
Epistemic Logic for the Applied Pi Calculus�

Rohit Chadha1, Stéphanie Delaune2, and Steve Kremer2

1 University of Illinois at Urbana-Champaign, USA
2 LSV, ENS Cachan & CNRS & INRIA Saclay, France

Abstract. We propose an epistemic logic for the applied pi calculus, which is
a variant of the pi calculus with extensions for modeling cryptographic proto-
cols. In such a calculus, the security guarantees are usually stated as equiva-
lences. While process calculi provide a natural means to describe the protocols
themselves, epistemic logics are often better suited for expressing certain security
properties such as secrecy and anonymity.

We intend to bridge the gap between these two approaches: using the set of
traces generated by a process as models, we define a logic which has constructs
for reasoning about both intruder’s epistemic knowledge and the set of messages
in possession of the intruder. As an example we consider two formalizations of
privacy in electronic voting and study the relationship between them.

1 Introduction

The applied pi calculus [2] is an extension of the pi calculus designed for specifying
and verifying cryptographic protocols. The main difference from the pi calculus is that
it allows one to manipulate complex data, instead of just names. The data is gener-
ated by an arbitrary abstract term algebra and interpreted modulo an equational theory.
This allows one to abstractly specify cryptographic functions. For instance the equa-
tion dec(enc(x, k), k) = x models that decryption cancels out encryption if the same
key k is used. As the calculus is parametrized by an arbitrary equational theory, several
complex cryptographic primitives have been conveniently modeled in literature. For
example, blind signatures were modeled in [14] and non-interactive zero-knowledge
proofs were modeled in [3]. This calculus has been successfully used to study a variety
of security protocols, e.g. the direct anonymous attestation protocol [3], some electronic
voting protocols [14]. Moreover, there exists tool support [5] for assisting the verifica-
tion of protocols in the applied pi calculus.

As argued above the applied pi calculus is a convenient and flexible formalism for
describing the processes which model the protocol. However, security properties are
more difficult to specify. Some properties may directly be specified using observational
equivalence, but this is generally not very natural and convenient. A more natural ap-
proach to verify protocols for correctness would be to define a suitable logic interpreted
over the terms of the calculus and express the desired security goal in that logic.

Our main contribution is the definition of an epistemic logic for the applied pi cal-
culus suitable for expressing important security goals. The logic itself is an LTL like

� This work has been partially supported by ANR SeSur AVOTÉ and NSF CCF 0448178.

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 182–197, 2009.
c© IFIP International Federation for Information Processing 2009

Epistemic Logic for the Applied Pi Calculus 183

temporal logic with a special predicate Has that models deducibility of messages by
an intruder and an epistemic knowledge operator K which allows us to reason about
the intruder’s epistemic knowledge. Other predicates of the logic are defined by events
which annotate the protocol. Similar annotations have already been used for specifying
authentication properties, initially by Woo and Lam [21] and more specifically in the
applied pi calculus by Blanchet [6]. We emphasize here that our main motivation behind
designing this logic is to express important security goals and not to study observational
equivalence. In particular, a Hennessy-Milner theorem will not hold: observationally
equivalent processes may satisfy different security goals.

Epistemic logics, going back to the BAN logic [8], are well-suited to express com-
plex security properties. At that time, the logic was used to reason about authentication
protocols. However, epistemic knowledge is particularly useful when reasoning about
anonymity properties (e.g., see [19]). Intuitively, an intruder (epistemically) knows that
a property φ is true, if φ is true on every run which is indistinguishable for the intruder
from the current one. In general epistemic logics this is modeled by an arbitrary equiva-
lence relation on runs. In the context of security protocols, equivalence of runs is tightly
related to the cryptographic functions used: an intruder which does not know k, should
regard the runs outputting respectively enc(0, k) and enc(1, k) as equivalent. We for-
malize equivalence of runs by lifting the notion of static equivalence to protocol runs.
We emphasize here that our logic contains the epistemic modality only for the intruder
and not for other participants. This is primarily because the processes only keep track
of messages in possession of the intruder.

We illustrate the expressiveness of our logic by expressing a range of security prop-
erties: secrecy, authentication as well as fairness in contract signing protocols. We then
specify privacy in voting protocols, which relies on the epistemic knowledge of the in-
truder. We show that a definition of vote privacy in terms of process equivalence as de-
fined in [14] implies vote privacy in terms of epistemic logic, as defined in [4]. Then we
slightly weaken the equivalence based definition, replacing observational equivalence
with trace equivalence. In that case, under reasonable assumptions, we show that the
converse implication, i.e. epistemic privacy implies privacy as equivalence, also holds.
This result is important in that it clarifies the relationship between two definitions of
privacy employed in the literature. Furthermore, the result suggests that trace equiva-
lence is more appropriate to model voter privacy even though observational equivalence
is convenient to use because of the available tool support.

For the rest of the paper we reserve the phrase “intruder’s knowledge” for his epis-
temic knowledge. We use the word “intruder’s possession” for the set of messages that
an intruder possesses (which is sometimes referred to as knowledge in security).

2 The Applied Pi Calculus

We present here the syntax and semantics of a slightly enriched applied pi calculus [2].

2.1 Syntax

The syntax of the applied pi-calculus assumes an order-sorted vocabulary consisting of
a denumerable set of names of each sort, a denumerable set of variables of each sort

184 R. Chadha, S. Delaune, and S. Kremer

and a signature Σ consisting of a finite set of function symbols with their arity. The
details of the sort system are unimportant, as long as it differs base types and channel
types. We always suppose that function symbols only operate on and return terms of
base type. The grammar of the set of terms is defined as:

M, N, T := terms
a, b, . . . , . . . k, m, n, . . . names
x, y, z, . . . variables
f(M1, M2, . . .Mk) function application

Of course function symbol application must respect sorts and arities. We shall use
u, v, . . . to range over both names and variables. We write vars(T) for the set of vari-
ables occurring in T . T is said to be a ground term if vars(T) = ∅.

Example 1. Let Σ = {enc/2, dec/2, pair/2, proj1/1, proj2/1} be a signature contain-
ing function symbols for encryption, decryption and pairing, each of arity 2, as well as
left and right projection symbols of arity 1. The term enc(a, k) is ground.

There are two kinds of processes in the applied pi calculus– plain processes built up in a
similar way to processes in the pi calculus except that messages can contain terms rather
than just names, and extended processes which add active substitutions (explained be-
low) and restriction on variables. Furthermore, we enrich plain processes with non-
deterministic choice and a set of events e, e1, . . . (parametrized by a sequence of terms
of the correct sort). These events are “annotations” which are useful in formalizing se-
curity properties and (as we shall see later) play no part in observational equivalence.
Extended processes are also enriched with event stores, which record the events that
happen along an execution. We do not have replication in our calculus.

P, Q, R := plain processes
0 null process
P | Q parallel composition
P + Q non-det. choice
νn.P name restriction
if M = N then P else Q conditional
in(u, x).P message input
out(u, N).P message output
e(˜M).P event

A, B, C := extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution
[e(˜M)] event store

{M/x} is the active substitution that replaces the variable x with the term M . Active
substitutions generalize the “let” construct: νx.({M/x} | P) corresponds exactly to “let
x = M in P ”. An event store [e(˜M)] memorizes that the event e(˜M) happened. As
usual, names and variables have scopes, which are delimited by restrictions and by
inputs. Please note that the “event” construct is not a binding construct. We write fv(A),
bv(A), fn(A) and bn(A) for the sets of free and bound variables and free and bound
names of A, respectively. We say that an extended process is closed if all its variables
are either bound or defined by an active substitution. An evaluation context C[] is an
extended process with a hole instead of an extended process.

Active substitutions are useful because they allow us to map an extended process A to
its frame, denoted fr(A), by replacing every plain process and event store in A with 0.

Epistemic Logic for the Applied Pi Calculus 185

A frame is an extended process built up from 0 and active substitutions by parallel
composition and restriction. The frame fr (A) accounts for the set of terms statically
possessed by the intruder (but does not account for A’s dynamic behavior). The domain
of a frame ϕ, dom(ϕ), is the set of variables for which ϕ defines a substitution (i.e.
variables x for which ϕ contains a substitution {M/x} not under a restriction on x). In
such a case, i.e. when x ∈ dom(ϕ), x allows the intruder to refer to the term M .

2.2 Semantics

The semantics is defined in terms of a LTS which records the interaction of an extended
process with the intruder. We associate an equational theory E to the signature Σ. E is
defined by a set of equations M = N and induces an equivalence relation over terms:
=E is the smallest equivalence relation on terms, which contain all equations in E and
is closed under substitution of terms for variables and bijective renaming of names.

Example 2. Considering the signature Σ of Example 1 we define the equational the-
ory Eenc by the equations dec(enc(x, y), y) = x and proji(x1, x2) = xi for i ∈ {1, 2}.
We have that dec(enc(a, k), k) =Eenc a.

We define the relation ∼= to be the smallest equivalence relation on extended processes
that is closed under application of evaluation contexts and such that

PAR-0 A | 0 ∼= A
PAR-A A | (B | C) ∼= (A | B) | C
PAR-C A | B ∼= B | A
NEW-C νu.νv.A ∼= νv.νu.A
NEW-PAR A | νu.B ∼= νu.(A | B)

if u �∈ fn(A) ∪ fv(A)

CHOICE-A P + (Q + R) ∼= (P + Q) + R
CHOICE-C P + Q ∼= Q + R
ALIAS νx.{M/x} ∼= 0
SUBST {M/x} | A ∼= {M/x} | A{M/x}
REWRITE {M/x} ∼= {N/x}

if M =E N

We define structural equivalence, ≡, to be ∼= closed under α-conversion on names and
variables. In comparison to the original applied pi calculus we dropped the structural
equivalence νn.0 ≡ 0 which will be important for deduction.

Example 3. Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k) by sending it on c1. The second
receives a message on c1, uses the secret key k to decrypt it, and forwards the resulting
plaintext on c2. P is structurally equivalent to the following extended process A:

A = νs, k, x1.(out(c1, x1) | in(c1, y).out(c2, dec(y, k)) | {enc(s,k)/x1})
We have fr(A) = νs, k, x1.{enc(s,k)/x1} ∼= νs, k.0 (since x1 is under a restriction).

Internal reduction → is the smallest relation on extended processes closed under struc-
tural equivalence and application of evaluation contexts such that

COMM out(a, M).P | in(a, x).Q → P | Q{M/x}
EVENT e(˜M).P → P | [e(˜M)]

CHOICE P + Q → P

THEN if M = N then P else Q → P
where M =E N

ELSE if M = N then P else Q → Q
where M, N are ground and M �=E N .

As usual →∗ denotes the reflexive transitive closure of →.

186 R. Chadha, S. Delaune, and S. Kremer

The operational semantics is extended by a labeled operational semantics enabling
us to reason about processes that interact with their environment. Below, a and c are
channel names, x is a variable of base type and y is a variable of any type.

IN in(a, y).P
in(a,M)
−−−−−→ P{M/y}

OUT-CH out(a, c).P
out(a,c)
−−−−−→ P

OPEN-CH
A

out(a,c)
−−−−−→ A′ c �= a

νc.A
νc.out(a,c)
−−−−−−−→ A′

OUT-T out(a, M).P
νx.out(a,x)
−−−−−−−→ P | {M/x}

x �∈ fv(P) ∪ fv (M)

SCOPE
A

�
−→ A′ u does not occur in �

νu.A
�
−→ νu.A′

bn(�) ∩ fn(B) = ∅

PAR
A

�
−→ A′ bv (�) ∩ fv (B) = ∅

A | B
�
−→ A′ | B

STRUCT
A ≡ B B

�
−→ B′ A′ ≡ B′

A
�
−→ A′

Example 4. Continuing Example 3, we have that

A
νx1.out(c1,x1)−−−−−−−−−→ in(c1,x1)−−−−−−→ νs, k.(out(c2, s) | {enc(s,k)/x1}) def= A′.

The frame associated to A′ is fr (A′) = νs, k.{enc(s,k)/x1}.

2.3 Equivalences

In this section we introduce two notions of process equivalences: trace equivalence and
labeled bisimulation. These definitions are based on static equivalence, an equivalence
on frames, and static equivalence of traces, which lifts static equivalence from frames to
traces. Static equivalence is a notion of intruder’s possession that has been extensively
studied (e.g. [1]). Another notion, namely deducibility will be discussed in Section 3.
The notion of static equivalence is useful to define labeled bisimilarity.

Definition 1 (static equivalence). We say that two terms M and N are equal in
the frame φ, and write (M =E N)φ, if there exists ñ and a substitution σ such
that φ ≡ νñ.σ, ñ ∩ (fn(M) ∪ fn(N)) = ∅, and Mσ =E Nσ. We say that two closed
frames φ1 and φ2 are statically equivalent, φ1 ∼ φ2, when:

– dom(φ1) = dom(φ2), and
– for all terms M, N we have that (M =E N)φ1 if and only if (M =E N)φ2.

Example 5. Let φ = νk, s.({enc(s,k)/x1} | {k/x2}), φ′ = νk.({enc(s′,k)/x1} | {k/x2})
where s, s′, k are names. We have (dec(x1, x2) =Eenc s′)φ′ but (dec(x1, x2) �=Eenc s′)φ,
thus φ �∼ φ′ (for Eenc). However, νk, s.{enc(s, k)/x1} ∼ νk.{enc(s′, k)/x1}.

We now define two notions of indistinguishability in the presence of an active intruder.
The first one is trace equivalence, the second one labeled bisimulation. As we are inter-
ested in the interactions of a process with the intruder (and not just the internal actions),
we use the labeled transition system to define the possible “runs” of a process:

Definition 2 (trace). A trace tr is a finite derivation tr = A0
�1−→ A1 . . .

�n−→ An such
that each Ai is a closed extended process where each �i is either empty (and represents

Epistemic Logic for the Applied Pi Calculus 187

an internal action) or is a labeled action �i with fv (�i+1) ⊆ dom(Ai). The trace tr is

said to be maximal if An � �−→ for any �.

We write tr[i] for the process Ai and tr[i, j] for the trace Ai
�i+1−−−→ Ai+1 . . .

�j−→ Aj .
We shall say that |tr| = n.

We say that the trace tr is of the form A0 −→∗ �i1−−→ Ai1 −→∗ �i2−−→ Aij+1 . . . −→∗ �ir−−→
Ar −→∗ An if �k is a labeled action for all k = ij , 1 ≤ j ≤ r and the internal action
otherwise.

Given a process A we define tr(A) to be the set of all traces tr such that tr[0] = A
and trmax(A) to be the set of all the maximal traces tr such that tr[0] = A.

In order to define trace equivalence we lift static equivalence from frames to traces. In
order to ensure that bisimilar processes are also trace equivalent we need to define α-
equivalence of traces. Intuitively, we say that a labeled action � in a trace tr binds n in
the subsequent trace if n occurs as a bound name in �. A trace tr can be α-renamed to tr′

if tr′ can be obtained by an α-renaming of the bound name n. The formal definition is
given in the long version of this paper [9] where its motivation is also discussed. We
write tr −→α tr′ if tr′ is obtained from tr by an α-renaming of a bound name. The
relation ∼α is defined to be the reflexive, symmetric and transitive closure of −→α .

Intuitively, we say that two traces are statically equivalent to the intruder if the in-
truder performed the same actions in the trace and the intruder could not “statically”
distinguish the processes resulting from these actions. Formally,

Definition 3 (static equivalence of traces (∼t)). Let tr be a trace of the form

A0 −→∗ �1−→ A1 −→∗ �2−→ Aj+1 . . . −→∗ �r−→ Ar −→∗ B. Let tr′ be a trace of the form

A′
0 −→∗ �′1−→ A′

1 −→∗ �′2−→ A′
j+1 . . . −→∗ �′l−→ A′

l −→∗ B′. Then tr ↔t tr′ if r = l, and

– for all 1 ≤ i ≤ r, �i = �′i.
– for all 0 ≤ i ≤ r, fr(Ai) ∼ fr (A′

i) (static equivalence).

The relation ∼t is the transitive closure of ∼α ∪ ↔t .

We can now define trace equivalence.

Definition 4 (trace equivalence (≈t)). Let A and B be two closed extended processes.
We say that A is trace included in B, written A ⊆t B if for each trace trA ∈ tr(A) there
exists trB ∈ tr(B) such that trA ∼t trB . The processes A and B are trace equivalent,
written A ≈t B, if A ⊆t B and B ⊆t A.

Trace equivalence is an appealing notion for modeling indistinguishability in presence
of an active intruder and can be used to formalize many security properties (e.g. strong
secrecy, anonymity properties, . . .). However, bisimulation is often considered as it has
better proof techniques and is easier to manipulate.

Definition 5 (labeled bisimilarity (≈)). Labeled bisimilarity is the largest symmetric
relation R on closed extended processes, such that A R B implies

1. fr(A) ∼ fr(B);

188 R. Chadha, S. Delaune, and S. Kremer

2. if A → A′, then B →∗ B′ and A′ R B′ for some B′;
3. if A

�→ A′ and fv(�) ⊆ dom(A) and bn(�) ∩ fn(B) = ∅ then B →∗ �→→∗ B′ and
A′ R B′ for some B′.

As expected labeled bisimulation implies trace equivalence, i.e. ≈⊂≈t. Hence bisim-
ulation can be used as a proof technique to show trace equivalence.

3 Epistemic Logic

We shall now present the epistemic logic which allows us to reason about intruder’s
epistemic knowledge and the set of facts in its possession.

3.1 Syntax

The formulas of our logic consist of two levels. Static formulas are used to reason about
a “snapshot” of the process. They include predicates for events that may have occurred
in the past and a predicate for a set of terms that the intruder statically possesses. Epis-
temic formulas allow us to reason about the dynamic behavior of the process and the
epistemic knowledge that the intruder can deduce from its past interactions with the
process. The formulas use a term language which denotes the set of messages. The
syntax of the logic is given in BNF form in Table 1 and discussed below.

Table 1. Syntax of the Epistemic Logic

Terms.
̂T ::= n̂ � z � ̂f(̂T , . . . , ̂T)

Static formulas.
δ ::= � � Has(̂T) � ̂evt(̂T , . . . , ̂T) � ¬δ � δ ∨ δ � ∃z.δ

Epistemic formulas (with the proviso δ is a closed formula and has no free names).
φ ::= δ � ¬φ � φ ∨ φ � Kφ � �φ � �φ

Term language. For the term language of our logic we shall assume that for each name n
in the vocabulary of the applied pi calculus, there is a unique name n̂ in the logic. Simi-
larly for each function symbol f in the vocabulary of the applied pi calculus, we have a
unique function symbol ̂f in the logic. However, there is no particular correspondence
between the set of variables in the logic and the applied pi calculus. We use z, z1, . . . to
range over the variables of the logic. The set of terms of the logic now consist of names,
variables and function application (the usual restriction on sorts and arity apply here).

Static formulas. Static formulas assume a unary predicate Has whose argument is of
base sort. This predicate is used to reason about the set of terms that the intruder pos-
sesses. It also assumes that for each event evt in the set of events for the calculus there
is predicate ̂evt (of the correct sort and arity). These predicates are used to reason about

Epistemic Logic for the Applied Pi Calculus 189

events that may have occurred in the past. The static formulas are built from these pred-
icates using the connectives �, negation ¬, disjunction ∨ and existential quantification
∃z. The usual connectives ∧ ⊥ and ⇒ and the universal quantification ∀ can be derived
from these connectives. We also assume the standard definitions of free and bound vari-
ables and substitution. A static formula is closed if it does not contain any free variable.

Epistemic formulas. Epistemic formulas reason about dynamic behavior of a process
and are constructed from closed static formulas with no free names using the connec-
tives conjunction ∧, negation ¬, disjunction ∨, existential quantification ∃z and the
modalities �, �, K. The reason for using only closed formulas will become clear in Sec-
tion 3.2. Disallowing names is not restrictive, as events can be used to refer to names.
The formulas are interpreted over the possible “runs” of the process. The formula �φ is
true at some point in a run if φ is true for all possible future points whereas the formula
�φ is true if φ is true for all past points. The formula Kφ is true if the intruder knows
(in the epistemic sense) φ to be true based upon its interaction with the process in the
past. The connectives ⊥ and ⇒ and the modality ♦ can be derived.

3.2 Semantics

We now define the semantics of the logic. We start by the denotation of terms.

Denotation of Terms. The terms of the logic are interpreted as ground terms of the
applied pi calculus and use the concept of an assignment. An assignment ρ is a map
which maps each logic variable z ∈ Z to a ground term of the applied pi calculus.
Using the assignment ρ, the denotation of terms is defined inductively as

[[n̂]]ρ = n [[ẑ]]ρ = ρ(z) [[̂f(̂T1, . . . , ̂Tr)]]ρ = f([[̂T1]]ρ, . . . , ([[̂Tr]]ρ)

Satisfaction of static formulas. The models of static formulas are pairs- one part of
which is a name distinct closed extended process A term, i.e. a process such that
bn(A) ∩ fn(A) = ∅ and no name is bound twice; and the other part an assignment.

We need another definition for our semantics which formalizes a second notion of
intruder’s possession (e.g. [1]).

Definition 6 (Deducibility). Let φ ∼= νñ.σ be a closed name-distinct frame and M be
a term. We say that M is deducible from φ, denoted by φ � M if there exists a term N
such that fn(N) ∩ ñ = ∅ and Nσ =E M . Such a term N is a recipe of the term M .

Note that when νñ.σ � M , any occurrence of names from ñ in M is bound by νñ. It is
for this reason that we introduce the relation ∼= (cf. Example in Remark 1, item 3).

Example 6. Consider the two frames φ and φ′ given in Example 5. We have that φ � k,
φ � s and φ � s′. Indeed x2, dec(x1, x2) and s′ are recipes of the terms k, s and s′.

The interpretation of the static formulas given a name-distinct process term A and an
assignment ρ is defined in Table 2. The interesting cases are the satisfaction of the pred-
icates Has and ̂evt. Intuitively, the formula Has(̂T) is satisfied if the intruder can deduce
the denotation of ̂T . The formula ̂evt(̂T1, . . . , ̂Tr) is satisfied if the corresponding event
evt([[̂T1]]ρ, . . . , [[̂Tr]]ρ) has occurred. The other definitions are standard. Note that the

190 R. Chadha, S. Delaune, and S. Kremer

Table 2. Satisfaction of static formulas

A, ρ |= � always
A, ρ |= ̂evt(̂T1, . . . , ̂Tr) iff A ∼= νñ.(A | [evt(M1, . . . , Mr)]) ∧ Mi =E [[̂Ti]]ρ 1 ≤ i ≤ r

A, ρ |= Has(̂T) iff fr(A) � [[̂T]]ρ
A, ρ |= ¬δ iff A,ρ 	|= δ
A, ρ |= δ1 ∨ δ2 iff A,ρ |= δ1 or A, ρ |= δ2

A, ρ |= ∃z.δ iff ∃ a ground term M such that A, ρ[z
→ M] |= δ[M/z]

assignment ρ[z �→ M] is the same as ρ except that on z it takes the value M and the
formula δ[M/z] is the formula obtained from δ by substituting the free occurrences of z
by M .

Remark 1

1. If the formula δ is closed, i.e., does not contain any free variables, then the satis-
faction of δ depends only on the process and is independent of the assignment. For
such formulas we can drop the assignment in the satisfaction relation.

2. Note that name-distinctness is crucial for the definition of satisfaction of the static
formulas. The name distinctness allows us to uniquely identify the bound names
and interpret them. Otherwise, the process A = (νn.[evt1(n)]) | (νn.[evt2(n)])
will satisfy ̂evt1(n̂) ∧ ̂evt2(n̂) which is clearly wrong as the two bound names refer
to different nonces.

3. For a similar reason, we need to forbid α-renaming when evaluating predicates evt.
Otherwise, (if we replace ∼= with ≡ in the above semantics) we have that

νn1, n2.([evt1(n1)] | [evt2(n2)]) |= ∃z. (̂evt1(z) ∧ ̂evt2(z)).
4. It can be checked that for any name-distinct closed frame φ, if φ ∼= νñ.σ and

φ ∼= νñ′.σ′ then ñ and ñ′ are the same (upto ordering) and for any N such that
fn(N) ∩ ñ = ∅, Nσ =E Nσ′. Hence, if A1

∼= A2, we get that A1 and A2 satisfy
the same set of static formulas.

5. The previous observation would not have been true if we had allowed the equiv-
alence νn.0 ≡ 0. In particular, the intruder can deduce all ground terms in the
process 0 while it cannot deduce the term n in the process νn.0.

Please note that even name-distinct processes which are equal modulo α-conversion
may satisfy different static formula. However, if we limit ourselves to closed formulas
with no free names, α-renaming does not affect the satisfaction.

Lemma 1. Let δ be a closed static formula with no free names and A1 and A2 be two
name distinct extended processes such that A1 ≡ A2. Then A1 |= δ iff A2 |= δ.

The above Lemma allows us to define the semantics of the epistemic formulas.

Satisfaction of epistemic formulas. We shall now define the satisfaction relation for
epistemic formulas. As in the case of epistemic logic for distributed systems [15,16], the
epistemic formulas will be interpreted over the possible “runs” of a process, i.e. the set
of maximal traces (Definition 2). Please note that since we do not have replication in our
process terms, all traces of a process are finite and our definition of maximal traces does

Epistemic Logic for the Applied Pi Calculus 191

capture all possible “runs”. The traces are enough to interpret the temporal modalities �
and �. In order to interpret the modality K, we need to consider an equivalence relation
on the set of traces which identifies traces that are indistinguishable to the intruder:
static equivalence on traces (Definition 3). An epistemic formula φ is interpreted over
a triple - a closed extended process A, a maximal trace tr ∈ trmax(A) and a position
0 ≤ j ≤ |tr| in tr as described in Table 3.

Table 3. Satisfaction of epistemic formulas

A, tr, i |= δ iff there is a name-distinct extended process A′

such that tr[i] ≡ A′ and A′ |= δ
A, tr, i |= �φ iff ∀i ≤ j ≤ |tr|. A, tr, j |= φ
A, tr, i |= �φ iff ∀0 ≤ j ≤ i. A, tr, j |= φ
A, tr, i |= Kφ iff ∀tr′ ∈ trmax(A),∀0 ≤ j ≤ |tr′|

such that tr[0, i] ∼t tr′[0, j] ⇒ A, tr′, j |= φ
A, tr, i |= ¬φ iff A, tr, i 	|= φ
A, tr, i |= φ1 ∨ φ2 iff A, tr, i |= φ1 or A, tr, i |= φ2

Remark 2. Our use of static equivalent traces as indistinguishable traces is reminiscent
of what is often called perfect recall in distributed systems- the intruder distinguishes
traces based upon the complete history of its interaction with the process. We could
have, of course, chosen to define coarser equivalence relations. For example, we could
have declared two traces to be equivalent if the intruder cannot “statically” distinguish
the last processes in the respective traces.1 However, a coarser relation would result in
intruder “knowing” a smaller set of formulas to be true which may lead to declaring
a protocol secure which otherwise will be insecure. Besides, an all powerful intruder
should be able to record its history of interaction with the protocol.

Definition 7. We say that A |= φ if for all tr ∈ trmax(A) we have A, tr, 0 |= φ.

Not that Lemma 1 will not be true if we replace structural equivalence with static equiv-
alence. One reason is the presence of the predicates ̂evt as static equivalence does not
depend on presence/absence of such formulas. However, even if we were to consider
the fragment of the logic without these predicates, statically equivalent processes may
satisfy different static formulas (and thus Hennessy-Milner Theorem does not hold).

Lemma 2. There are closed extended processes A1 and A2 and an epistemic formula φ
such that A1 ≈ A2 and A1 |= φ but A2 �|= φ.

Proof. Consider the two processes A1 = νn.{hash(n)/x} and A2 = νn.{n/x} where
hash is unary function symbol which models a cryptographic hash function and hence
cannot be inverted. We assume that the set of equations E is empty. We have that
A1 ≈ A2. We have also that A1 |= ∃z.(Has(hash(z)) ∧ ¬Has(z)) (the intruder has
the hash of the nonce n but cannot invert it) while A2 �|= ∃z.(Has(hash(z))∧¬Has(z))
(the intruder has every free name and can create its hash). ��

1 This is similar in spirit to what is commonly called “knowledge” in security.

192 R. Chadha, S. Delaune, and S. Kremer

3.3 Examples

We now give some simple examples of security protocols that can be modeled in our
logic. These examples do not use the knowledge operator. We refer to Section 4 for
such an example. We only consider closed formulas (no free variables) and formulas
without names. The idea is to annotate the process and to use the parametric events to
refer to bound names. Specifically, we will show how to specify secrecy, authentication
and fairness in exchange protocols in our formalism.

Example 7. This is a way to express the secret (in the sense of deducibility) of the
name s in P = νs.evt(s).out(c, s). Let φ = �∀z.(evt(z) ⇒ ¬Has(z)). Obviously,

we have P �|= φ as P → A1
νx.out(c,x)−−−−−−−→ A2 is a trace in trmax(P) where A1 =

νs.(out(c, s) | [evt(s)]), A2 = νs.({s/x} | [evt(s)]) and (P, tr, 2) |= evt(s) ∧ Has(s).

Another classical example is authentication modeled as an agreement property.

Example 8. Consider the following simple handshake protocol where k is a shared key
and f any free symbol:

A → B : enc(n, k)
B → A : enc(f(n), k)

The goal of this protocol is to authenticate B from A’s point of view. In the applied
pi calculus this protocol is modeled by νk.(A | B) where

A = νn. out(enc(n, k)). in(x). if dec(x, k) = f(n) then end(n)
B = in(y). begin(dec(y, k)). out(enc(f(dec(y, k)), k))

The events begin and end are used to annotate the protocol. The authentication of B
to A is then modeled by φ = �∀z.(end(z) ⇒ begin(z)).

Yet another, less classical example of property is fairness in contract signing protocols.

Example 9. In a fair contract signing protocols two agents want to exchange their cor-
responding signatures on a given contract in such a way that at the end of the protocol
either both participants obtain the signed contract or none of them does so. Describing
a complete example of such a protocol would be out of the scope of this paper and we
refer the reader to [10] for more details. These protocols either terminate in a final state
where the exchange has been aborted or in a final state where the exchange did succeed.
For the purpose of our example, we suppose that the process modeling the participant P
(either A or B) is annotated as follows: the event Pend(c) indicates that P is in a final
state for some contract c; the event Pcontract(c) indicates that P successfully received
the signed contract. Then, fairness for A can be modeled as

φ = �∀c.(Aend(c) ⇒ (¬Bcontract(c) ∨ Acontract(c))).
The formula says that for any contract whenever A is in a final state (Aend(c)), either

B did not obtain the contract signed by A (¬Bcontract(c)) or A did obtain the contract
signed by B (Acontract(c)). Fairness for B can be modeled in a similar way.

4 Privacy in Electronic Voting Protocols

Many electronic voting protocols have been proposed in the literature and their for-
mal analysis has received considerable attention [14,4]. One important security goal is

Epistemic Logic for the Applied Pi Calculus 193

privacy of votes– an intruder should not be able to learn (by its interaction with the
protocol) how an honest voter Alice voted. This property has been formulated both
as an observational equivalence, e.g. in [14], and as an epistemic property, e.g. in [4],
although never within the same formalism. Our formalism allows us to consider both
the formalizations and compare them within the same framework. For the sake of sim-
plicity, we only consider single protocol instances in which two voters Alice and Bob
participate and we assume that there are only two voting options available to Alice and
Bob and we represent these options by 0 and 1.

Electronic voting protocols in applied pi calculus. We refer the reader to [14] for a
detailed formal definition of electronic voting protocols in applied pi calculus. Herein,
we state the salient points of the definition. We assume that there is a sort voteoption in
our signature which contains at least two constants (0-ary function symbols), denoted
by 0 and 1, that do not occur in E. Furthermore, we assume that the protocol can be
expressed as a parametric plain process V (xa, xb) with two free variables xa and xb

of the sort voteoption.2 For va, vb ∈ {0,1}, the voter process V (va, vb) represents the
process in which Alice and Bob vote for options va and vb respectively. Although these
assumptions are sufficient to model privacy as observational equivalence, the definition
in terms of epistemic logic requires us to introduce events to annotate the individual
voter preferences and consider all possible traces within a single process.

Towards this end we introduce a parametric event votes(,) with two arguments of
the sort voteoption which is not present in the voting process V (xa, xb). From now on,
we consider the following voting process which considers all voting scenarios:

V =
∑

va,vb∈{0,1} votes(va, vb).V (va, vb).

The process V shall henceforth be called a voting process.

Privacy as observational equivalence. We are ready to state the formalization of pri-
vacy as proposed in [14], which we shall call strong privacy for the rest of this sec-
tion. Intuitively, the voting protocol represented as V respects strong privacy if the
intruder cannot distinguish the two protocol instances in which Alice and Bob’s votes
are swapped.

Definition 8. The voting process V respects strong privacy if V (0,1) ≈ V (1,0).

Privacy as epistemic formula. We need a few definitions to state privacy as an epistemic
formula. An inspection of the construction of V shows that since the events votes do
not occur in V , any maximal trace of V consists of only one event votes(va, vb) in the
store and corresponds to Alice and Bob voting for option va and vb respectively. Also
(from construction of the epistemic logic in Section 3), we assume that there is a binary
predicate in our logic corresponding to the event votes which we shall (again in the
interest of keeping the syntax simple) denote by votes. We also assume that there are
two 0-ary function symbols corresponding to the two voting options which shall again
denote by 0 and 1. Now, given v ∈ {0,1} consider the formula

Avote(v) = votes(v,0) ∨ votes(v,1).

2 V being a plain process is a simplification and we could have started with a non-empty frame.

194 R. Chadha, S. Delaune, and S. Kremer

Intuitively the formula is true in a state reachable from V if Alice votes for option v.
Similarly we can define formula Bvote(v).

Now, according to [4], a protocol respects privacy for Alice if the intruder cannot
(epistemically) know which voting option Alice exercised. A protocol respects privacy
if it respects privacy for both Alice and Bob. Please note that this definition does not
usually hold for voting protocols in which the final tally of the votes are announced–
a unanimous election always reveals each individual’s vote. Hence, a more appropriate
formulation is that whenever Alice and Bob vote differently, the intruder cannot learn
how each of them voted. This gives us the following definition which states that intruder
can learn how a voter voted only if the other voter voted the same option.

Definition 9 (privacy). The voting process V respects privacy if V |= Aprivacy ∧
Bprivacy where

– Aprivacy
def= ∧v∈{0,1}�(K(Avote(v)) → Bvote(v)), and

– Bprivacy
def= ∧v∈{0,1}�(K(Bvote(v)) → Avote(v)).

Strong privacy implies privacy. We now show that privacy in terms of observational
equivalence implies privacy in terms of epistemic formulas. In fact we show a stronger
statement, namely, that if V (0,1) ≈t V (1,0) then the protocol will respect privacy.
The proof of the statement is given in the long version of this paper [9].

Theorem 1. If V (0,1) ≈t V (1,0) then the voting process V respects privacy. Hence,
if V respects strong privacy then it respects privacy.

Now, privacy in terms of epistemic formulas does not imply strong privacy. One can
construct examples which respect privacy but not strong privacy, based on the fact that
bisimulation is a finer relation than trace equivalence. However, a partial converse of
Theorem 1 holds– under reasonable assumptions privacy implies V (0,1) ≈t V (1,0).

Privacy implies trace equivalence. In order to state these assumptions, we need a few
definitions. First we need the definition of a publishing trace. Intuitively, we say that a
maximal trace tr is a publishing trace if the intruder learns which votes were cast (but
not the link between the voters and individual votes) and can distinguish it from any
other trace when the set of votes cast are different. For example, a publishing trace in
which Alice and Bob vote 0 and 1 is distinguishable from one in which they cast 0
and 0 but not necessarily from one in which they cast 1 and 0 respectively. A maximal
trace that is not publishing is said to be an abort trace. Intuitively, this says that the
protocol could not be completed and hence votes are not published.3

Definition 10 (publishing and abort traces). Given va, vb ∈ {0,1}, a maximal trace
tr ∈ trmax(V (va, vb)) is said to be a publishing trace if for any v′

a, v′
b ∈ {0,1} such

that {va, vb} �= {v′
a, v

′
b}, there is no tr′ ∈ tr(V (v′

a, v′
b)) such that tr ∼t tr′. Otherwise

tr is an abort trace.

3 We believe that a good electronic voting protocol should not have abort traces. However, this
property has not been studied in literature.

Epistemic Logic for the Applied Pi Calculus 195

We say that a protocol is equivalent for aborts if an abort trace can be mimicked irre-
spective of how Alice and Bob decided to vote.

Definition 11 (equivalent for aborts). Given va, vb ∈ {0,1} and tr ∈
trmax(V (va, vb)) an abort trace. We say that V is equivalent for aborts if for any
v′

a, v′
b ∈ {0,1} there is a tr′ ∈ trmax(V (v′

a, v′
b)) such that tr ∼t tr′.

We have the partial converse of Theorem 1. The proof is given in [9].

Theorem 2. Let V =
∑

va,vb∈{0,1} votes(va, vb).V (va, vb) be a voting process such
that V is equivalent for aborts and respects privacy. Then V (0,1) ≈t V (1,0).

Theorem 1 and Theorem 2 suggest that trace-equivalence is the more appropriate notion
for defining privacy of votes in electronic voting even though the bisimulation-based
definition (which implies privacy) has better proof techniques.

5 Related and Future Work

Related work. Several authors (e.g. [17,13,20]) have recognized the complementary
nature of the process algebraic and epistemic approaches and the benefit to combine
them. Different approaches have been proposed to bridge this gap. In [17], function
views are used to represent partial information and make the interface between protocol
and properties. In order to get epistemic specifications closer to a behavioral specifica-
tion, van Eijck and Orzan [20] propose a dynamic epistemic logic. However, it seems
that no mediation is necessary [16,13] and it is possible to bridge this gap by proposing
a combined framework as it is also suggested in this paper. However, in the works cited
above, the authors study abstract versions of protocols which do not take into account
cryptographic primitives (e.g. encryption, signature, . . .) and their specific properties.

Some recent works [18,11] have been devoted to designing a logic to characterize
static equivalence. In [18], they build upon the logic for frames and extend it with
Hennessy-Milner modalities, yielding a logic for applied pi processes which charac-
terizes labeled bisimilarity. However, as we already pointed out in the Introduction, our
goal is different and we want to define a logic that is expressive enough to state a variety
of security properties in a natural way. The advantage of this approach is evident in our
example of formalizing privacy in e-voting protocols in which we were able to establish
the exact relationship between two formal definitions of privacy in e-voting protocols.

Another similarity between our work and the work in [11] is that they also have
epistemic modalities. The work in [11] has another advantage in that they reason about
multiple agents and hence their logic has epistemic modalities for multiple agents and
not just the intruder. This is however achieved by interpreting the logic over an agent-
indexed family of frames with a frame representing the set of messages in an agent’s
possessions. Since they are mostly interested in studying static equivalence, they do not
mention how these frames are obtained. An applied pi-calculus process only keeps track
of the messages in intruder’s possession and thus we have only one epistemic modality.

The problem of having a suitable language which allows for an expressive property
logic is a well-known problem in the context of cryptographic protocols verification.

196 R. Chadha, S. Delaune, and S. Kremer

In [7,12], such a language and logic is proposed and allows specification of a large
class of security properties. However, none of the underlying protocol languages is as
expressive as the applied pi calculus. We are able to model a large class of protocols
which may use less classical cryptographic primitives, specified by an equational the-
ory, in an intuitive way. Therefore, our framework can be used for protocols such as
electronic voting protocols, contract signing protocols, . . .

Future Work. The formalism presented in this paper is a starting point, and we intend
to study stronger anonymity properties such as coercion-resistance that arise in security
protocols. Another line of investigation is to extend the formalism to allow for reasoning
about epistemic knowledge of multiple agents, and this would involve extension of both
the calculus and the logic. We also intend to study model-checking algorithms to verify
whether a process satisfies a given formula. Finally, we also intend to investigate an
axiomatization of the logic presented in the paper.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories.
Theoretical Computer Science 387(1-2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proc. 28th
Symposium on Principles of Programming Languages, pp. 104–115 (2001)

3. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and automated
verification of the direct anonymous attestation protocol. In: Proc. 29th IEEE Symposium on
Security and Privacy (2008)

4. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting protocols.
In: Proc. 11th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 62–71
(2007)

5. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: Proc.
14th Computer Security Foundations Workshop, pp. 82–96 (2001)

6. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In: 9th International Static
Analysis Symposium, pp. 342–359 (2002)

7. Borgström, J., Kramer, S., Nestmann, U.: Calculus of Cryptographic Communication. In:
Proc. Workshop on Foundations of Computer Security and Automated Reasoning for Secu-
rity Protocol Analysis (2006)

8. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans. Comput.
Syst. 8(1), 18–36 (1990)

9. Chadha, R., Delaune, S., Kremer, S.: Epistemic logic for the applied pi-calculus. Research
Report LSV-09-06, Laboratoire Spécification et Vérification, ENS Cachan, France (March
2009)

10. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multi-party contract signing. Journal
of Automated Reasoning 36(1-2), 39–83 (2006)

11. Cohen, M., Dam, M.: A complete axiomatization of knowledge and cryptography. In: Proc.
22nd IEEE Symposium on Logic in Computer Science, pp. 77–88 (2007)

12. Corin, R., Saptawijaya, A., Etalle, S.: PS-LTL for constraint-based security protocol analysis.
In: Proc. 21st International Conference on Logic Programming, pp. 439–440 (2005)

13. Dechesne, F., Mousavi, M.R., Orzan, S.: Operational and epistemic approaches to protocol
analysis: Bridging the gap. In: Proc. 14th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, pp. 226–241 (2007)

Epistemic Logic for the Applied Pi Calculus 197

14. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security (2009) (to appear)

15. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press,
Cambridge (1995)

16. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. Jour-
nal of Computer Security 13(3), 483–512 (2005)

17. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular approach.
Journal of Computer Security 12(1), 3–36 (2004)

18. Hüttel, H., Pedersen, M.D.: A logical characterisation of static equivalence. Electr. Notes
Theor. Comput. Sci. 173, 139–157 (2007)

19. Jonker, H., Pieters, W.: Receipt-freeness as a special case of anonymity in epistemic logic.
In: Proc. IAVoSS Workshop On Trustworthy Elections (2006)

20. van Eijck, J., Orzan, S.: Epistemic verification of anonymity. Electr. Notes Theor. Comput.
Sci. 168, 159–174 (2007)

21. Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: Proc. 14th IEEE
Symposium on Security and Privacy (1993)

	Epistemic Logic for the Applied Pi Calculus
	Introduction
	The Applied Pi Calculus
	Syntax
	Semantics
	Equivalences

	Epistemic Logic
	Syntax
	Semantics
	Examples

	Privacy in Electronic Voting Protocols
	Related and Future Work
	References

