’ in Fig. 1a. The activator A� induces the opening of

the Trp channels, represented as the transition from B to B� in

‘‘module B’’ (Fig. 1a), which lets Naz and Ca2z flow into the

microvillus. At moderate concentration, the influx of Ca2z

triggers a positive feedback, which opens more Trp channels,

and further increases calcium concentration. At higher intracel-

lular calcium concentration, the negative feedback (module C),

due to formation of the molecular species C� catalyzes the closing

of Trp channels, as well as the termination of the activation of

several key elements, leading to the return of the cell to its

quiescent state. One important aspect of the response of the system

to the absorption of one photon is its strongly stochastic character.

This property is a consequence of the very small number of some

of the key molecular species participating in the signaling cascade.

The response of the system should thus be characterized by its

statistical properties. The simulations of the model have been

shown to reproduce quantitatively the single photon response

phenotype of the wild-type receptor, as well as the proper

dependence on external calcium concentration. As demonstrated

in Ref. [16] the model also captures the behavior the known

mutants, such as those with impaired metarhodopsin deactivation,

or with strongly reduced expression of G-protein. In the model,

such mutants are represented by suitable variations of one of the

parameters [16].

Following the success of the model in representing mutant

phenotypes we assume that systematic study of phenotypes

corresponding to sets of discrete parameter values can provide

insight into the expected extent of physiological epistasis. Let fpig
with i~1,::,L denote a set of L parameters characterizing the

Author Summary

Heritable phenotypic properties are often defined by
complex pathways and therefore dependent on multiple
polymorphisms affecting different genes. Mapping phe-
notypic consequences of such genetic variation is central
to our understanding of disease susceptibility and is
fundamental to understanding evolutionary dynamics.
How does the effect of multiple genetic polymorphisms
occurring together relate to the effect of same polymor-
phisms in isolation? It is often assumed that individual
effects add without interference, yet interactions between
polymorphisms have been observed in numerous con-
texts. The extent to which interactions shape phenotype
distributions depends on the nature of interaction intrinsic
to the biological system and on the distribution of
polymorphisms in the population. Here we approach the
systems aspect of the problem by using quantitative
modeling of a moderately complex bio-molecular pathway
- invertebrate phototransduction - to provide a statistical
characterization of non-additive effects of multiple param-
eter changes. We find that interaction is associated with
small subsets of polymorphisms and demonstrate that
focusing the study on the set of strong additive
polymorphisms accounts also for a significant fraction of
total interaction: a finding relevant to the genome-wide-
association analysis.

Epistasis in a Model of Signal Transduction
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model system and fp’ig be an alternative set. We can think of

the two pre-assigned parameter values pi and p’i as the two

‘‘alleles’’ at the locus ‘‘i’’ and construct 2L parameter sets

consisting of all possible combinations of these alleles: each set

corresponding to a different genotype. Our phototransduction

model has L~16 parameters, giving rise to 2L~65536 possible

‘‘genotypes’’. As expected, most of these different ‘‘genotypes’’,

i.e. parameter combinations, correspond to different phenotypic

responses, as illustrated in Fig. 1b,c. The probability to elicit one

QB is smaller for the genotype shown in panel 1b, than for the

genotype in panel 1c. Similarly, the latency of photoreceptor

response is significantly shorter for the genotype (1b) than for

(1c). The individual QBs are narrower for genotype (1b), and

have a slightly larger amplitude than the QBs generated by

genotype (1c). As a result, the average over many QBs leads to a

smaller amplitude and a shorter duration for genotype (1b),

compared to (1c). We note in this respect that the method we

use here to study the system is a generalization of the approach

Figure 1. Invertebrate phototransduction: Molecular network and phenotypic variations. Panel (a) provides a schematic summary of
molecular mechanisms underlying phototransduction [15,32]. A photon absorbed by a rhodopsin receptor leads, via G proteins, to the activation of
PLCb, which in turn leads to the production of diacylglycerol (DAG), which acts directly or indirectly as the activator A� (module A). The activator
leads to the opening of TRP channels (B�) causing a rapid influx of Ca2z which at moderate concentration reinforces activation thus providing a
positive feedback (fp) (module B). At higher concentration Ca2z, acting via a Ca- binding intermediary (C�), provides the negative feedback (fn)
which terminates the Quantum Bump (QB) (module C). Panels (b,c) present samples of computer simulated QBs obtained with a quantitative model
[16] of the processes shown in (a). The traces show the number of open Trp� channels as a function of time for 6 different QB. Significant trial to trial
variation is observed, in particular in the QB latency time, histogram of which is shown at the top of each panel. Panels (b) and (c) correspond to two
different sets of model parameters. This results in quantitative changes in response phenotypes such as QB average duration, latency, amplitude and
failure probability (0:64 for (b) compared to 0:44 for (c)).
doi:10.1371/journal.pcbi.1001134.g001

Epistasis in a Model of Signal Transduction
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based on random variations of the parameters, introduced in

[19].

How different the phenotypes are expected to be depends

quantitatively on the difference between the parameter values that

define the alleles at each locus. This difference is characterized

here by a positive parameter d in the following manner: starting

with a parameter set fp(0)
i g we generate ‘‘alleles’’ pi and p’i via

pi~exdp(0) where x is a Gaussian random number, with zero

mean and unit variance (p’i being defined in the same way but

with a different random x). As a result, the typical difference

jp’i{pij scales as d when d?0. The value of d will play an

important role in our discussion of epistasis.

The performance of the photoreceptor cells can be used to

define some simple traits. For example, reliability of the response

to one photon, defined as the probability that one photon elicits a

QB is a possible characterization of the response of the system.

This probability, a number between zero and one, defines a

‘‘quantitative trait’’ T1. Alternatively, one may consider the

averaged response of the photoreceptor over many incident

photons, which corresponds to the cumulated response of the

many microvilli composing the photoreceptor cell. Typical signals,

shown as the lowest traces in Fig. 1b and c, can be characterized

by their amplitude A and duration D. The amplitude in our model

corresponds to a number of open Trp channels; in practice, it

corresponds to the recorded peak current obtained after a flash of

light is sent to the cell; it is typically of the order of *10pA. The

duration of the pulse is typically of the order of *100ms. The two

associated traits, T2~A and T3~D are thus dimensionful

quantities, setting the scales respectively for the current and for

pulse duration. In addition to these simple traits, one may define

composite traits, involving a combination of several statistical

properties of the response of a cell to one photon, based on

tradeoffs that may be advantageous for the system. For example, it

may be intrinsically interesting for the system to generate a

response both with high amplitude and a short duration. The

corresponding trait may be defined as the product of two sigmoid

functions via T4~
A

AzA0

D0

DzD0
defined relative to parameters

A0~4 and D0~22ms. The four traits introduced above are just a

few out of many possibilities. The general picture that emerges

from the study presented here was found to be essentially

independent of the particular trait considered.

Mathematical model of the invertebrate
photo-transduction cascade

Following Pumir et al [16] we describe the phototransduction

cascade by the following set of chemical kinetic equations. In the

following, starred variables refer to activated molecular species.

Once rhodopsin has been activated by light absorption (forming

metarhodopsin), it deactivates according to:

dM�

dt
~{cRh� (1zgRh� fn)M� ð1Þ

Active metarhodopsin in turn activates G-proteins according to:

dG�

dt
~kG�G|M�{kPLC�PLCT|G� ð2Þ

The activated G-protein deactivates by reacting with PLC and

becomes inactivated, before returning to its resting state, G:

dG

dt
~{kG�G|M�zcGi

(GT{G{G�) ð3Þ

Activation of PLC� is governed by:

dPLC�

dt
~kPLCPLCT|G�{cPLC� (1zgPLC� fn)PLC� ð4Þ

and leads to the production of activator molecules A�:

dA�

dt
~kA�PLC�{cA� (1zgA� fn)A� ð5Þ

which in turn opens TRP channel (B� denoting the number of

open Trp channels).

dB�

dt
~kB� (1zgB�,pfp)|(A�=KA� )

m(BT{B�){

cB� (1zgB�,nfn)B�
ð6Þ

As a result of the opening of TRP channels, Calcium enters the

cell, according to:

d½Ca�
dt

~sB�(½Ca�ext{½Ca�){

cCa(½Ca�{½Ca�0){(kC� ½Ca�{cC� ½C��)
ð7Þ

where ½Ca�ext and ½Ca�0 refer respectively to the external and to

the intracellular equilibrium Ca2z concentrations. Finally,

intracellular Ca2z activates an inhibitor, C�, according to:

dC�

dt
~kC� ½Ca�{cC�C

� ð8Þ

Opening and closure of channels, as well as several steps in the

cascade are modulated by the positive, fp and negative fn

feedbacks, simply parametrized in terms of a Hill function:

fp(½Ca�)~ (½Ca�=Kp)mp

1z(½Ca�=Kp)mp
ð9Þ

fn(C�)~
(C�=Kn)mn

1z(C�=Kn)mn
ð10Þ

The kinetic coefficients of the model have been determined by

imposing that the statistical properties of the response of the

receptor to a single photon are correctly predicted by the model.

The equations that define the model involve a number of

coefficients, which quantify the activation and deactivation rates,

as well as the various feedbacks that play a crucial role in the

process. Reference values of all parameters are as given in Table 1

in Text S1, see also [16].

Epistasis in a Model of Signal Transduction
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Numerical method
The stochastic version of kinetic equations was simulated via

Gillespie algorithm as described in [28], and used in [16] with

statistical averages taken over about 103 response realizations

for each set of parameters. Averages was taken over 20 sets of

randomly generated alleles at 16 loci of the system for five

values of d (d~1=8, 1=4, 1=2, 1, 2). At small values of d, where

alleles correspond to only small changes of corresponding

parameter pairs, and the difference in the trait can become

comparable to the intrinsic variance of the response. For this

reason, we used more realizations to compute the traits at small

values of d: specifically the number of response trials was 4000
for d~1=8 and 1=4; 2000 for for d~1=2 and 1; 500 at d~2).

The simulation was implemented using Fortran and ran on a

PC. The time necessary to compute all trait functions, for all

genotypes was *1 day. Once determined, the trait function on

the hypercube was decomposed according to Eq.1, using a Fast

Fourier Transform, with the result defining the ‘‘spectra’’ Vn

and En.

Quantitative representation of the genetic interaction
The advantage of our model system is that it allows us to

determine numerically the full mapping between the genotype and

phenotype. To this end, we begin by representing a vertex on a 16-

dimensional hypercube by using for each allele a variable si~+1.

Any quantity characterizing the phenotype of the system (such as

the traits introduced above) associated with the genotype

g~fs1,:::,sLg can in full generality be represented by [29]:

W(g)~w(0)z
XL

i~1

w
(1)
i siz

XL

iwj~1

w
(2)
ij sisjz

XL

iwjwk~1

w
(3)
ijk sisjskz:::

ð11Þ

Here, the first term is the constant component of W which does not

depend on the monitored loci. The second term corresponds to a

sum over independent contributions of the L loci. Subsequent

terms parameterize the contribution of all pairs, triplets and higher

multiplets of loci. For example, the second sum runs over all pairs

of loci and for each pair, w(2)
ij specifies the dependence of fitness on

locus ‘‘i’’ when the ‘‘z’’ allele at locus j is replaced by a ‘‘{’’

allele, averaging over all other loci with uniform probabilities.

These higher order terms quantify the deviations from a strictly

additive contribution of different loci to the traits, corresponding

to physiological epistasis. The representation (11) is the most compact

parameterization of arbitrary functions that can be defined over

the 2L possible genotypes. All such functions are uniquely defined

by the set of 2L parameters w(k)
i1,:::,ik

(with k~1,:::L). Equation (11)

can also be interpreted as the Fourier transform of the phenotype

function defined on a hypercube. This framework can be

generalized to more than two alleles per locus, and to the diploid

context. Note that in contrast to [30] and consistent with idea of

physiological epistasis, the parameterization (11) is explicitly

independent of genotypic distribution (allele frequencies) in the

population.

The representation of the phenotype function via Eq.11

provides (by analogy with the Fourier transform) a simple measure

of the distribution of epistatic interaction among different orders:

we define an ‘‘epistatic power spectrum’’ as the average variance

of all n-tuple interactions:

Vn~
1

LCn

X
fi1,:::,ing

w
(n)
i1,:::,in

� �2

ð12Þ

where LCn stands for the L-choose-n binomial coefficient - the

number of n-tuplets in the sum. Quantitative genetics [3,4,31]

representation of epistasis often assumes, tacitly or explicitly, that

epistatic contribution to the phenotype is such a complex function

of the genotype that it looks essentially random. In that case Vn is

constant and the total variance contributed by n-tuple interactions,

LCnVn, increases rapidly with n along with the number of terms

contributing to Eq. (12). More generally because the number of

possible n-tuplets increases rapidly with n, multi-loci interactions

could dominate the total phenotypic variance even if on average n-

tuple interaction terms, Vn, are small [5]. Below we will show that

this does not happen in the realistic system that we consider.

If one focuses on a particular locus, say locus i, it makes an

additive contribution w
(1)
i to the trait with the rest of its effect

dependent on the genetic background, i.e. on alleles at all other

loci. Correspondingly we define the additive variance Ai~½w(1)
i �

2

associated with locus i and the epistatic variance

Ei1
~21{L

X
si2

,:::,siL

½2{1
X
si1

si1
W(si1

,:::,siL
)�2{Ai1

~
XL

n~2

X
i2,:::,in

jw(n)
i1,i2,:::,in

j2
ð13Þ

These definitions will allow us to demonstrate that, independent of

particular alleles, some loci are more likely to exhibit background

dependence or epistasis than the other.

Results

To identify the extent of ‘‘physiological epistasis’’ in the

phototransduction model we computed the properties of the

single photon response 216 ‘‘genotypes’’ defined by all possible

combinations of the pairs of parameter ‘‘alleles’’ fpi,p’ig defined

relative to a reference set fp(0)
i g by random rescaling (e.g.

pi~exdp
(0)
i , p’i~ex’dp

(0)
i )) with the typical magnitude controlled by

d as described above. This defined a genotype to phenotype map

for a particular allele set. The procedure was then repeated 20

times for random allele sets and the results given below, unless

stated otherwise, are statistical averages over this ensemble.

The mean variation of the n-loci epistatic term Vn is shown in

Fig. 2a for the trait T4. For each value of d, Vn decays

approximately exponentially with n. The decay rate however

decreases with increasing d. In the very small d limit, as explained

above, the term V1 is expected to be proportional to d2, and

multiplied by the magnitude of the tangent map considered in the

sensitivity analysis [19]. The higher order terms (nw1) decrease

exponentially. Accurate determination of the small n-loci epistatic

contribution, for high n, is limited by the noise due to stochastic

nature of the response and the finite size of the sample. The noise

level indicated in Fig. 2a was estimated by comparing the averages

using two different values of the number of QBs. Rapid decay of

Vn with n when dvv1 implies that the additive term in the

representation given by Eq.1 is the dominant one, so in this limit

epistasis is very weak.

Fig. 2b quantifies the effect more precisely, by showing the same

set of data, plotted as a function of d for different values of n. The

Epistasis in a Model of Signal Transduction
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main conclusion is that for small values of d, Vn*d2n. This

behavior has a simple interpretation. The traits studied here are

functions of the model parameters. Assuming that these functions

can be expanded in Taylor series, and noting that in the limit

d?0, the difference between the parameter alleles pi, p’i at each

locus scales as d. A straightforward expansion of the trait function

then shows that the term w
(1)
i can be expressed as a derivative of

the trait function with respect to pi (evaluated at fp(0)g) times

(pi{p’i): hence jw(1)
i j*d and V1*d2. Similarly, the term w

(2)
ij is

proportional to the second derivative of the trait in the directions i

and j, multiplied by (pi{p’i)(pj{p’j). This implies that V2*d4

and more generally Vn*d2n thus explaining our numerical

findings in the small d regime. We conclude that quite generally,

for alleles corresponding to small perturbations of the system

epistatic interaction between loci is much smaller than the additive

effect of the loci.

The total variance due to nth order epistasis, as measured by

LCnVn is shown in Fig. 2c. Epistasis is weak for dv1=2. More

surprisingly we observe that total variance due to nth order

epistasis decreases with n, even for the largest value of d studied

(d~2), although less and less rapidly as d increases. (Note that

d~2 corresponds to about 10-fold difference between parameters

corresponding to any two alleles.) Additivity remains quite strong:

V1 accounts for 70% of the total variation for d~1, and about

50% for d~2, yet even for dw1=2 a significant part of the

variation comes from the interactions between loci.

We find extensive variability in the strength of epistasis even

between terms of the same order (i.e. between different w(n)
i1,:::,in

) so

that only a small subset of possible n-tuplets contribute with the

strength i1,:::,in much greater than the average, Vn. This effect is

illustrated in Fig. 2d, which for a given pair of loci (i, j) compares

the strength of the additive component jw(1)
i jzjw

(1)
j j with the

strength of the interaction between the same two loci: jw(2)
ij j. Fig. 2d

presents a scatter plot for all pairs of loci and 20 sets of alleles (with

d~1). The dashed line corresponds to jw(2)
ij j~jw

(1)
i jzjw

(1)
j j so that

points lying above this line correspond to strong interaction

Figure 2. Quantitative characterization of the multi-locus interaction. The ‘‘epistatic power spectrum’’ defined by Eq. 12,13 characterizes the
strength of the n-loci interactions of the trait. Panel (a) shows the variance Vn for several values of d. As d and hence the difference between the
parameters, becomes smaller, the exponential decay of Vn with increasing n becomes faster. Determination of Vn for large n and small d is limited by
the noise, caused by finite sampling errors when computing the trait. Panel (b) shows the dependence of Vn (for n~1,2,3) on d. For small d the
variance Vn scales as d2n . Panel (c) shows the total variance in n-locus interaction. Large number of contributing multiplets partially compensate for
the smallness of the average contribution (Vn) making epistasis for larger d comparable with the additive variance (n~1); nevertheless total epistatic
variance decreases with the order of interaction even for the largest d considered. Panel (d) shows a scatter plot of the 2-epistasis term jw(2)

ij j vs. the
additive part of the interaction jw(1)

i jzjw
(1)
j j, see text, for all pairs (i,j) of loci, and for 20 different choices of the alleles, corresponding to d~1. The

color reflects the local density of points; it is high (low) in the red (blue) region.
doi:10.1371/journal.pcbi.1001134.g002
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between the loci. Color codes for the density of points: red

correspond to the highest density and blue for the lowest density of

points. The red region gives a good idea of the average of the

epistatic contribution, conditioned on the additive part (see also

Fig. 1 in Text S1). In the vast majority of cases, pair epistasis is

small compared to the additive contribution. However, the

epistatic component is comparable to the additive term for a

significant fraction of all configurations: 16% of all possible pairs of

loci correspond to an epistatic contribution in excess of 10% of the

additive part. A similar picture emerges in considering epistasis

among triplets of loci (see Fig. 2, Fig. 3 in Text S1).

The variability of the epistasis is not just the matter of specific

alleles. It reflects the properties of the network in the sense of some

pairs of loci are much more likely to interact than others (see Fig. 4

in Text S1) – a property that can be quantified by averaging over

the large number of possible allele sets. Alternatively we can

compare the background independent contribution Ai of a given

locus to the background dependent, epistatic, component Ei. As

we see in Fig. 3, some of the loci contribute much more than

others, although this variation is more pronounced for the additive

component Ai. The large variation in the contribution of different

loci seen in Fig. 3 is consistent with the large variation of

parameter sensitivities noted before for generic systems biology

models [18,19] and for this system in particular [16]. We reiterate

however, that the connection between local sensitivity and the

global analysis presented here is far from obvious.

Implications for genome wide association studies
The genome wide association studies (GWAS) use linear

regression between quantitative traits and genetic polymorphisms

to identify loci that contribute additively to the phenotype [23,24].

It is not uncommon that thus identified additive loci account only

for a small fraction of genetic variance. The remainder of the

variance could be associated with small additive contributions of a

very large number of loci, with rare strong alleles and with

epistasis. Brute force detection of epistatic effects by including in

the regression all pairs of loci runs into the multiple hypothesis

testing problem and is not feasible. It was however found that loci

identified by their additive effects, also exhibit substantial pairwise

epistasis [25]. Yet, it is not known if focusing on the additive loci

could be expected to capture a significant fraction of total epistatic

variance. This question however can be investigated in context of

the present model. To that end we shall rank loci by their additive

contribution to the trait and consider a subset of p top loci. We

then define epistatic variance associated with this subset as a sum

of squares of the w
(k)
i1,:::,ik

terms for all combinations of loci within

the subset. Fig. 4a,b present the cumulant additive, pairwise

epistatic and total epistatic variance for d~1 and 2 (trait T4

averaged over 20 allele sets). We observe that for the system under

consideration the additive contribution is dominated by the *5
loci with the strongest additive components. Focusing on these loci

for d~1 and d~2 one recovers respectively 67% and 57% total

epistatic variance. Note that consistent with the results shown in

Fig. 2, pairwise epistasis provides the main contribution to the total

epistasis. It is quite remarkable that the inclusion of loci with

weaker additive effects adds less epistasis: this is almost always true,

although in Fig. 4b we note that locus #12 with low additive

variance contributes much more epistasis than comparable loci.

This general behavior can be understood by noting that provided

that epistatic power spectrum decays rapidly with the order, the

additive contribution will generically be comparable to the total.

Suppression of the additive component would require some

accidental symmetry to make the effect of the allele average out to

zero over all possible genetic contexts.

Discussion

We have used a quantitative model of signal transduction to

develop a computational approach to study the nature of

interaction between multiple parameters representing key compo-

nents and reactions of the pathway on the molecular level. Our

approach relies on the quite general assumption that these bio-

chemical parameters are defined by the structure and expression

level of proteins and hence are encoded genetically. Thus we

assume that a genetic polymorphism corresponds to a parametric

polymorphism. Our interpretation of parameters as loci and of

discrete values that they take as alleles is an abstraction in the sense

that we do not connect model parameters with specific genetic

sequences. Instead we have formulated and focused on questions

that are independent of the specific connection between

parameters and sequences.

As expected we find that epistasis is weak for parameter alleles

quantitatively similar to each other. Less obviously, we find that

the strength of epistasis decays exponentially with the order of

interaction even when alleles correspond to large changes in

system parameters. Epistasis involves only a small fraction of

possible subsets of loci and is dominated by pairwise interactions.

Yet the number of interactions is sufficiently large that the total

contribution can be substantial even if individual terms are small.

Our findings with regard to weak alleles are clearly general and

can be rigorously ascertained via their connection with the Taylor

expansion. The generality of the conclusions for strong alleles (i.e.

dw1=2) is supported by the fact that they are independent of the

quantitative trait considered. We expect that our observations

concerning the decay of epistatic spectrum will hold also for

generic systems with much larger number of parameters or loci:

study of systems with larger L would be an interesting subject for

future research.

Our results are consistent with the expectation based on

sensitivity analysis and the observed structure of the ‘‘tangent

map’’ corresponding to very small variations of the parameters

[20]. As already noted, the correspondence is direct in the limit of

Figure 3. Variation between loci. The additive A2
i , and the

background dependent (i.e. epistatic) contributions, Ei as defined in
the text, are presented locus by locus, obtained by averaging over 20
sets of random alleles (d~1). The relative strength of epistatic and
additive components varies widely among loci. While a few loci make a
stronger epistatic than additive contribution one notes that loci with
the strongest additive components also have the strongest epistatic
components. Note that sample to sample fluctuations of A2

i and Ei are
very large, resulting in the large error bars shown in the figure.
doi:10.1371/journal.pcbi.1001134.g003
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weak alleles (i.e. small d). The eigenvectors with the largest

eigenvalues of the tangent map define a few directions in the

(multidimensional) phenotypic space, which are most strongly

affected by variations of the coefficients: any small variation of the

parameter thus leads to a deformation of the solution in these

directions. For stronger (but not too strong) alleles, nonlinear

effects giving rise to epistasis are weak and can be understood

mathematically using perturbation theory, as explicitly done in the

Supplementary Text S1. Generally within perturbation theory one

expects that epistasis will affect mostly pairs of parameters that

contribute to two different eigenvectors with large eigenvalues. In

this respect, the identified structure of the ‘‘genotype to

phenotype’’ mapping provides a natural explanation of the fact

that the parameters that contribute most at the additive level are

also those that contribute most to the epistasis. For larger d when

the potentially complex (non-linear) parameter dependence comes

into play the correspondence between the local and global

structure cannot be assumed. (Note that Fig. 4 correspond to

large - e-fold (d~1) and nearly 10-fold (d~2) variations of the

parameters.) Yet at present rigorous global characterization of

parameter dependence in the general class of models considered

here remains a non-trivial mathematical challenge. Of many

possible ways to extend the linear sensitivity analysis, our choice of

considering discrete sets of alleles was inspired by the case of

genetic and phenotypic variation in sexually reproducing popu-

lation.

Epistatic power spectrum, defined naturally through the Fourier

transform analogy of our parameterization of the genotype to

phenotype map (11), provides a very general way of characterizing

the extent of epistasis. It would be interesting to develop

mathematical ideas that could provide a classification of dynamical

systems, such as bio-chemical networks modeled here, and

generate bounds on the strength of ‘‘parametric entanglement’’

as characterized by the epistatic spectra introduced here.

Epistatic interactions involving more than two loci are a

manifestation of nonlinearities occurring in a genotypic space

involving combinations of alleles with large phenotypic effects.

Such nonlinearities are clearly observed experimentally in the

binding affinity of transcription factors; see [11]. More experi-

mental studies providing quantitative measurements of phenotypes

for defined combinations of alleles at multiple loci are needed in

order to bridge our understanding of protein interaction in the

system biology context and genetic interactions which play a role

in heritability of phenotypes in sexually reproducing populations.

Finally, we stress the conclusion that a significant fraction of

epistasis can be found by focusing on the loci identified by their

additive contribution: this notion has immediate practical

implications in the context of GWA studies.

Supporting Information

Text S1 Supplementary materials.

Found at: doi:10.1371/journal.pcbi.1001134.s001 (1.76 MB PDF)
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