Epistemic Foundation of the Well-Founded
Semantics over Bilattices

Yann Loyer! and Umberto Straccia?
! PRiSM (CNRS UMR 8144), Université de Versailles, FRANCE
Yann.Loyer@prism.uvsq.fr
2 1.S.T.I - CN.R., Via G. Moruzzi,1 I-56124 Pisa (PI) ITALY
Umberto.Straccia@isti.cnr.it

Abstract. We define new, both model-theoretical and fixpoint-based,
characterizations of the well-founded semantics for logic programs in the
general setting of bilattices. This work lights the role of the CWA, used in
the well-founded semantics as a carrier of falsehood, and shows that the
definition of that semantics does not require any separation of positive
and negative information nor any program transformation.

1 Introduction

One of the most important problems of logic programming consists in defining
the intended meaning or semantics of any given logic program. Classical logic
programming has the set {f,t} (false, true) as its intended truth space, and the
usual semantics of a negation-free logic program is given by its unique minimal
Herbrand model [7], relying on the Closed World Assumption (CWA) to complete
the available knowledge. The CWA assumes that all atoms not entailed by a
program are false [21], and is motivated by the fact that explicit representation of
negative information in logic programs is not feasible since the addition of explicit
negative information could overwhelm a system. But, in order to increase the
expressivity of the language, it is often necessary to allow some non-monotonic
modes of negation, having as a consequence that the existence of such a model
is no more guaranteed.

A widely used solution consists in allowing partial models by extending
the classical set of truth-values {f,t} to the set {f,t, L}, where L stands for
unknown and is closely related to null values in database systems. Over that set
can be defined two orderings: the truth order <; that extends the classical order
f <¢ L <; t), and the knowledge order <}, (L represents less knowledge than £
and t that are both incomparable).

A first approach [10/13] has lead to the Kripke-Kleene semantics of logic
programs, based on an extension @p to the Van Emden-Kowalski’s immediate
consequence operator Tp [7], and thus on the classical evaluation of negation (the
evaluation of a negative literal —A is given by the negation of the evaluation of A).
That semantics can be defined as the least model of the program and computed
as the least fixpoint of ®p with respect to the knowledge order. Unfortunately

J. Fiala et al. (Eds.): MFCS 2004, LNCS 3153, pp. 513-524] 2004.
(© Springer-Verlag Berlin Heidelberg 2004



514 Y. Loyer and U. Straccia

that semantics is often considered to be too weak in the sense that it does not
provide enough knowledge.

A more informative approach has lead to the stable model approach [11],
which defines a whole family of models, based on the so-called Gelfond-Lifschitz
transform [8]. Informally, the main principle of that approach is the separation
of the role of positive and negative information. That is, the negative literals of
a program are first evaluated to obtain a negation-free program whose minimal
Herbrand model can be computed. As a consequence, this separation avoids
the natural management of classical negation which is a major feature of the
Kripke-Kleene semantics of logic programs with negation. To overcome the fact
that some programs have no stable model over the set of truth-values {f,t},
Przymusinski ([T920]) extended the Gelfond-Lifschitz transform, and thus the
notion of stable model semantics to allow partial stable models. Remarkably,
one among these stable models, the minimal one according to the knowledge
ordering, is often considered as the favorite one and, as shown in [20], is one-
to-one related with the so-called well-founded semantics defined independently
from the stable models in [22]. It is not unusual that, rather than to compute
the whole set of stable models, one computes the well-founded semantics only.

The following step was to move from three-valued logics, allowing the repre-
sentation of incomplete information, to the well-known four-valued set of truth-
values FOUR = {£,t, L, T}, introduced by Belnap ([3]) to allow the represen-
tation of inconsistency (denoted T) as well. This process of enlarging the set
of truth-values culminated with Fitting’s progressive work (e.g. [8[9]) on giving
meaning to logic programs by relying on bilattices [12]. Bilattices, where FOUR
is the simplest non-trivial one, play an important role in logic programming, and
in knowledge representation in general, allowing in particular reasoning with in-
consistency and uncertainty (see e.g. [TIGITAITHTET7ITR]). Fitting proposed an
extension of the stable models family by extending the Gelfond-Lifschitz trans-
form from logic programming over two- or three-valued logics to logic program-
ming over bilattices [§]. As a consequence, that work proposed an extension to
that setting of the well-founded semantics as well, as being the least fixpoint,
with respect to a given knowledge order, of the extension of the Gelfond-Lifschitz
transform.

The primary goal of this study is to show, in the quite general setting of
bilattices as space of truth-values, that neither this separation of positive and
negative information is necessary nor any program transformation is required to
characterize the well-founded semantics. Indeed, we show that it can be defined
as a simple, natural and epistemic extension of the Kripke-Kleene semantics.
Informally, we view the CWA as an additional source of information to be used
for information completion, or more precisely, as a carrier for falsehood, to be
considered cumulatively to the Kripke-Kleene semantics. To this end, given a
logic program P and an interpretation I representing our current knowledge
about some intended model of P, we define the notion of support provided by the
CWA to the program P with respect to I. The support provided by the CWA to a
program P with respect to an interpretation I extends the notion of unfounded



Epistemic Foundation of the Well-Founded Semantics over Bilattices 515

set [22] from three-valued logics to bilattices, and determines in a principled way
how much false knowledge, i.e. how much knowledge provided by the CWA, can
“safely” be joined to I with respect to the program P. Then, we define the set
of supported models to be the set of those models that can not be completed
anymore by the CWA i.e. that contains their own support. We provide different
characterizations of that family of models in terms of an operator managing
negation classically, i.e. in terms of @p. Finally, we show that stable models are
supported models and that the well-founded semantics coincides with the least
supported model with respect to the knowledge order.

As a consequence, we propose alternative, both epistemic and fixpoint-based,
characterizations of the well-founded semantics to the well-known, widely applied
and long studied technique based on the separation of positive and negative in-
formation, by reverting to the classical interpretation of negation, i.e. we char-
acterize negation-as-failure as standard negation. While Fitting treats negation-
as-failure in a special way and unlike other connectives, our approach is an
attempt to relate the semantics of logic programs to a standard model-theoretic
account of rules. We emphasize the possibility to analyze logic programs using
standard logical means as the notion of interpretation and information ordering,
i.e. knowledge ordering. Therefore, our approach in principle does not depend on
the presence of any specific connective, such as negation-as-failure, nor on any
specific syntax of rules. Moreover our approach lights, in the general setting of
logic programming over bilattices, the role of the CWA in the well-founded se-
mantics. Due to the generality and the purely algebraic nature of our results, as
just monotone operators over bilattices are postulated, the epistemic character-
ization of the well-founded semantics given in this study can be applied in other
contexts as well (e.g. uncertainty and/or paraconsistency in logic programming,
or nonmonotonic logics).

The remaining of the paper is organized as follows. In order to make the paper
self-contained, in the next section, we will briefly recall definitions and properties
of bilattices and logic programs. Section B]is the main part of this work, where
we present our characterizations of the well-founded semantics, while Section [4]
concludes. Due to lack of space, proofs are omitted and are available from the
authors’ on-line version.

2 Preliminaries

2.1 Bilattices

The simplest non-trivial bilattice, called FOUR, is due to Belnap ([3]), who
introduced a logic intended to deal with incomplete and/or inconsistent infor-
mation — see also [2]. FOUR already illustrates many of the basic properties
concerning bilattices. Essentially, FOUR extends the classical truth set {f,t}
to its power set {{£},{t},0, {f,t}}, where we can think that each set indicates
the amount of information we have in terms of truth: so, {f} stands for false, {t}
for true and, quite naturally, () for lack of information or unknown, and {f,t}
for inconsistent information (for ease, we use £ for {f}, t for {t}, L for ) and



516 Y. Loyer and U. Straccia

=k

Fig. 1. The logic FOUR.

T for {£,t}). FOUR has two quite intuitive and natural ‘orthogonal’ orderings,
=k and =; (see Figure [I]), each giving to FOUR the structure of a complete
lattice. One is the so-called knowledge ordering, denoted =<, and is based on
the subset relation, that is, if x C y then = represents ‘more information’ than
y (e.g. L=0C {t} =t,ie L =< t). The other ordering is the so-called truth
ordering, denoted =<;. Here x =<; y means that z is ‘at least as false as y is,
and y is at least as true as x is’, i.e. z N {t} CyN{t} and y N {f} C x N {f}
(e.g. L =<1 t).

Formally [12]9], a bilattice is a structure (B, <;, <)) where B is a non-empty
set and <; and =< are both partial orderings giving 55 the structure of a complete
lattice with a top and bottom element. Meet (or greatest lower bound) and join
(or least upper bound) under =<;, denoted A and V, correspond to extensions of
classical conjunction and disjunction. On the other hand, meet and join under
= are denoted ® and ®. x ® y corresponds to the maximal information z and
y can agree on, while x @ y simply combines the information represented by x
with that represented by y. Top and bottom under <; are denoted t and f, and
top and bottom under =i are denoted T and L, respectively. We will assume
that bilattices are infinitary distributive bilattices in which all distributive laws
connecting A,V,® and @ hold. We also assume that every bilattice satisfies the
infinitary interlacing conditions, i.e. each of the lattice operations A, V, ® and @
is monotone w.r.t. both orderings. Finally, we assume that each bilattice has a
negation, i.e. an operator — that reverses the <; ordering, leaves unchanged the
=< ordering, and verifies -~z = .

2.2 Logic Programs and Models

We recall here the definitions given in [8]. This setting is as general as possible,
so that the results proved in this paper will be widely applicable.

Logic programs. Consider an alphabet of predicate symbols, of constants,
of function symbols and variable symbols. A term, t, is either a variable x, a
constant ¢ or of the form f(¢y,...,t,), where f is an n-ary function symbol and
all ¢; are terms. An atom, A, is of the form p(t,...,t,), where p is an n-ary
predicate symbol and all ¢; are terms. A literal, [, is of the form A or = A, where



Epistemic Foundation of the Well-Founded Semantics over Bilattices 517

A is an atom. A formula, @, is an expression built up from the literals and the
members of a bilattice B using A,V,®,®,d and V. Note that members of the
bilattice may appear in a formula, e.g. in FOUR, (pAq) D (r@£) is a formula. A
rule is of the form p(x1,...,2,) < @(x1,...,2,), where p is an n-ary predicate
symbol and all z; are variables. The atom p(z1,...,x,) is called the head, and
the formula ¢(x1,...,z,) is called the body. It is assumed that the free variables
of the body are among x1,...,z,. Free variables are thought of as universally
quantified. A logic program, denoted with P, is a finite set of rules. The Herbrand
universe of P is the set of ground (variable-free) terms that can be built from
the constants and function symbols occurring in P, while the Herbrand base of
P (denoted Bp) is the set of ground atoms over the Herbrand universe.

Given P, the set P* is constructed as follows; (i) put in P* all ground in-
stances of members of P (over the Herbrand base); (i) if a ground atom A is
not head of any rule in P*, then add the rule A + f to P*; [ and (4i1) re-
place several ground rules in P* having same head, A < @1, A < @2, ...with
A— o1V V.. .B Note that in P*, each ground atom appears in the head of
ezxactly one rule.

Interpretations. An interpretation of a logic program on the bilattice (B, <,
,=k) is a mapping from ground atoms to members of B. An interpretation [
is extended from atoms to formulae as follows: (i) for b € B, I(b) = b; (i)
for formulae ¢ and ¢', I(p A ¢’') = I(¢) A I(¢'), and similarly for V,®,® and
—; and (i49) I(3ze(x)) = V{I(p(t)):t ground term}, and similarly for universal
quantificatior’. The truth and knowledge orderings are extended from B to the
set Z(B) of all interpretations as follows: (i) Iy =4 Ip iff I;(A) < Iz(A), for
every ground atom A; and (ii) Iy =i Io iff [1(A) =k I2(A), for every ground
atom A. We define (I1 A I3)(p) = Li(p) A I2(p), and similarly for the other
operations. With If and I denote the bottom interpretations under <; and
=k respectively (they map any atom into £ and L, respectively). It is easy to see
that (Z(B), =, =k) is an infinitary interlaced and distributive bilattice as well.

Classical setting. Note that in a classical logic program the body is a con-
junction of literals. Therefore, if A «+ ¢ € P*, then ¢ = ¢1 V...V ¢, and
wi = L;j; N...ANL;, . Furthermore, a classical total interpretation is an interpre-
tation over FOUR such that an atom is mapped into either f or t. A partial
classical interpretation is a classical interpretation where the truth of some atom
may be left unspecified. This is the same as saying that the interpretation maps
all atoms into either f£,t or L. For a set of literals X, with =.X we indicate
the set {—L:L € X}, where for any atom A, =—A is replaced with A. Then,
a classical interpretation (total or partial) can also be represented as a set of
literals, and inversely.

LIt is a standard practice in logic programming to consider such atoms as false.

2 There could be infinitely many grounded rules with same head, but the semantics
behavior is unproblematic.

3 The bilattice is complete w.r.t. <, so existential and universal quantification are
well-defined.



518 Y. Loyer and U. Straccia

Models. An interpretation [ is a model of a logic program P, denoted by I = P,
if and only if for each rule A < ¢ in P*, I(p) <; I(A).

Fitting ([89]) identifies a set of models which obeys the so-called Clark-

completion procedure [B], by mainly replacing each occurrence of < in P* with
<»: an interpretation [ is a Clark-completion model, cl-model for short, of a logic
program P, denoted by I =, P, iff for each rule A < ¢ in P*, I(A) = I(p).
It can easily be shown that Clark-completion models have also an alternative
characterization given by I = P iff I = min<,{J:J | P[I]}, where P[I] =
{AI(p): A+ peP*}.
Program k-completions. We introduce here the notion of program knowledge
completion, or simply, k-completion with I, denoted P @ I. The idea is to enforce
any model J of P & I to contain at least the knowledge determined by P and
1. That is, the k-completion of P with I, is the program obtained by replacing
any rule of the form A < ¢ € P by A<+ ¢ @ I(A).

2.3 Semantics of Logic Programs

The semantics of a logic program P is usually determined by selecting a par-
ticular model, or a set of models, of P. We recall the definitions of the three
most popular and widely studied semantics for logic programs with negation in
increasing order of knowledge.

The Kripke-Kleene semantics. The Kripke-Kleene semantics [10] has a sim-
ple, intuitive and epistemic characterization. The Kripke-Kleene model of P, de-
noted K K (P), is the <i-least cl-model of P, i.e. K K (P) = min<, ({I: I = P}).

The Kripke-Kleene semantics has also an alternative, and better known, fix-
point characterization, by relying on the well-known @p immediate consequence
operator.

Definition 1 (&p). The immediate consequence operator @p:Z(B) — Z(B)
is defined as follows: for any ground atom A such that A < ¢ occurs in P*,

p(1)(4) = I(p).

dp is a generalization of the Van Emden-Kowalski’s immediate consequence op-
erator Tp [7] to bilattices under Clark’s program completion. Interesting prop-
erties of @p are that (i) Pp relies on the classical evaluation of negation, i.e. the
evaluation of a negative literal —A is given by the negation of the evaluation
of A; (ii) the cl-models of a program P coincide with the fixpoints of ®p; and
(#i1) &p is monotone with respect to the knowledge ordering and, thus, has a
=<k-least fixpoint, which coincides with the Kripke-Kleene semantics of P. Note
that @p([) = minjt{J: J ': P[I]}

As a consequence, all definitions and properties given in this paper in terms
of ®p and/or cl-models may be given in terms of models as well. As @p is a
well-known operator, for ease of presentation we will continue to rely on it.

Well-founded semantics and stable models. The original definition of the
well-founded semantics [22] was formulated for classical logic programs. That



Epistemic Foundation of the Well-Founded Semantics over Bilattices 519

definition relies on the immediate consequence operator Tp over the set of partial
interpretations, defined by Tp(I) = {A | 34 «+ Ly,....L, € P (VL; (L; € 1))},
for inferring positive information, and on the notion of unfounded set to complete
that information with negative information. A set of instantiated atoms U is said
to be unfounded with respect to a partial interpretation I if for all instantiated
atoms A € U and for all rules r € P the following holds: head(r) = A =
3L € body(r) (-L € I or L € U). Intuitively, a set of atoms is unfounded
if every way to infer an atom in that set, i.e. every rule with such an atom in
head, fails because some atom in the condition, i.e. in the body of the rule,
is in contradiction with the current knowledge and/or is itself unfounded. The
well-founded semantics of P is then defined to be the least fixpoint of the well-
founded operator Wp, defined by Wp(I) = Tp(I)U—.Up(I), with respect to set
inclusion, where Up(I) is the C-greatest unfounded set with respect to I.

The extension of the notions of the well-founded semantics to the context
of bilattices is due to Fitting [8], through the fact that the least partial stable
model coincides with the well-founded semantics [20]. He proposes a general-
ization of the Gelfond-Lifschitz transformation [I1]20], based on the same basic
principle that consists in separating the roles of positive and negative informa-
tion. Formally, let I and J be two interpretations in (Z(B), <, <). The pseudo-
interpretation I /\ J over the bilattice is defined as follows: for a pure ground
atom A, (I A J)(A) =1I(A) and (I A J)(—=A) = —~J(A). Pseudo-interpretations
are extended to non-literals in the obvious way. The immediate consequence op-
erator Up: Z(B) x Z(B) — Z(B) is then defined by: for any ground atom A such
that A < ¢ occurs in P*, ¥p(I,J)(A) = (I A J)(p). Using the monotonicity of
Up in its first argument with respect to =<y, Fitting defined the stability opera-
tor ¥: Z(B) — Z(B) as follows : ¥, (1) is the =<;-least fixpoint of the operator
ArWp(x,1), ie. Up(l) = lps, (Av.¥p(x,1)).

Finally, following Fitting’s formulation, a stable model for a logic program P
is a fixpoint of ¥1,. The operator ¥}, is monotone in the =< ordering and, thus,
has a =<j-least fixpoint, denoted W F(P). By definition, W F(P) is known as the
well-founded model of P .

3 Well-Founded Semantics Revisited

In the previous sections we have seen that, while for the Kripke-Kleene semantics
there is an intuitive epistemic and model theory-based characterization, for the
well-founded semantics on bilattices this is likely not the case. In the following,
we present our contribution, which mainly consists in defining both epistemic
and fixpoint-based characterizations of the well-founded semantics over bilat-
tices. We contribute, thus, to an alternative view of well-founded semantics over
bilattices, to the well-known and long studied separation of positive and negative
information in Fitting’s computation.
We will rely on the following running example.



520 Y. Loyer and U. Straccia

Example 1 (running example) Consider the following logic program P with
the following rules.

p<p

q < —r

r 4= g AN -p

In the following table, we report the different interpretations and models stud-
ied in this paper: cl-models, supports, Kripke-Kleene (K) and well-founded (W)
semantics, stable and supported models of P.

i lse (L) stable | supported
IiEa Pllp q r|lp g r||K|W|models| models

I L L 1jjfL Lfje
I> 1+t f||f L f

I3 £f 1L 1|f 1L L ° . °
14 f f tl|f £ L ° °
I5 ft fif L f . °
Ig £fTTIfff ° °
17 t t fl[f L £

Ig Tt f||f L f °
Iy TTTIEf £ £ °

3.1 Support

First we introduce the notion of support, denoted sp(I), provided by the CWA to
a logic program P with respect to a given interpretation I. Intuitively, we regard
I as what we already know about an intended model of P. On the basis of both
the current knowledge I and the information expressed by the rules of P, we want
to complete our available knowledge I, by using the CWA. We regard the CWA as
an additional source of information for falsehood. The support sp(I) of P w.r.t. I
determines in a principled way the maximal amount of falsehood provided by
the CWA that can be “safely” joined to I. The main principle underlying safe
interpretations can be explained as follows. For ease, let us consider FOUR.
Consider an interpretation I, which is our current knowledge about P. Let us
assume that the interpretation J, with J < I¢, indicates which atoms may be
assumed as f. For any ground atom A, J(A) is the default ‘false’ information
provided by J to the atom A. The completion of I with J is the interpretation
I®J. In order to accept this completion, we have to ensure that the assumed false
knowledge about A, J(A), is entailed by P w.r.t. the completed interpretation
I & J. In other words, for A <— ¢ € P*, assuming that A is false is safe if ¢ is
false as well with respect to the current knowledge I completed by the assumed
falsehood J, i.e. J(A) <k (I ® J)(p) should hold.

Definition 2 (safe interpretation). Let P and I be a logic program and an
interpretation, respectively. An interpretation J is safe w.r.t. P and I iff:

1. J =i Igy
2. J =X, Pp(IJ).



Epistemic Foundation of the Well-Founded Semantics over Bilattices 521

In the above definition, the first item dictates that any safe interpretation is
a carrier of falsehood, i.e. a part of the CWA. If J = Iy, then every ground
atom is false. But, given I and P, not necessarily all atoms can be considered as
false (e.g., some atoms may be inferred true from the program) and we have to
consider some weaker assumption J < I¢ of falsehood. The second item dictates
that a safe interpretation is cumulative, i.e. as we proceed in deriving more precise
approximations of an intended model of P, the accumulated falsehood should
be preserved. To illustrate that concept, consider the interpretation I of our
running example. Is dictates that p is unknown, ¢ is true and that r is false.
Consider the interpretations J; defined as follows:

Jilp g r
Ji|L L L
Jo|f L L
Js|lL L f
Julf L £

It is easy to verify that all the J;s are safe. The <;-least safe interpretation is Jp,
while the <-greatest one is J; = J; ® Jo ® J3. J, dictates that under I, we can
‘safely’ assume that both p and r are false. Note that if we join J4 to Is we obtain
the stable model I5, where Iy < I5. J, improves the knowledge expressed by Is.
One might wonder why we do not consider ¢ false as well. Indeed, if we consider
p,q and r false, after joining to I and applying @p, we have that ¢ becomes true,
which is knowledge-incompatible with ¢’s previous knowledge status (g is false).
So, ¢’s falsehood is not preserved, i.e. cumulative.

To give another intuitive reading of that notion, as anticipated, safe interpre-
tations have an interesting reading once we restrict our attention to the classical
framework of logic programming: indeed, the concept of safe interpretation re-
duces to that of unfounded set.

Theorem 1. Let P and I be a classical logic program and a classical interpre-
tation, respectively. Let X be a subset of Bp. Then X is an unfounded set of P
wrt. Tiff +.X = &p(I®-.X) B, i.e. =X is safe w.r.t. P and I.

The safe assumptions are parts of the CWA that can be added to the current
knowledge to complete it, thus among all possible safe interpretations, we privi-
lege the maximal one under =< in order to infer as much knowledge as possible.

Definition 3 (support). Let P be a logic program and I an interpretation. The
support provided by the CWA to P w.r.t. I, or simply support of P w.r.t. I,
denoted sp(I), is the <p-greatest safe interpretation w.r.t. P and I.

It is easy to show that the support is a well-defined concept: given two safe
interpretations J and J', then J @ J' =<; If and, from the monotonicity of
&p under =i, J @ J =< Pp(I ® J B J') and, thus, J @ J' is safe. Therefore,
sp(I) = @{J:J is safe w.r.t. P and I} . We give also an alternative fixpoint
characterization of the support to the model-theoretical one, and thus an effective
method to compute it.

4 Note that this condition can be rewritten as =.X C &p(I U -.X).



522 Y. Loyer and U. Straccia

Theorem 2. Consider the iterated sequence of interpretations defined by: for
any 1 > 0,

Fl =1¢, and

Floyy =1 @Pp(I @ F/).

The sequence F! is (i) monotone non-increasing under <) and, thus, reaches
a fixpoint FL, for a limit ordinal w; and (ii) monotone non-decreasing under =;.
Furthermore, sp(I) = FL holds.

Note that, for classical logic programs, the notions of support and greatest
unfounded set are closely related as the set of (negative) literals corresponding
to sp(I) coincides with the negation of the greatest unfounded set Up(I). It
follows that the above theorem leads to a new fixpoint computation of Up(I)
based on @p only. Indeed, —.Up(I) coincides with the limit of the sequence:

Fl =-.Bp

Note also that the support can be seen as a monotone operator over the space
of interpretations w.r.t. <g.

Theorem 3. The support operator sp is monotone w.r.t. <. Moreover, if [ <,
J, then sp(J) =¢ sp(I).

Theorem [B]has an intuitive reading: the more knowledge we have about a ground
atom A, the more we know (the more precise and informative we are) about A’s
falsehood, i.e. the more falsehood can be provided by the CWA to A.

3.2 Supported Models

Among all possible models of a program P, we will be especially interested in the
models I that integrate their own support (sp(I) <k I). Such models tell us that
we have reached the point where the additional source for falsehood provided by
the CWA can not contribute further to improve our knowledge about P.

Definition 4 (supported model). Consider a logic program P. An interpre-
tation I is a supported model of P iff I =i P and sp(I) =i 1.

Restricting our attention to classical logic programs, a partial interpretation is a
supported models of P iff I is a cl-model containing the negation of its greatest
unfounded set, i.e. I =4 P and —.Up(I) C I. Supported models have interesting
properties :

Theorem 4. The following are equivalent:

1. I is a supported model of P;
2. I=0p(I)®sp(I);

3.1 ':cl P@SP(I);

4. I =0p(I®sp(I)).



Epistemic Foundation of the Well-Founded Semantics over Bilattices 523

The above theorem states in different ways the same concept: supported models
contain the amount of knowledge expressed by the program and their support.
Thus, from a fixpoint characterization point of view, the set of supported models
can be identified by the fixpoints of the monotone immediate consequence oper-
ator ITp defined by ITp(I) = &p(I @ sp(I)) (an equivalent definition, in terms
of fixpoints, is [Ip(I) = &p(I) & sp(I), which could be seen as an extension to
bilattices of the well-founded operator Wp). Thus, the set of supported models
is a complete lattice under <y, and we show finally that the notion of supported
models provide new characterizations of the well-founded semantics.

Theorem 5. Stable models of P are supported models of P, and the <y-least
supported model of P coincides with the well-founded semantics of P.

Therefore W F(P) can be computed by iterations of IIp starting from I, . This
lights the role of the CWA that can be seen as a source of falsehood used to
complete the Kripke-Kleene semantics. Indeed, the well-founded semantics can
be obtained by iterating ®p from I (similarly to the Kripke-Kleene semantics),
but adding to each iteration some knowledge provided by the CWA. Apart ob-
taining alternative epistemic characterization and computation method of the
well-founded semantics to W, the above theorem highlights the fact that, in
the general context of logic programming over bilattices, neither a separation of
positive and negative information is necessary, nor any program transformation
is required for defining and computing the well-founded semantics.

4 Conclusions

In this study we have presented alternative formulations of the well-founded se-
mantics. Our approach is purely based on algebraic and semantical aspects of
informative monotone operators over bilattices. In this sense, we talk about epis-
temic foundation of the well-founded semantics. The main concept we rely on is
based on the fact that we regard the closed world assumption as an additional
source for falsehood and identify with the support the amount of falsehood car-
ried on by the closed world assumption. We have shown that the well-founded
semantics can be characterized as the knowledge minimal model containing its
own support, i.e. WF(P) = min<, ({I: I =P and sp(I) <y I}). This indicates
that the support may be seen as the added-value to the Kripke-Kleene semantics
and lights the role of the CWA in the well-founded semantics over bilattices. It
also shows that neither a separation of positive and negative information nor
any program transformation is necessary.

References

1. O. Arieli. Paraconsistent declarative semantics for extended logic programs. Annals
of Mathematics and Artificial Intelligence, 36(4):381-417, 2002.

2. O. Arieli and A. Avron. The value of the four values. Artificial Intelligence Journal,
102(1):97-141, 1998.



524

3.

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Y. Loyer and U. Straccia

N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors,
Modern uses of multiple-valued logic, pages 5-37. Reidel, Dordrecht, NL, 1977.

H. Blair and V. S. Subrahmanian. Paraconsistent logic programming. Theoretical
Computer Science, 68:135—154, 1989.

K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
data bases, pages 293-322. Plenum Press, New York, NY, 1978.

. C. V. Damasio and L. M. Pereira. A survey of paraconsistent semantics for logic

programs. In D. Gabbay and P. Smets, editors, Handbook of Defeasible Reasoning
and Uncertainty Management Systems, pages 241-320. Kluwer, 1998.

. M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a

programming language. Journal of the ACM (JACM), 23(4):733-742, 1976.

. M. C. Fitting. The family of stable models. Journal of Logic Programming, 17:197—

225, 1993.

. M. C. Fitting. Fixpoint semantics for logic programming - a survey. Theoretical

Computer Science, 21(3):25-51, 2002.

M. Fitting. A Kripke-Kleene-semantics for general logic programs. Journal of
Logic Programming, 2:295-312, 1985.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. A. Kowalski and K. Bowen, editors, Proc. of the 5th Int. Conf. on Logic
Programming, pages 1070-1080. The MIT Press, 1988.

M. L. Ginsberg. Multi-valued logics: a uniform approach to reasoning in artificial
intelligence. Computational Intelligence, 4:265—-316, 1988.

K. Kunen. Negation in logic programming. Journal of Logic Programming,
4(4):289-308, 1987.

Y. Loyer and U. Straccia. Uncertainty and partial non-uniform assumptions in
parametric deductive databases. In Proc. of the 8th European Conf. on Logics
in Artificial Intelligence (JELIA-02), LNCS 2424, pages 271-282. Springer-Verlag,
2002.

Y. Loyer and U. Straccia. The approximate well-founded semantics for logic pro-
grams with uncertainty. In 28th Int. Sym. on Mathematical Foundations of Com-
puter Science (MFCS-2003), LNCS 2747, pages 541-550. Springer-Verlag, 2003.
Y. Loyer and U. Straccia. Default knowledge in logic programs with uncertainty. In
Proc. of the 19th Int. Conf. on Logic Programming (ICLP-08), LNCS 2916, pages
466-480. Springer Verlag, 2003.

T. Lukasiewicz. Fixpoint characterizations for many-valued disjunctive logic pro-
grams with probabilistic semantics. In In Proc. of the 6th Int. Conf. on Logic
Programming and Nonmonotonic Reasoning (LPNMR-01), LNAI 2173, pages 336—
350. Springer-Verlag, 2001.

R. Ng and V.S. Subrahmanian. Stable model semantics for probabilistic deductive
databases. In Z. W. Ras and M. Zemenkova, editors, Proc. of the 6th Int. Sym.
on Methodologies for Intelligent Systems (ISMIS-91), LNAI 542, pages 163-171.
Springer-Verlag, 1991.

T. C. Przymusinski. Extended stable semantics for normal and disjunctive pro-
grams. In D. H. D. Warren and P. Szeredi, editors, Proc. of the 7th Int. Conf. on
Logic Programming, pages 459-477. MIT Press, 1990.

T. C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13(4):445-463, 1990.

R. Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, editors,
Logic and data bases, pages 55—76. Plenum Press, New York, NY, 1978.

A. van Gelder, K. A. Ross, and J. S. Schlimpf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620—-650, 1991.



	Introduction
	Preliminaries
	Bilattices
	Logic Programs and Models
	Semantics of Logic Programs

	Well-Founded Semantics Revisited
	Support
	Supported Models

	Conclusions

