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been characterized (see BOX 1a). Modifier
genes in the human and mouse have provided
further evidence of the importance of epista-
sis: the genetic background often influences
the phenotypes of the susceptible genotype
of MAJOR GENES, for example, by affecting the
PENETRANCE of the gene2. Complex traits are
also regulated by epistasis, as shown by the
CANDIDATE GENE studies in which interactions be-
tween individual candidate genes are evaluated.
One such example is the interaction between
the D-allele of the angiotensin I converting
enzyme (ACE) gene and the C-allele of the
angiotensin II type 1 receptor (AGTR1) gene3.
The risk of myocardial infarction is signifi-
cantly increased by the ACE D-allele in patients
who carry that particular AGTR1 allele.

In the case of quantitative genetic variation,
several or many genes of largely unknown
function combine with environmental influ-
ences to control trait variation. This is the case
for many complex traits that are of medical rel-
evance in humans or of economic importance
in plants and livestock. By combining quanti-
tative genetic theory and molecular informa-
tion on genetic marker maps, we can identify
the individual genomic loci with the largest
effects on quantitative traits (also known as
quantitative trait loci or QTLs) and start to
examine the genetic control of these traits.We
therefore have the means to address the next
important challenge in quantitative genetics
— defining the interactions that occur among
the genes that underlie these traits. The best
source of information on the importance of
epistasis in the regulation of complex traits

comes from studies on model and other
experimentally amenable organisms. Even so,
most studies of model organisms have ignored
epistasis; indeed, a recent review points out
that epistasis is a hidden complexity in the reg-
ulation of complex traits that in general is not
unravelled in QTL-mapping studies4. Similar
opinions are expressed in other recent
reviews5–8, leading to the speculation that epis-
tasis could be a factor that contributes to the
failure to replicate the results of many human
ASSOCIATION STUDIES9, and could be one cause of
QTL effects that diminish or disappear if they
are isolated on fixed genetic backgrounds in
experimental organisms. However, recent
developments in QTL-mapping methodolo-
gies have allowed us to detect not only epistasis
between QTLs with individual effects, but also
novel epistatic QTLs that primarily mediate
their effects on the traits through interactions
with other genes (BOX 1).

The extent to which epistasis is involved in
regulating complex traits is not known, and so
we cannot assume that epistasis will be found
for every trait in every population. However,
we argue that epistasis has been overlooked for
too long and that it now needs to be routinely
explored in complex trait studies. Here, we use
examples from the literature to show that
much can be gained by considering epistasis in
QTL-mapping studies.We explain how infor-
mation about gene interactions will aid our
understanding of complex traits, and provide
an overview of the results obtained in several
successful studies in model organisms.We dis-
cuss how the principles and challenges gleaned
from these studies could be adopted for carry-
ing out similar research in model species and
in natural, including human, populations.

Overview of QTL mapping
Methods for detecting, or mapping, QTLs
have been developed for a wide range of
populations. This section, together with FIG. 1

and BOX 2, briefly addresses the principles of
individual and epistatic QTL mapping as
well as the challenges that they pose. For a
more thorough review of QTL-mapping
methodologies, we refer readers to REF. 6.

Individual QTLs. For illustration, we will con-
sider a simple but widely used study design in
which an F

2
population is derived from a cross

between two different inbred lines (FIG. 1a). In
their simplest form, QTL-mapping app-
roaches work by contrasting the mean effects
on the phenotype of alternative F

2
genotypes

(for example, QQ versus Qq versus qq, where
Q and q are alternative marker alleles derived
from lines 1 and 2, respectively). However
complicated the statistical analysis, most

Interactions among loci or between genes
and environmental factors make a
substantial contribution to variation in
complex traits such as disease
susceptibility. Nonetheless, many studies
that attempt to identify the genetic basis of
complex traits ignore the possibility that loci
interact. We argue that epistasis should be
accounted for in complex trait studies; we
critically assess current study designs for
detecting epistasis and discuss how these
might be adapted for use in additional
populations, including humans.

In its broadest sense, epistasis implies that the
effect of a particular genotype on the pheno-
type depends on the genetic background. In its
simplest form, this refers to an interaction
between a pair of loci, in which the phenotypic
effect of one locus depends on the genotype at
the second locus (BOX 1a). More generally, the
effect of one locus might depend on the geno-
type at several or many loci. In the case of
QUANTITATIVE TRAITS, epistasis describes the gen-
eral situation in which the phenotype of a
given genotype cannot be predicted by the sum
of its component single-locus effects1 (BOX 1b–e).

Extensive work on the control of qualitative
genetic variation has highlighted the biological
importance of epistasis at a ‘locus-by-locus’
level. On the basis of this work, several classic
genotype–phenotype patterns that are caused
by epistasis — such as comb type in chickens,
coat colour in various animals, the BOMBAY

PHENOTYPE in the ABO blood-group system in
humans and kernel colour in wheat — have
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experiments that aim to partition the genetic
variation in a population have focused on
detecting the genetic (that is, additive and
dominance) effects of individual QTLs, irre-
spective of interactions10,11 (FIG. 1b). This strat-
egy has been successful for detecting QTLs
with large effects on the quantitative traits12,13,
and, in several instances, causal mutations for
QTLs have been identified in the coding14 as
well as the regulatory15 regions of genes. These
studies have therefore focused on the average
genetic effect of the genotypes of a QTL, ignor-
ing the possibility that these effects might be
influenced by genetic background, either by
other individual loci or by all other loci.

Epistatic QTLs. Epistatic QTL-mapping meth-
ods are more flexible than those for individual
QTLs as they simultaneously consider the
mean effects of multi-locus genotypes on
the phenotype (FIG. 1). The use of the method-
ology poses more technical challenges and
demands more from the data than individual
QTL mapping (BOX 2). For these reasons,
epistatic QTL mapping is not yet a standard
tool in complex trait studies. Epistasis be-
tween pairs of QTLs in which both or one
QTL have detectable individual effects has
been reported16–20, but the extent to which
epistasis controls variation in quantitative
traits has been poorly explored. There are sev-
eral methods for mapping epistatic QTLs in
human21 and experimental populations22–25;
some of the most recent methods are based on
simultaneous scans and randomization tests
that detect QTLs that do not have individual
effects23,24. Such approaches have led to the
identification of many, statistically reliable,
novel epistatic QTLs.

Insights from model organisms
Epistatic QTL-mapping studies in model
organisms have detected many new interac-
tions and have therefore concluded that epis-
tasis makes a large contribution to the genetic
regulation of complex traits. Epistatic QTLs
without individual effects have been found in
various organisms, such as birds26,27, mam-
mals28–32, Drosophila melanogaster 33 and
plants18,34. However, other similar studies have
reported only low levels of epistasis or no
epistasis at all, despite being thorough and
involving large sample sizes35–37. This clearly
indicates the complexity with which multifac-
torial traits are regulated; no single mode of
inheritance can be expected to be the rule in
all populations and traits. Thorough genetic
studies of complex traits therefore need to be
flexible and need to accommodate various
modes of inheritance, as we cannot currently
define a specific mode of inheritance before

Box 1 | Defining epistasis

Mendelian traits
The term ‘epistasis’ was initially used in
the context of Mendelian inheritance;
environmental effects are relatively
unimportant for Mendelian traits, so
individuals can be clearly assigned to
one of a limited number of classes
according to their phenotype. Here,
epistasis was used to describe the
situation in which the actions of one
locus mask the allelic effects of another
locus, in the same way that completely
dominant alleles mask the effects of the
recessive allele at the same locus. A
clear example of this can be seen in a, in
which the dominant allele (I) at the
KIT locus, which confers white-coat
colour in the pig, is dominant over all
alleles at the MC1R locus (E), which
confer a darker coat colour. The effects
of the various alleles at the E locus can
only be determined in individuals with
the recessive genotype ii at the I locus.
This example was classically termed
‘dominant epistasis’, which gives a
segregation ratio of 12:3:1 for
white:black:brown, respectively.

Complex traits
For complex traits, epistasis describes
any interaction between two or more
loci, such that the phenotype of any
genotype cannot be predicted simply
by summing the effects of individual
loci. A fictive example with two loci
with no epistasis for a complex trait is
shown in b. Here, the 3 lines for the
effects of 3 genotypes at locus 1 run in
parallel, indicating that the phenotypic
effect is not influenced by the genotype
at locus 2. Examples of epistasis for
complex traits are shown in c–e. The
first common pattern (c) is similar to
Mendelian dominant epistasis shown
in a, in which one locus in a dominant
way suppresses the allelic effects of a
second locus. In this example of growth
in chickens, among-genotype variation
for locus 2 is only expressed in the presence of the homozygous LL genotype at locus 1 (REF. 26).
Such epistasis often leads to individual QUANTITATIVE TRAIT LOCI (QTLs) having small average
differences among genotypes and therefore not being detected unless epistasis is incorporated into
the analysis. The second epistatic pair (d) is an example of co-adaptive epistasis, in which
genotypes that are homozygous for alleles of the two loci that originate from the same line (that is,
JJ with JJ, or LL with LL) show enhanced performance. This type of gene interaction is particularly
interesting as the loci have no significant individual effect (for example, the average effect of JJ, JL
and LL do not differ) and it therefore cannot be detected without a SIMULTANEOUS SCAN for multiple
QTLs26. The third epistatic example (e) shows dominance-by-dominance epistasis, in which the
double heterozygote (LS, LS) deviates from the phenotype that is expected from the phenotypes of
the other heterozygotes (—, LS or SL, —). The figure shows an example of a negative dominance-
by-dominance interaction, which causes the double heterozygote to have a lower phenotype than
expected31. Images in panel a are reproduced with permission from REF. 56 © (2001) Macmillan
Magazines Ltd. and REF. 57 © (1998) Genetics Society of America.
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results of mapping single QTLs and epistatic
QTL pairs that affect growth differences
between Junglefowl and White Leghorn chick-
ens26. Four QTLs were detected by their indi-
vidual effects, and four additional QTLs were
found as part of an epistatic QTL pair. Two of
the QTLs that were significant only as part of
an epistatic QTL pair had near-significant indi-
vidual effects, whereas the other two were
novel epistatic loci that showed only minor
individual effects. These last two loci could
have been detected only through the simulta-
neous search approach. Similar results have
been found in other studies: for example, in
their analysis of functionally related physiolog-
ical traits in 95 D. melanogaster RECOMBINANT

INBRED LINES, Montooth et al.33 identified both
epistatic QTL pairs without individual effects
and QTL pairs with near-significant individual
effects.

the analysis is done. The routine use of epista-
tic QTL-mapping methodologies will help to
explore whether there are particular traits,
population types or species for which epista-
tic regulation is more important than for oth-
ers. Here, we focus on the results of the first
genome-wide scans for interacting QTLs
without individual effects26–33. These studies
indicate that the more widespread use of
QTL-mapping methods that are based on
simultaneous scans for the joint effect of pairs
of epistatic QTLs can give further insight into
the genetics that underlie complex traits.

Population size and statistical power. As
expected, the power to detect epistasis varies
with the size of the population and the preci-
sion with which the analysed phenotypes
are measured. So, results that are obtained
from smaller populations in which single

measurements are taken from each individ-
ual29,30 detect less epistasis than studies of large
populations26 or populations for which several
measures per genotype are considered33. In
summary, although the results indicate that
epistatic effects are often large enough to merit
a full genome scan for epistasis regardless of
the population size26–30,33, the epistatic studies
(or meta-analyses) of populations are at their
most powerful if they use good quality data
from 500 or more F

2
individuals.

Potential to detect novel epistatic QTLs.
Simultaneous mapping of QTLs using an
epistatic model can detect loci that mainly
affect the quantitative trait through epistatic
interactions with another locus, in addition to
those QTLs that are detected through their
average individual effects26–30. An example of
this is shown in FIG. 2, which summarizes the
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Figure 1 | Principles of individual quantitative trait loci and epistatic quantitative trait locus mapping. Quantitative trait locus (QTL) mapping aims to
partition the total genetic variation for a trait into the effects of individual loci. a | The F2 design for QTL mapping uses a three-generation pedigree, and requires
two strains that differ in the trait of interest and a linkage map of polymorphic molecular markers. The hybrid F1 generation derived from the parental lines is
intercrossed to produce F2 individuals; here, one full sibling family of n individuals that differ in the proportion of markers that they have inherited from the parental
lines is shown. F2 individuals are analysed statistically to determine whether there is a difference in phenotype between marker genotype classes. If there is, then 
the QTL alleles (here, Q,q and E,e) are linked to the marker. b | In principle, individual QTL mapping searches for the partitioning of the F2 individuals according to the
QTL genotype with the smallest phenotypic variation within the genotype classes and the largest differences among the genotype classes. Epistatic QTL mapping
partitions the individuals according to the genotypes at multiple loci (for example, Q and E), which ensures a better fit if the phenotype depends on the genotypes
of both loci. c | An individual QTL scan results in a statistical support curve for the individual effects of a QTL at each tested location in the genome (two green
boxes). A simultaneous scan for QTL pairs results in a statistical support surface for all potential combinations of QTL locations in the genome (centre panel). QTLs
with large individual effects will be seen as high peaks in the individual QTL support curve and as ridges in the QTL-pair support surface. A stepwise approach for
detecting epistatic QTLs (for example, on the basis of FORWARD SELECTION) will only detect epistasis along these ridges. QTLs with mainly epistatic effects will
usually appear only as small peaks in the individual QTL support curve, but as large peaks in the support surface for QTL pairs. Images of pigs in part b are
reproduced with permission from REF. 57 © (1998) Genetics Society of America. 
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complex traits.We also highlight the problems
in interpreting and applying QTL results that
could arise by ignoring epistasis.

Most strategies for epistatic QTL mapping
use quantitative genetic models, with the
detected epistasis being an indication of a
genotype–phenotype dependency between
loci that cannot be explained by individual
QTL effects. However, epistasis that is detected
in this way is not always biologically relevant.
For example, some types of statistical epistasis
result from the scale that is used to model
QTLs39 rather than from biological gene inter-
actions40. It is therefore necessary to evaluate
all combinations of loci using other post-
mapping analyses to further explore whether
the results can be explained by biological gene
interactions. One way to link statistical esti-
mates of epistasis to their biological meaning
is to plot two-locus genotype–phenotype pat-
terns for epistatic pairs and to connect these to
experimentally determined gene-interaction
patterns26,27,31,41. Several frequently occurring
epistatic patterns have been identified by this
approach (BOX 1), and, in some cases, these
resemble Mendelian epistatic relationships
(‘dominant epistasis’ in BOX 1a,c); such patterns
can then be used to identify the underlying
molecular mechanisms. Another means of
exploring the functional relationships that
underlie epistasis is to use gene regulatory net-
works42 to infer the genetic regulatory struc-
tures, such as positive- or negative-feedback
loops, that can generate the detected epistatic
patterns.

Functional relationships among loci have
also been used to reconstruct the genetic
pathways that are involved in regulating the
complex trait. By creating networks in which
QTLs are nodes and connections are epistatic

predicting phenotypic variation from simulta-
neously considering multiple-locus genotypes,
relative to predicting it from the sum of single-
locus genotypes. Despite the success of some
epistatic QTL studies, the estimates of epistasis
do not, in general, have a direct relationship to
biological mechanisms of gene interactions1,5.
In this section, we illustrate how knowledge
about statistical epistasis can be used to
infer the biological mechanisms that underlie

Potential to attribute a larger proportion of
the genetic variance to QTLs. By estimating
the consequences of both significant individ-
ual and interaction effects, it has been possible
to better explain the total phenotypic varia-
tion in terms of individual loci and combina-
tions of loci. The proportion of the total
genetic variance in F

2
or recombinant back-

cross populations that results from epistasis
was estimated in 5 available comparable stud-
ies: the variance ranged from 0 to 81% with a
mean of 38% for the 18 traits studied. The
results are summarized in TABLE 1 (REFS 26–30).
Given that the average phenotypic variances
associated with correctly identified individual
QTLs can be overestimated if smaller num-
bers of progeny are analysed38, there is a risk
that the variance that results from epistasis for
the smaller populations shown in TABLE 1

(REFS 28–30) has been overestimated; by con-
trast, the estimates from the larger populations
are expected to be more reliable26.

Epistatic versus biological interactions
The term epistasis has two related, but distinct,
meanings in genetics1. It was originally coined
to describe the action by which one Mendelian
locus alters the allelic effects at another locus,
similar to the way dominance alters the allelic
effects within a locus. In quantitative genet-
ics, epistasis relates to the improvement in

Box 2 | The challenges of epistatic analyses

Methods for detecting epistasis can easily be derived from methods that have been developed for
detecting individual QTL effects in experimental58–60 and human populations61–67. The main
obstacle to the more widespread use of these methods is therefore not the theoretical adaptation
of QTL-mapping methods to accommodate epistasis, but, rather, the practical limitations of
performing the analyses on experimental data. The principal limitations are outlined below.

The computational demand of thorough epistatic QTL analyses is generally high. The number
of potential QTL combinations in a multiple-QTL model increases rapidly with the number of
QTLs that are considered simultaneously. So, it quickly becomes computationally intractable to
evaluate all of these potential combinations of QTLs. By using parallel computing and efficient
algorithms for epistatic QTL mapping68–70, the computational demands of the epistatic QTL
analyses can be significantly reduced.

The standard procedure during significance testing in QTL mapping is to use stringent
significance thresholds, which are derived, for example, through RANDOMIZATION TESTS, to correct
for the multiple testing that is performed during genome scanning23,24,71. Owing to a markedly
higher number of tests that are carried out in multi-dimensional scans for epistatic QTLs, the
use of multiple-testing corrected thresholds will cause only large epistatic effects to be
detectable. To detect more subtle epistasis, alternative testing approaches are needed.

Many data sets are not suitable for evaluations of epistasis. When searching for epistatic QTLs,
the epistatic effects in the genetic models are derived from the genotype means of multi-locus
genotypes instead of single-locus genotypes, as in individual QTL analyses. So, the power to
detect QTLs depends on the number of individuals in the genotype classes on which the analysis
is based. This means that considerably larger population sizes are needed to obtain the same
power to detect an epistatic effect as an individual effect in the analyses.

Computationally improved QTL-mapping algorithms will become a powerful tool for
detecting epistatic QTLs in experimental populations, which can be designed for epistatic QTL
mapping. The obstacles to obtaining high power in epistatic QTL mapping are, however, high in
human populations, and will hamper the use of traditional approaches to detect epistasis unless
alternative routes to identifying and validating epistatic QTLs are found.
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improved bioinformatic tools, will help to
address some of these technical problems. In
this section, we consider some options for
incorporating these new technologies in a
joint framework for quantitative genetic
analysis.

Model organisms. Epistatic QTLs with large
enough effects can be detected even in small
experiments29,30, so more knowledge about
epistasis could be obtained from many pre-
viously collected experimental data sets by
re-analysing them with an epistatic QTL-
mapping method. An even more rewarding
strategy — one that has been used successfully
for individual QTL effects — would be the
joint analysis of data from similar or identical
crosses carried out in different laboratories or
at different times43. New analyses of already-
collected data would be a cost-efficient way
to obtain more experimental evidence for the

interactions, large networks that contain
many QTLs have been created for several
traits, including adiposity (build up of fat)
and tail length in mice41 and growth in chick-
ens27, whereas several smaller networks have
been reported for maternal performance for
offspring survival31.

Interactions among loci result in the
genetic effects of alleles at one locus differing
in magnitude or direction depending on the
genotype at another locus. There is a risk that
individual loci will remain undetected in cases
in which epistasis is ignored, and that the esti-
mated effects of detected QTLs could be
severely biased. Overestimation of individual
QTL effects leads to erroneous interpretations
of the relative importance of detected QTLs,
but also to problems with confirming QTL
effects in further crosses and to lower eco-
nomic gain if attempts are made to use the
QTLs (for example, in MARKER-ASSISTED SELECTION;
MAS). Epistasis therefore needs to be consid-
ered if choosing the validation strategy for
detected QTLs, as the nature of the interaction
can guide the researcher to the appropriate
genetic background to obtain maximal power
for replication. For example, improving the
resolution of mapping a QTL through recom-
binant-progeny testing is only possible if the
chosen parents have a genetic background that
allows expression of the phenotype in the
progeny. The same applies to MAS, in which
the economic gain of introducing QTL alle-
les to new lines can be improved by using
knowledge about important interactive
effects that are mediated by specific alleles at
other genomic loci.

Guidelines for effective analysis
As discussed in the previous section, large and
powerful studies are needed to thoroughly
examine the genetic basis of complex traits, as
smaller studies only allow detection of larger
epistatic QTLs. How can this knowledge be
applied to improve understanding of epista-
sis in model organisms and how should epis-
tasis be approached in inherently less powerful
designs such as in human or other natural

populations? In theory, the analytical princi-
ples described above should apply equally
well to all populations; however, in practical
terms, its application is hindered by technical
limitations and the nature of the experimen-
tal data (see BOX 2). New technologies, such as
high-throughput, high-density genotyping,
more affordable expression analysis and

Table 1 | Epistatic genetic variation explained by quantitative trait loci*

Species Genotyped Number Proportion of variance Reference
population of traits that results from epistasis

Mean Maximum Minimum

Chicken F2 5 46% 79% 0% 26

Chicken F2 3 26% 31% 19% 27

Mouse BC1 4 27% 33% 19% 28

Mouse F2 5 49% 81% 16% 29

Mouse RBC 1 16% 16% 16% 30

*Estimates are based on the 5 available comparable studies, which cover 18 traits26–30. BC1, first-generation
backcross; RBC, reciprocal backcross.

Glossary

ASSOCIATION STUDIES

A set of methods that is used to identify 
correlations between genetic polymorphisms and
expression of phenotypes, such as diseases, in
populations.

BOMBAY PHENOTYPE

A rare ABO blood group (O
h
) in which the genotype at a

locus other than the ABO gene locus makes the
individuals seem to have blood type ‘O’ even if the ‘A’ or
‘B’ enzymes are present.

CANDIDATE GENES 

Genes in which functional variation is thought to affect
the trait under consideration, often on the basis of their
physiological role or their effects in other species.

F-PROFILE 

A plot of the statistical support (measured by an F-test)
for quantitative trait loci at regular intervals throughout
the genome.

FALSE DISCOVERY RATE 

(FDR). The proportion of false-positive test results out of
all positive (significant) tests (note that the FDR is
conceptually different to the significance level).

FIRST-ORDER GENETIC INTERACTIONS 

Interactions between pairs of genes or quantitative trait
loci.

FORWARD SELECTION 

A statistical procedure in which a multi-dimensional
genome scan is reduced to a series of sequential 
one-dimensional genome scans.

HAPLOTYPE 

The allelic configuration of multiple genetic markers that
are present on a single chromosome of a given
individual.

MAJOR GENE 

A gene that is part of a polygenic or oligogenic system
but for which alternative alleles have a large influence on
the phenotype.

MARKER-ASSISTED SELECTION

(MAS). Genetic markers are used to indirectly select for
specific alleles at closely linked trait loci by directly
selecting for the marker.

PENETRANCE 

The proportion of individuals with a specific genotype
who manifest the genotype at the phenotypic level. For
example, if all individuals with a specific disease
genotype show the disease phenotype, then the disease is
said to be ‘completely penetrant’.

QUANTITATIVE TRAIT 

A continuously distributed measurable trait for which
variation depends on a single gene or on the cumulative
action of many genes and the environment. Common
examples include height, weight and blood pressure.

QUANTITATIVE TRAIT LOCUS 

(QTL). Genetic loci or chromosomal regions that
contribute to variability in complex quantitative traits, as
identified by statistical analysis. Quantitative traits are
typically affected by several genes and by the
environment.

RANDOMIZATION TEST 

A statistical test in which statistical significance is judged
by comparison to a distribution that is generated by
repeated random permutations of the actual data.

RECOMBINANT INBRED LINE 

A population of fully homozygous individuals that is
obtained by repeated selfing from an F

1
hybrid, and that

comprises 50% of each parental genome in different
combinations.

SIMULTANEOUS SCAN 

A multi-dimensional genome scan in which several gene
locations are selected simultaneously.

VARIANCE-COMPONENT APPROACH

Quantitative trait locus (QTL) analysis method, suited to
complex family structures, in which variance that is
attributable to a QTL is estimated rather than the mean
effects of alternative genotypes.
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not a ready-made solution, which means
that the full implementation of the strategy
requires further research — for example,
into how to use information from the differ-
ent sources to avoid biasing the results
towards previously well-studied systems and
away from potential new findings.

The rapid development of high-through-
put techniques provides many potential
sources of external information for the test-
ing procedure. Genome-sequencing projects
provide information on most genes that are
located in the regions of QTLs. As few
regions in the genome are expected to lack
potential candidate genes, functional infor-
mation about dependencies between the

relationships47. The derivation of haplotypes
across the genome opens new opportunities
for mapping genes that underlie complex
traits in natural populations48. It should be
possible to perform genome scans for direct
associations between haplotypes at one loca-
tion or combinations of haplotypes at two
locations with trait variation. However, testing
for interactions between multiple haplotypes
in two locations is probably intractable. As an
alternative, the haplotypes could be used to
reconstruct the genetic relationship between
individuals, both at individual loci and for
combinations of loci. QTL effects can then be
predicted by using the VARIANCE-COMPONENT

APPROACH to estimate the proportion of the
genetic variance that results from the effects
of individual loci and from the interactions
between them49. The sample sizes of these
populations will probably need to be consider-
ably larger than those of the experimental
populations to achieve similar power, owing to
a lower signal-to-noise ratio in the phenotypic
measurements50,51. The designs might therefore
not be cost-effective for detecting novel epista-
tic patterns until the large-scale collection of
haplotype data becomes feasible.

Integrated framework for detecting epistatic
QTLs. Most QTL-mapping studies are based
on stringent significance thresholds that are
derived to control the rate of false positives in
the study. It has been argued52 that we ought to
focus on optimizing our procedures for elimi-
nating and controlling false positives instead
of imposing these stringent criteria. A step-
wise approach in which a FALSE DISCOVERY RATE

(FDR)53 calculation is used to control the rate
of false positives in each step is efficient at
removing false positives52. Furthermore, the
combination of information from many
data sources has improved the range and
quality of conclusions that can be drawn, for
example, in studies that are based on gene-
expression analysis54. Here, we propose a
stepwise approach to build confidence in
epistatic QTLs using many independent data
sources. A multi-dimensional genome scan is
used to identify a set of potentially interacting
QTLs, and, in subsequent steps, external
information is used to increase or decrease
confidence in each of the QTLs in the initial
set (FIG. 3). This strategy will allow the detec-
tion of interacting QTLs of smaller effects
and strong external support as well as novel
QTLs with larger effects but less external
support. What we present here is the outline
of a strategy that, if fully implemented,
exploits the ability of a multi-dimensional
scan to detect novel epistatic QTLs without
demanding large populations or effects. It is

role of epistasis in the regulation of complex
traits.

Future study designs should, however,
consider exploring epistasis more thoroughly.
Collecting information on epistatic patterns
and networks from many organisms and on a
wide range of traits could be a valuable
approach to understand more about what to
look for in natural populations and potentially
also to find new ways to model gene interac-
tions. A thorough exploration of FIRST-ORDER

GENETIC INTERACTIONS needs to be based on rea-
sonably large populations, and new studies
should aim for at least replicating the popula-
tion sizes of the largest successful studies (of
850 F

2
individuals26 or 100 unique genotypes

with multiple phenotypic measurements33). It
will also be necessary to further explore the
contribution of higher-order epistasis, for
which even larger populations are needed. For
example, 4,000 F

2
individuals are needed to

study three-way interactions in an F
2

popula-
tion, based on having the same number of
individuals in all three-locus genotype classes
as in a study of two-way interactions using
1,000 F

2
individuals. However, before initiat-

ing such studies, it would be useful to explore
large individual studies that have already
been carried out or meta- or joint analyses of
compatible data sets.

Natural populations. There is reason to assume
that the importance and abundance of gene
interactions in natural populations are of the
same magnitude as those found in model
organisms. Several studies of epistasis among
major genes or candidate genes have found
epistasis in the expression of complex traits of
medical importance in humans, including
type I diabetes44, type II diabetes45 and inflam-
matory bowel disease46. However, owing to
lack of power, evaluations of epistasis are not
included as a standard procedure in the
genetic analysis of complex traits in natural
populations. Could the algorithms that have
successfully been used in experimental popu-
lations be adopted for analyses of more com-
plex populations as well? In theory, the answer
is yes, but in practice, it is difficult to collect
data sets of sufficient size to obtain the full
benefits of this methodology. However, cur-
rent efforts in humans and other species to
generate dense genetic maps using many
polymorphic markers, such as SNPs, is
encouraging; the aim of such projects is to use
the maps to reconstruct common genome-
wide HAPLOTYPES. In future, it should then, at
least theoretically, be possible to obtain suffi-
cient population sizes by sampling individuals
from the general population and using high-
density SNP maps to reconstruct haplotypic
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Figure 3 | Proposed framework for acquiring
confidence in quantitative trait loci. The
strategy involves integrating quantitative trait locus
(QTL) mapping and external information. First, a
(multi-dimensional) genome scan is performed to
estimate the contribution of all possible
combinations of genomic regions to the expression
of the studied trait(s). From the complete results, a
set of potentially biologically interesting QTLs is
selected on the basis of a false discovery rate
calculation (FDR). The FDR that is used does not
need to be set at a particularly high level to identify
potentially interesting regions52. The second step of
the procedure aims to separate the set of potential
QTLs into high- and low-confidence QTLs using
external information. The classification of a QTL as
a high-confidence QTL could be on the basis of
very high significance in the QTL-mapping
experiment, strong external evidence for an
interaction or a combination of the two.
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genes needs to be added before the informa-
tion can be used. Experimental evidence on
gene dependencies can be extracted from the
literature or databases on reported epistasis
between QTLs or candidate genes, from
knowledge of biochemical pathways and
from studies on protein–protein interactions.
Further experimental information can be
obtained by studying gene expression, which
provides evidence of regulatory relationships
between groups of genes in the specific data
set. Other bioinformatic evidence could come
from, for example, mining literature databases
for co-occurrences of gene names in pub-
lished articles55. To further develop and evalu-
ate this approach, we need to implement it for
model organisms in which we can carry out
large-scale studies and identify convincing evi-
dence of epistasis with limited external evi-
dence. These will then provide a means of
learning what information is most valuable
and how it can be applied most effectively in
studies of natural populations such as those of
our own species. Ironically, the extra restric-
tions that this procedure imposes on the type
of loci involved could, in some circumstances,
make it easier to identify candidate loci that
underlie pairs of interacting QTLs than it is to
identify a candidate gene that underlies a QTL
with no interactions.

Future prospects
New technologies are continually evolving to
give us more information about isolated com-
ponents of biological systems. One of the
most challenging tasks will be to integrate the
information in a biological model that can
predict the function of the entire biological
system. Genetics is central in biological mod-
elling, as it provides the framework in which
all other components act. It is possible to
identify the influence of individual genetic
components on variation in a system, and we
are now starting to supplement that knowl-
edge with information about the interplay
between genes and how they jointly affect the
system. The identification of epistatic interac-
tions between genes and/or QTLs is a valuable
starting point for a more thorough under-
standing of these genetic networks. Our aim
is to develop analytical frameworks that inte-
grate information from many sources. It is
with this in mind that we have proposed a
general strategy for the detection of (epistatic)
QTLs, in which information from many dis-
ciplines is integrated in one framework. It is
to be hoped that this will provide more infor-
mation on the nature of gene interactions,
because unless we consider epistasis, we will
not be able to fully understand the control of
complex traits.
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