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We demonstrate the epitaxial growth of hard-sphere hcp and double hcp crystals using a surface pattern that

directly dictates the stacking sequence. A detailed three-dimensional analysis based on real-space measure-

ments is performed on crystal structure as a function of template-crystal mismatch, which demonstrates the

possibilities of colloidal epitaxy as a model system for studying the effects of a patterned substrate on crystal

structure. Perfect template-induced hcp-crystal growth occurs at an isotropically deformed template. At de-

formed lattices we observe growth of a non-close-packed superstructure and of a perfect (100)-aligned fcc

crystal. Small mismatches lead to increased out-of-plane displacements followed by a structural breakup in

“crystal” grains where particle positions in successive layers are strictly periodic and “defect” grains where

these positions are displaced with respect to each other. Large mismatches prevent crystallization in the surface

layers. The volume fraction was found to vary drastically (up to about 20%) as a function of template

deformation.
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INTRODUCTION

The presence of a periodically modulated external poten-
tial, e.g., a substrate, can drastically influence crystallization
[1]. In the case of atoms and molecules, epitaxial crystalli-
zation has been the subject of intense research over the past
decades, mostly driven by its importance for the fabrication
of semiconductor devices. For atomic and molecular sys-
tems, a systematic evaluation of the interplay between sub-
strate structure and crystallization behavior is however ham-
pered by the difficulties involved in the analysis of structures
and in a systematic manipulation of properties on the appro-
priate length and time scales.

Colloids show phase transitions in thermodynamic
equivalence to atomic and molecular systems, but contrary to
atoms and molecules their typical length and time scales are
easily accessible for experimental techniques such as light
microscopy and light scattering [2]. The colloidal model sys-
tem has already been frequently, and successfully, used for
investigating both homogeneous [3–6] crystallization and
crystallization close to a wall [7–9]. Recently, these studies
have received a great impulse when it was shown that it is
possible to perform a full three-dimensional (3D) real-space
analysis by using confocal microscopy and fluorescently la-
beled colloids [10,11]. The possibilities of this technique
were further demonstrated by several papers addressing
hard-sphere glass formation [11–13], crystal nucleation [6],

and epitaxial hard-sphere crystallization [14–16]. Several
different techniques, e.g., electron-beam lithography, soft li-
thography [17], and optical tweezers [18], provide the possi-
bility to pattern substrates on length scales comparable to
those of colloids [9]. The manipulation of colloidal crystal-
lization by using patterned templates, i.e., colloidal epitaxy
[14,15], extends the use of the colloidal model system to
include epitaxial crystallization as well. For the simplest col-
loidal model system, that of Brownian hard spheres, we re-
cently showed how a well-chosen substrate pattern can direct
crystallization to an otherwise metastable crystal structure
[16].

Apart from this theoretical interest, crystallization of col-
loidal particles has also gained recent interest from a practi-
cal point of view. The fact that the wavelength range of vis-
ible light falls in the middle of the colloidal regime not only
enables aforementioned experimental techniques, it also
makes colloids and colloidal crystals suitable building blocks
for photonic applications including photonic band gap mate-
rials. The most commonly used techniques for making col-
loidal crystals for photonic, as well as other applications, rely
on self-assembly [19–23]. The ability to direct this self-
assembly process in an easy and straightforward way can
greatly enhance the possibilities for creating functional col-
loidal materials. Colloidal epitaxy is in this respect one of the
most promising techniques as it gives the possibility to direct
crystal structure and orientation [14–16], it is applicable to
colloids with a wide range of interaction potentials [24,25], it
can be used in combination with other assembly techniques
[26,27], and, as we will show in the present paper, provides
a way to grow crystals that are metastable in bulk crystalli-
zation.

The colloidal model system that we have studied in this
research is the conceptually simplest model system that
shows a freezing transition upon increasing density, namely,
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the hard-sphere system. This freezing transition is located at
a volume fraction of w=0.494. For volume fractions in be-
tween this volume fraction and the melting transition at w
=0.545 there is coexistence between a low-density liquid
phase and a crystal phase [28,29]. At w=0.545 and higher
there is a single close-packed crystal phase that compacts at
increasing volume fraction. As the interaction potential be-
tween hard spheres accounts for excluded volume interac-
tions only, all hard-sphere structures have zero energy. How-
ever entropic interactions lead to differences in the total free
energy, but these are rather small for the various close-
packed structures, on the order of 10−4kT per particle at the
melting transition [30,31], where k is Boltzmann’s constant.

The equilibrium crystal structure for hard-sphere-like par-
ticles is the close-packed face-centered cubic (fcc) crystal,
the structure that is highest in free energy is the hexagonal
close-packed (hcp) crystal. All the other possible stacking
sequences, both regular stackings such as the double hexago-
nal close packed (dhcp) crystal as well as nonperiodic stack-
ing sequences that are strictly speaking not crystalline have
intermediate free energies [30]. Due to the small free-energy
differences, stacking faults are likely to occur so that the
stacking sequence of hard-sphere crystals can deviate appre-
ciably from the ideal fcc stacking. Furthermore, for small
crystallites, with less than ,30 000 particles per plane, a
completely random stacking sequence of close-packed
planes, denoted with random hexagonal close packed (rhcp),
was found to be the most stable structure [31], so crystals
grown via a nucleation-and-growth-mechanism will initially
have a rhcp structure. This is in correspondence with obser-
vations in space [32] and on earth [3,33–35]. The subsequent
relaxation of the rhcp structure to fcc is estimated to be slow,
with time scales on the order of months to years for 200 nm
diameter particles [31,36,37].

One of the techniques that was shown to lift this apparent
degeneracy and induce formation of a perfect fcc stacking is
colloidal epitaxy. Furthermore, it was shown possible to ori-
ent the crystal with both the (100)-plane [14] as well as the
(110)-plane [15], which has an even higher surface free en-
ergy, aligned over the bottom, templated wall. In this paper,
we will show that it is not only possible to direct hard-sphere
(HS) crystallization towards the crystal structure with the
lowest free energy, but that the most metastable crystal struc-
ture in bulk, the hcp stacking, can be grown as well. The
template that will be used for hcp-crystal formation, the
hcp(1100) plane, can be easily extended to direct any of the
other possible stacking sequences, which will be shown by
growing a so-called double hcp (dhcp) crystal. These results
are interesting in view of recent theoretical work on HS crys-
tallization on structured walls that predicted complete wet-
ting of the metastable hcp crystal at a suitably patterned sub-
strate [38,39]. Other theoretical predictions, such as the fact
that the optimal lattice constants of the template are larger
than those of the bulk crystal, are reproduced in this research
as well. Furthermore, Pronk and Frenkel have recently cal-
culated that the application of moderate deformations of the
hard-sphere crystal structure may change the relative stabil-
ity of fcc and hcp crystals to the order of 10−2kBT per particle
in favor of hcp [40].

Isotropically and anisotropically stretched hcp(1100)-
template lattices were used to study the effects of template-

crystal mismatches on epitaxial crystallization. Among our
observations is the growth of a superstructure that consists of
six differently stacked non-close-packed planes with a
stretched hcp(1100) symmetry. The occurrence of a non-
close-packed HS crystal has, to our knowledge, never been
predicted theoretically. The possibility to create metastable
and non-close-packed crystal structures opens up ways to
unexplored photonic crystals.

Two other results clearly show the potential of colloidal
epitaxy together with three-dimensional real-space analysis
as a model system for epitaxial crystallization and as a tool
to study defect formation and (epitaxial) stress relaxation in
molecular crystals. At a template unit cell of which both
lattice vectors have the same relative amount of shrinkage
with respect to the unit cell that gives rise to hcp crystalliza-
tion, we observe a reconstruction of the colloidal surface
layer towards an fcc(100) plane, similar to (100)-hcp(1100)

reconstructions observed in atomic heteroepitaxy of, e.g., Co
and Cu [41–43]. Second, a mismatch between template and
crystal dimensions is in general found to lead to an increase
in density in between lattice planes [41,42]. A thorough un-
derstanding of and control over defect formation is further-
more crucial for photonic applications of colloidal materials
[44]. In this respect, the ability to exactly control the stack-
ing sequence of a colloidal crystal allows for a direct experi-
mental test of theoretical work on the effect of stacking faults
on the optical properties of inverse opals [45].

The remainder of this paper is organized as follows. First,
we will discuss our experimental model system and the vari-
ous order parameters that we calculate in order to examine
colloidal crystal structure. Then we will present and discuss
results on the growth of hcp and dhcp crystals, after which
we will focus on the evolution of crystal structure as a func-
tion of template-crystal mismatch. The starting point for this
will be the investigation of unit cells that are isotropically
shrunken with respect to the hcp(1100) template that gives
rise to the best quality hcp crystal. This analysis includes the
epitaxial hcp(1100)-fcc(100) transition. Then results for an
isotropically stretched template will be presented, followed
by an anisotropically stretched template, where the ratio be-
tween the two lattice distances is increased. Finally, the oc-
currence of a non-close-packed superstructure will be dis-
cussed.

EXPERIMENTAL DETAILS

Core-shell colloids

Silica colloids with core-shell morphology were used in
order to make quantitative three-dimensional (3D) confocal
microscopy possible. The core of the particles contained the
fluorescent dye fluorescein isothiocyanate (FITC) covalently
attached to the silica through the silane coupling agent
3-aminopropyltriethoxysilane. The synthesis of these par-
ticles has been described in detail [46]. The core diameter
was measured with both static light scattering (SLS), d

=400 nm, and transmission electron microscopy (TEM), d

=386 nm. These core particles were grown larger with an
unlabeled silica shell using a seeded growth procedure as
described by Giesche [47]. For the final particle diameter we
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found d=1.384 mm by TEM and d=1.404 mm by SLS. The
polydispersity, defined as the standard deviation of particle
sizes relative to the mean, was determined by TEM to be
0.015. In the seeded growth procedure that was used to cover
the fluorescently labeled core particles with a nonfluorescent
shell, instabilities in the reaction mixture may affect particle
growth in two unfavorable ways. First, an uncontrolled, local
increase in counterion concentration may lead to the forma-
tion of aggregated doublet particles, so-called dumbbells.
Second, an uncontrolled increase in the local concentration
of silicic acid may lead to the nucleation of smaller, nonfluo-
rescent particles, instead of condensation on the surface of
the seed particles. In the final dispersion that was used the
concentration of both “impurities” was below 1% of the par-
ticle concentration.

Particles were suspended in a refractive-index matching
solution of demineralized water and glycerol (Sigma) in a
volume ratio of 1 :6.5. The conditions for refractive-index
matching were determined by measuring the transmission of
different mixtures two days after dispersing a low volume
fraction of particles. Due to the refractive-index matching the
van der Waals attractions between the particles are reduced,
leading, for particles in this size range, to a steeply repulsive
interaction due to surface charges and residual counterion
concentrations. This results in an almost hard-sphere–like in-
teraction. In order to calculate an effective hard-sphere ra-
dius RHS, we calculated the 3D radial distribution function,
3D gsrd, defined as

gsrd =
1

r2 kdsr − ridd„r − sri − r jd…l s1d

for a crystal grown in the same sample as that for the experi-
ments described below, but at a plain, untemplated wall.
From the position of the first maximum we found 2RHS

=1.460 mm. For a close-packed crystal this corresponds to
a volume fraction of w=0.65.

The sample cell and the hcp(1100) template

A sample cell was made by gluing (General Electric Sili-
con Rubber Adhesive RTV 102) a bottomless bottle with an
internal diameter of 12.85 mm to a 22 mm diameter glass
slide (chance no. 1) that had been coated and partly patterned
as described below. The sample cell was rinsed several times
with the water-glycerol mixture before filling it with about
1.2 ml of colloidal suspension. Colloids were homoge-
neously dispersed with a volume fraction of w0=0.0015. For
the experiments with anisotropically deformed template unit
cells (see the discussion on the template patterns below) sus-
pensions with an initial volume fraction of w0=0.005 were
used. By sedimentation, colloids accumulated and crystal-
lized at the bottom wall.

With the initial volume fractions and total volume given
above, the volume fraction at the bottom of the sample, w1,
can be calculated, equating the gravitational pressure to the
balancing osmotic pressure:

w1 =
w0PesH/Rdwm

3wm + w0PesH/Rd
, s2d

where H is the total height of the sample solution from the
bottom wall to the meniscus, R is the particle radius, wm is
the volume fraction at maximum compression, which is wm

=0.74 for crystallized hard spheres. Pe is the Peclet num-
ber which is defined as Pe=4/3pR4sDrdg / skTd with Dr

the density difference between particles and solvent, g the
gravitational constant, k Boltzmann’s constant, and T the
temperature. For our initial volume fractions of w0

=0.0015 and w0=0.005, we get values for w1 of w1=0.70
and w1=0.73, respectively. With these values, the volume
fraction profile of the sediment is given according to f48g

Pe
h

R
= F 3wm

wm − w
+ 3 lnS w

wm − w
DG

wshd

w1

, s3d

where h is the height from the bottom wall. The calculated
volume fraction profiles for hard spheres are given in Fig. 1.

The bottom wall consisted of a glass slide (chance no.1),
coated successively with an 11.5 nm thick gold layer and a
450 nm thick poly(methylmethacrylate) (PMMA) layer. The
PMMA (MicroChem Corp., 950 k, 4 wt % in chloroben-
zene) layer was doped with the fluorescent dye pyromethene
580 (Exciton Inc.) by dissolving typically 10−3 w.t % of dye
in the PMMA solution prior to spin coating. This PMMA
layer was partly patterned using electron-beam lithography.
Each single pattern consisted of 5003500 unit cells. The
depth of the circular holes in the pattern was 450 nm,
equivalent to the PMMA-layer thickness.

On a plain, flat, hard wall hard-sphere particles crystallize
in close-packed hexagonal layers parallel to this surface.
These hexagonal layers correspond to the (111) plane of the
fcc crystal. In Fig. 2 a sketch of particle positions in this
layer is given. For the next hexagonal layer there are two
distinct stacking possibilities, denoted by B and C, while
positions in the first layer are indicated by A. The template
we have chosen for our experiments is a crystal plane that

FIG. 1. Calculated dependence of the volume fraction in the

sediment as a function of height for hard spheres at the two differ-

ent initial volume fractions used in this study. The straight curve

with w0=0.0015 corresponds to the experiments with the isotropi-

cally stretched and shrunken templates; the dashed curve with w0

=0.005 corresponds to the experiments with the anisotropically

stretched templates. In the inset the decay of the sw0=0.0015d graph

is visible as well.
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runs perpendicular to the hexagonal ground plane and con-
tains the A, B, and C positions, as indicated by the dashed
line in Fig. 2. For fcc and hcp crystals this corresponds to the
fcc(110) plane and hcp(1100) plane, respectively, where for
the fcc lattice crystal planes are denoted with the indices of
the three cubic lattice vectors, while for the hcp lattice we
use the three vectors associated with the hexagonal ground
plane and the direction perpendicular to this as the fourth
index. In order to only distinguish fcc and hcp stackings
there are more possible choices for the template plane, for

instance, fcc(110) vs hcp s1̄100d [38,39], but the hcp(1100)

plane gives us the further advantage to directly dictate any of
the intermediate stacking sequences as well. A confocal im-
age of the resulting hcp(1100) template is given in Fig. 3(a).
An example of another stacking sequence dictated by the
template, namely, the ABCBA sequence, is given in Fig. 6(a).
This sequence corresponds to a dhcp crystal.

The dimensions of the hcp(1100) unit cell are given by the
distances a and c, indicated in Fig. 3(a). For spheres of ra-
dius R, these distances are given by a=2RÎ3 and c

=4RÎs2/3d. The length of the c vector is twice the distance

between close-packed planes. The coordinates of the B posi-
tion in the unit cell are given by sa /3 ,c /2d. The actual val-

ues of a and c were varied by stretching or shrinking the unit
cell along these two directions. The resulting dimensions
were scaled to the effective hard-sphere dimensions aHS

=2RHSÎ3 and cHS=4RHSÎs2/3d, with RHS calculated as de-

scribed above. The values of a /aHSs=c /cHSd are given in

Table I. In the remainder of this paper we will denote defor-
mations with a /aHS=c /cHS.1 as positive, isotropic defor-
mations, deformations with a /aHS=c /cHS,1 as negative,
isotropic deformations, and finally deformations with a /aHS

Þc /cHS, where always c /cHS.a /aHS, as anisotropic defor-
mations.

Structural analysis

After sedimentation, samples were analyzed with an in-
verted confocal microscope (Leica TCS-NT 2). The 488 nm
line of an ArKr laser was used to excite the FITC fluoro-
phores in the particle cores. The use of particles with a non-
fluorescent shell as described above allows for a 3D analysis.
2D images parallel to the optical axis were taken with a
typical spacing along the optical axis (further denoted as the
z direction) of Dz=122 nm. In each of these images feature
coordinates and intensities were retrieved using procedures
similar to those described by Crocker and Grier [49]. Fea-
tures belonging to a single-sphere’s intensity profile were
then grouped together in columns sorted on their z coordi-
nate. This intensity profile is the z component of a convolu-
tion of the point spread function (PSF) of our microscope
with the spherical profile of the core particles. A Gaussian
function was constructed of which the full width at half
maximum was fixed at a value that was such that this Gauss-
ian function mimicked the z axis component of the convolu-
tion of the PSF with the spherical core profile. Each of the
intensity profiles in the 3D data set was then fitted to this
Gaussian and the position of the maximum was taken as a
particle’s z coordinate. This z coordinate has an accuracy of
±30 nm.

With the sets of 3D particle coordinates that were thus
obtained, an analysis of crystal structure was carried out. Our
analysis started by calculating the linear number density per-
pendicular to the bottom wall by integration of the 3D den-
sity profile over the lateral sxyd coordinates

rz =

E
z−Dz/2

z+Dz/2E E dsx − x0ddsy − y0ddsz − z0ddx dy dz

DzE dx dy

,

s4d

where the bin size Dz=0.040 mm.
At a plain wall, hard spheres crystallize in hexagonal lay-

ers oriented parallel to the bottom wall. For a templated crys-
tal we also expect crystal planes to be oriented parallel to the
(templated) bottom wall, but with an in-plane symmetry dic-
tated by the template. In both cases the positions of these
layers will be visible by a peaked structure of rz. Based on
the minima in rz particles were assigned to layers parallel to
the bottom wall.

Volume fractions were calculated by direct particle count-
ing in layers 3–10 from the bottom. These volume fractions
were scaled to the hard-sphere volume fraction. As can be
seen in Fig. 1, the volume fraction in this range of heights
may, for the sample with w0=0.0015, change depending on
the layer spacing. In order to account for the decreasing vol-

FIG. 2. (Color online) Schematic drawing of close-packed hex-

agonal planes in a hcp crystal, with the A ,B, and C positions indi-

cated. The hcp(1100) plane is perpendicular to the close-packed

planes, its orientation indicated by the dashed line.

FIG. 3. (a) Confocal microscopy image of a hcp(1100) template,

with the characteristic ABA sequence of the close-packed planes

that grow perpendicular to the template indicated. The distances a

and c span the 2D unit cell and their lengths are in this image 2.08

and 1.96 mm, respectively. (b) Drawing of the projection of sphere

positions in two successive hcp(1100) layers. The solid arrows in-

dicate the in-plane nearest-neighbor distance; the dashed arrows the

next-nearest-neighbor distance.
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ume fraction in the sample, the hard-sphere volume fraction
was determined by averaging the volume fraction as given in
Fig. 1 over the same range in z.

For the particles in each layer we calculated three order
parameters that together describe the effect of the (deformed)

template on crystal structure. In the following we will indi-
cate layers with the index i and the 2D particle coordinates in
layer i with ri= sx ,yd. First, we calculated the in-plane 2D

analog of the radial distribution function. The definition is
equal to that given in Eq. (1), with the exception that now the
integration only runs over the lateral coordinates of particles
whose z coordinate falls between the two minima in rz that
define the layer. We denote this function with 2D gsrd to

indicate the difference with the 3D gsrd defined above. Sec-

ond, a measure for the asymmetry of the distribution of
nearest-neighbor and next-nearest-neighbor distances was
calculated. As can be seen in Fig. 3(b), the first four nearest
neighbors in the hcp(1100) unit cell occupy two sets of dis-
tinct distances, hrW1 ,rW2j (indicated with the solid arrows) vs

hrW3 ,rW4j (indicated with the dashed arrows), where the order

(1,2,3,4) is determined by increasing distance from the center
particle. For a hexagonal, fcc(111) plane, as well as, for in-
stance, for a fcc(100) plane, all these four distances have
similar values. In order to quantify this distribution we have
used the function j that, for a particle in layer i at position r j,
is defined as

jsr jd =
1

Î2 − 1
S urW j3u

urW j2u
− 1D , s5d

where r j2 and r j3 denote the position of the second and third
neighbors of particle j with the order as given above. The
scaling is used to map the value of j for an ideal hcps1100d
lattice to 1. Note however that the possible values for this
parameter are not limited to k0,1l. The value for j can con-

tinuously vary and may become larger than 1. It only gives a
measure of the asymmetry of nearest-neighbor distances in
comparison to that in the hcps1100d lattice. However, a pure
fccs110d lattice sthat we however did not find to occur in our
experiments, except for local stacking faults at high template

deformationsd will give identical values as the hcps1100d lat-
tice.

The j parameter was found to give identical results as
using the mean-squared-distance (msd) between neighboring
particles, summed over each particle’s four nearest neigh-
bors. However, the distributions of values for j for hcp(1100)

and the symmetric unit cells listed above were found to be
more clearly separated than for the msd criterion. Further-
more, we only included the distances to second and third
nearest neighbors, as this was found to give better results
than using all first four nearest-neighbor distances, probably
due to the influence of defects. For instance, with the defini-
tion given above, a vacancy in a hcp(1100) lattice will map
the result for half of its neighbors to zero and for the other
half to one. Thus it will not give any intermediate values.

In order to also quantify orientational order in each layer,
the 2D local hexagonal bond-orientational order parameter
[50] was calculated for a projection of particle positions ri,i+1

from two successive layers:

c6
projsr jd =

1

Nb
o

k

expfi6usr jkdg , s6d

where the summation k runs over all, in total Nb, neighboring
particles of a particle j in layers i and i+1, and the angle u is
the angle that the bond vector between particles j and k

makes with an arbitrary fixed reference axis. As can be seen
in Fig. 3sbd, a projection of hcps1100d layers gives an almost
hexagonal symmetry and thus a distribution of values for
c6

proj close to 1. For other possible hard-sphere crystal
planes such as fccs111d and fccs100d, a two-layer projec-
tion does not give rise to projected hexagonal symmetry.
With the parameters j and c6

proj a global classification of
shcpd crystal structure is given. If the layer-averaged sor in
the case of c6

proj two-layer averagedd values kjli and

kc6
projli,i+1 both give a value larger than 0.5, crystal struc-

ture is denoted as hcp.
In order to discriminate the fcc(100) symmetry the single-

layer fourfold bond-orientational order parameter, defined as
in Eq. (6), but with a factor 4 instead of 6 in the exponent
and with a scaling of the value of c4 with the nearest-
neighbor distance, was calculated as well. If the parameters j

TABLE I. Values for the various order parameters for isotropic template deformations.

a /aHS kc6
projl3,4 kjl3 kc4l3 kc6

projl10,11 kjl10 kc4l10 Structurea w /wHS
b

0.753 0.35 0.09 0.41 0.36 0.18 0.44 DIS 0.84

0.822 0.24 0.08 0.62 0.29 0.16 0.52 fcc 0.74

0.890 0.21 0.11 0.93 0.25 0.22 0.72 fcc 0.77

0.959 0.34 0.23 0.86 0.46 0.19 0.80 fcc 0.90

0.986 0.58 0.66 0.84 0.34 0.43 0.85 H-F 0.85

1.055 0.73 0.84 0.72 0.72 0.83 0.73 hcp 0.92

1.068 0.73 0.82 0.71 0.73 0.83 0.72 hcp 0.82

1.151 0.66 0.98 0.57 0.75 0.80 0.66 hcp 0.88

1.247 0.33 0.81 0.44 0.32 0.86 0.45 DIS 0.81

aDIS stands for disordered, H-F for hcp in layer 3 to fcc in layer 10.
bThe error margin in the volume fraction is ±5310−3.
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and c6
proj gave average values smaller than 0.5 while the

average kc4li was larger than 0.5, the structure was labeled

as fcc(100). Furthermore, a hexagonal lattice was identified
with the single-layer averaged sixfold bond-orientational or-
der parameter being larger than 0.5. Finally, a structure was
denominated as disordered when the density profile did not
show clear, periodic minima except for a few layers over the
template (we always found layering to occur at the bottom
wall) and the order parameters defined before did not corre-
spond to any of the criteria given for these first four layers,
which typically meant that kjli was larger than 0.5, while

kc6
projli,i+1 was smaller than 0.5.

Apart from the order parameters defined above that were
used to identify the structure over the template, we have also
examined the extent to which particle coordinates in succes-
sive layers followed the positions dictated by the template.
For this the coordinates that correspond to the positions
given by the template and the second layer of the ideal 3D
crystal of which the template layer is the first were used.
These coordinates were denoted with rWT. Starting from these
positions, particles differing in height in the sample were
connected by linking positions rWT to the nearest particle co-
ordinates in the first two layers, with a cutoff radius of
0.5 mm, and repeating this procedure with these coordinates
and that in the next two layers. Such a set of connected xy

positions of particles in the sample will be denoted as the
lateral displacement curve (LDC). For all LDC’s that were
retrieved in this way, the 2D root-mean-squared displace-
ment relative to the template was calculated as

Dn = kurWn − rWTu2l , s7d

where n=2i+1 and i is the layer index starting from the
template shrW1 ,rW2j=rWTd. In order not to be affected by point

defects such as vacancies, an intermediate lattice position is
allowed to be unoccupied, with the LDC being “restored”
afterwards. For a perfect epitaxially grown crystal, the lattice
positions rWT are periodically repeated in all crystal planes
parallel to the template. Then the root-mean-squared dis-
placements Dn are just the vibrations of a particle around its
lattice site and the distribution of Dn for all n will have a
maximum at a relatively small, nonzero value. For a sample
where there is hardly any correlation between successive lay-
ers and thus between these layers and the template, LDC’s
will still be constructed, though now the distribution will
flatten between zero and the cutoff radius, and furthermore
due to the small difference between cutoff radius and particle
radius, resp. 0.5 mm and 0.77 mm, and the fact that a par-
ticle is allowed to disappear in one intermediate layer,
there will be a peak for small values of D corresponding to
restored, uncorrelated particle positions. This last fact can
also be observed when examining the extent to which
LDC’s persist through the sample. The plots of all 2D
LDC’s will provide information about correlations in the
direction of particle displacements in successive layers.

RESULTS

hcp and dhcp crystals

In Fig. 4 confocal images of a crystal grown on a template
with lattice constants of a=2.67 mm and c=2.51 mm are

shown. Figure 4(a) shows the first crystal layer over the tem-
plate, and as can be seen the template symmetry [Fig. 3(a)] is
fully replicated by the silica particles. In Fig. 4(b), denoting
the 18th layer in the crystal, corresponding to a depth of
<14 mm, it can be seen that the ABA stacking is still pre-
served, showing the growth of a perfect, stacking-fault-free
hcp crystal. The hcp crystal was found to be monocrystalline
over the full area of the template s1.3331.26 mm2d. Further-

more, hcp crystal structure was found to extend as far as the
thickness of our crystal, which was <20 mm.

As mentioned in the preceding section, we give a classi-
fication of (hcp) crystal structure as a function of template-
crystal mismatch, based on the values for kjli and kc6

projli,i+1.

This however is just an indicative qualification, with, as we
will see in detail below, the occurrence of defects and espe-
cially dislocations slowly increasing at increasing absolute
deformations. For negative isotropic deformations with
a /aHS from 0.959 to 0.822, we observe a reconstruction to a
fcc crystal structure with the (100) plane aligned on the tem-
plate. For a deformation of a /aHS=0.986, order parameters
for the bottom layers indicate a hcp structure, while for the
tenth layer from the bottom the in-plane structure is of
fcc(100)-type. For large deformations, a /aHS=0.753 and
a /aHS=1.397, strong distortions of the hcp crystal lead to
disorder in the first few layers above the template after which
a hexagonally stacked crystal that is tilted with respect to the
bottom wall develops. The values for all order parameters for
the isotropic deformations are given in Table I. Note that for
the hcp (1100)-oriented crystals, kc4li has a value higher than

0.5 as well, though these values are smaller than those for the
fcc crystals. The resulting evolution of crystal structure as a
function of stress caused by an isotropic stretch relative to
the effective hard-sphere unit cell is given in Fig. 5. Results
for anisotropic stretches of the template, where the axis ratio
sc /cHSdsa /aHSd−1 was varied, are indicated in Fig. 5 as well.

As visible in Fig. 5, the stability regime of the hcp crystal
is remarkably shifted from the values one would expect
based on the effective hard-sphere diameter that was calcu-
lated in the same sample on an untemplated part of the bot-
tom wall. As we will see below, a perfectly layered hcp crys-
tal was found at a /aHS=c /cHS=1.055.

As mentioned in the preceding section, the stacking se-
quence in the hcp(1100) plane is directly dictated by the
template. As the hcp crystal structure is the close-packed

FIG. 4. Confocal images of (a) the first layer of a templated hcp

crystal and (b) the 18th layer in the crystal, with the 19th layer

vaguely visible as well. The arrows indicate the positions of vacan-

cies in the crystal. Scale bars are 5 mm.
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hard-sphere stacking sequence with the highest free energy
[30] the above result indicates that it should be possible to
incorporate stacking faults in any desired position in a fcc or
hcp crystal by simply shifting one row of positions in the
template over a distance of ±a /3. In this way one could, for
instance, experimentally test theories on the influence of
stacking faults on the optical properties of photonic crystals
[45]. We have checked this possibility by using an ABCBA

template, which corresponds to the stacking of a dhcp crys-
tal. Figure 6(a) shows the dhcp template with the ABCBA

sequence visible. In this image colloids in the first, perfectly
templated, crystal layer are visible as well within the tem-
plate. In Fig. 6(b) the tenth layer is shown. The total thick-
ness of the crystalline part of the sediment of about 20 mm
corresponds to a perfectly stacked dhcp crystal of 30 layers.
For the dhcp crystal we observed a similar shift of the sta-
bility regime to positive deformations of the unit cell as for
the hcp crystal.

Furthermore, perfectly layered dhcp crystal growth was
found to occur, within the experimental resolution deter-
mined by the discrete values of a /aHS, at the same a /aHS as
for the hcp crystal that we will analyze below. At negative

deformations of the unit cell, also the dhcp template gives
rise to a surface reconstruction towards fcc(100), although
we did not, at the deformations studied, observe a perfectly
layered, defect-free fcc crystal as in the case of the hcp crys-
tal.

Negative isotropic deformations and the fcc crystal

In Fig. 5 and Table I it can be seen that an isotropic
shrinkage of the hcp(1100) unit cell leads to fcc crystalliza-
tion. We will first look at the evolution of crystal structure as
a function of unit cell deformation for this hcp-fcc transition
starting from the hcp-stability regime. In Fig. 7 the first ten
peaks (layers) in the linear number density rz are given for
various values of a /aHS ranging from 1.055 to 0.753. Here,
the position of the first peak in rz has been taken as z=0, as
we did not retrieve the exact position of the bottom wall
from our confocal data sets. As can be seen, we start in Fig.
7(a) with a perfectly layered structure, where the density in
between layers falls to zero. This is expected for a templated
crystal where crystal planes run parallel to the patterned bot-
tom wall. The crystal shown in Fig. 7(a) corresponds to the
confocal images shown in Fig. 4, i.e., the hcp crystal. From
the linear number density in Fig. 7(a) follows an interlayer
spacing of Dz=0.73±0.01 mm in correspondence with the
value of DzHS=RHS=0.730 mm expected for a hcp(1100)

plane based on the effective hard-sphere radius and an os-
motic pressure that gives rise to almost close-packed condi-
tions.

At smaller a /aHS, the width of the peaks increases, which
is accompanied by a decreasing peak height, an increasing
interlayer density, and an increase in the total height of the
first ten layers [note the changing scale on the z axis in Figs.
7(a)–7(f)]. These are all indications of out-of-plane displace-
ments of particles, and, at further decreasing a /aHS, small
grains of particles that move up or down with respect to the
average layer position. In between a /aHS=0.986 and a /aHS

=0.959 this leads to overlapping of successive peaks, and, at
a /aHS=0.959, a uniform density with oscillations after the
first two layers.

This trend is however interrupted at a /aHS=0.890 [Fig.
7(d)], where crystal structure is again perfectly layered, with
interlayer density sharply falling to zero. This situation cor-
responds to a (100)-oriented fcc crystal structure. Note that
in Fig. 7(d) also the scale on the rz axis has changed with
respect to the other graphs in Fig. 7. This, together with the
increased interlayer distance is in correspondence with the
higher in-plane density of the fcc(100) plane compared to the
hcp(1100) plane. For the interlayer spacing in Fig. 7(d) we
find Dz=1.14±0.01 mm, which is a factor of 1.11 higher
than the value of DzHS=1.03 mm that would be expected
based on the effective hard-sphere radius. Even when we
would take an interparticle distance that corresponds to the
stretched hcp(1100) lattice sd=1.54 mmd, the interlayer spac-

ing of Dz=1.14±0.01 mm for the (100)-oriented fcc crystal

is still a factor 1.05 higher than the value of
1

2dÎ2 that would
be expected.

At larger negative deformations of the template unit cell
than a /aHS=0.890, the same behavior of out-of-plane dis-

FIG. 5. Schematic graph of crystal phases vs scaled lattice con-

stants. The open symbols denote the occurrence of a stable phase

from the template onwards: hcp ssd, fcc shd, or hexagonally

stacked sDd; crosses sxd indicate that the structure was hcp(1100) in

the third layer, while fcc(100) in the tenth layer. The filled diamond

indicates a non-close-packed structure. The open diamonds denote a

disordered state in the first layers above the template.

FIG. 6. Confocal images of (a) template and particles in the first

layer of a dhcp sABCBAd crystal and (b) the tenth layer at a depth

of 8 mm. The length of the scale bar is in both images 5 mm.
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placements is found but then for the fcc crystal, as can be
seen in Figs. 7(e) and 7(f). Note that in Fig. 7(f) the first
layer has a split peak, indicating the formation of a new layer
of upward displaced particles.

In Fig. 7 we saw a large variation in layer width and layer
spacing over template-crystal mismatch, due to particle dis-
placements and defects. In Fig. 8 it can be seen that these

displacements also drastically influence the volume fraction
calculated over layers 3–10. For the crystal at a /aHS=1.055 a
volume fraction of w /wHS=0.92 is found, which is in close
correspondence with the value of w /wHS=0.93 that is found
for the untemplated close-packed crystal. The out-of-plane
displacements that occur when a /aHS becomes smaller lead
to a strong decrease of w /wHS. Remarkably, a further in-
crease in out-of-plane displacements (see Fig. 7) leads again
to an increase in volume fraction. The reason for this may be
the possibility to accommodate a larger number of particles
per layer at a larger layer width, through cooperative out-of-
plane displacements, similar to the buckling mechanism ob-
served in confined systems [51–53]. Note however that we
do not observe the splitting of a single peak into two separate
peaks, apart from that in the first layer in Fig. 7(f). The fcc
crystal that grows at a /aHS=0.890 has a volume fraction that
is about 0.8 times lower than that of the hcp and the untem-
plated close-packed crystals.

In Fig. 9 the 2D gsrd for layers 3 and 10 is shown over the

same range of a /aHS. Between the curves for a /aHS=1.055
and a /aHS=0.986, a small shift of all peak positions except

for the first peak towards smaller distances can be seen.
There are however no further qualitative differences between
the forms of both curves up to at least the first ten peaks.
This shift of peak positions can have two reasons. It may
result from neglecting the z coordinate of particles in this

FIG. 7. The linear number density of particles perpendicular to the hcp(1100) template at different template-crystal mismatch. The values

in the top right corners of every graph give the corresponding value for a /aHS. Panels (a) and (d) correspond to “perfect” hcp and fcc

crystals, respectively.

FIG. 8. Calculated volume fractions of the epitaxially grown

crystals as a function of template-crystal mismatch for the isotropi-

cally stretched hcp(1100) template. The volume fractions have been

scaled to the hard-sphere volume fraction given in Fig. 1, averaged

over the same height in the sediment as layers 3–10.
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layer. As we saw that the range of z coordinates in a single
layer widens (Fig. 7), projection of these z coordinates onto a
single layer will lead to an underestimation of true interpar-
ticle separations. This however would show up in a shift of
all peak positions, including the first peak. A second cause
may be an in-plane shift in particle positions, for instance, by
a small change in the orientation of nearest neighbors. This
will preserve the nearest-neighbor distance and thus the po-
sition of the first peak in 2D gsrd, but will change the posi-

tions of next-nearest neighbors, i.e., of all higher-order
peaks. This is also what we observe for the first two curves
in Fig. 9.

At a /aHS=0.959 peak positions have smeared out and
overlapped and only small, broad oscillations survive. Where
initially particle displacements only caused a small shift in
peak positions, here these displacements have disturbed the
underlying crystal lattice so severely that even the short-
range order is not visible anymore. At a /aHS=0.890 the
long-ranged crystallinity of the fcc(100) lattice becomes vis-
ible. Note that the center position of the shifted second and
third peak of the distorted hcp(1100) lattice exactly corre-
sponds to the position of the second peak in the fcc(100)

lattice. This corresponds to the transition to a more symmet-
ric unit cell, where the four nearest neighbors have similar
distances. Further shrinkage of the template unit cell again
distorts first long-ranged and later short-ranged crystalline
order. Between a /aHS=0.890 and a /aHS=0.822 particle dis-
placements out of the second peak lead to a new peak in
between second and third peaks, and particles are redistrib-
uted from the fourth peak to the joint third peak.

In Fig. 9(b), showing the 2D gsrd for the tenth layer from

the bottom, it can be seen whether the in-plane order at the
bottom of the sample corresponds to a 3D crystalline phase
or whether it is a stressed surface state slowly relaxing to-
wards the bulk of the dispersion. The 2D gsrd of the tenth

layer for both the perfect hcp(1100) and fcc(100) lattices at
a /aHS=1.055 and a /aHS=0.890, respectively, are exactly
similar to that for the third layer, in peak positions as well as
in peak heights. However, the shifted hcp(1100) lattice that
had sharp peaks and long-ranged order in the third layer at
a /aHS=0.986 can be clearly seen to correspond to a stressed

state. All peaks have broadened and overlapped and, for in-
stance, the position of the third peak shifts back to the
hcp(1100) lattice. Note however also the sharp decrease in
height of the first peak, indicating that the stressed lattice
expands as a whole, including nearest-neighbor distances.
For the distorted fcc(100) lattice at a /aHS=0.822, there is
much less change in structure between layer 3 and layer 10.
Apparently, the fcc(100)-oriented lattice is better capable of
maintaining a stressed crystalline structure. This is in accor-
dance with visual observation with the confocal microscope
where the fcc(100)-crystal structure with out-of-plane dis-
placed grains was found to extend deep into the bulk of the
dispersion (see also Ref. [24]).

In Fig. 10 the distribution of j over particles in the fourth
layer is shown. As can be seen, the shift in higher-order peak
positions that was observed in the 2D gsrd from a /aHS

=1.055 to a /aHS=0.986 corresponds to a shift of the distri-
bution of j from centered at about 0.9 to centered at 0.7.
Furthermore, a small second distribution can be seen of par-
ticles that have a value of j close to zero. The shift of the
main distribution to lower values corresponds to a decreasing
asymmetry of the in-plane unit cell, which corresponds to the
in-plane shifts of particle positions that we identified based
on the behavior of the 2D gsrd. The distribution close to zero

indicates that these shifts have transformed a small amount
of unit cells to a symmetric distribution of nearest neighbors,
i.e., a fcc(100) symmetry. The relative number of spheres
that have a value of zero is equal to the ratio of areas under
both distributions. At a /aHS=0.959, the distribution around
zero has risen and possesses a long tail that slowly decays to
zero at about 0.8. For more negative a /aHS a large peak at
zero that sharply decays to zero remains, indicating the com-
plete transformation to the fcc(100) lattice.

For the distribution of c6
proj (Fig. 11) the same behavior,

including the initial shift of the whole distribution going
from hcp(1100) to fcc(100), can be clearly observed. The
widest distributions again correspond to a /aHS=0.959 and
a /aHS=0.753, the values that showed the least pronounced
translational correlations in the 2D gsrd.

In Fig. 12 particle coordinates in subsequent layers have
been linked together into lateral displacement curves
(LDC’s), with all connected lateral coordinates projected
onto a single xy plane. In this way, it becomes visible to what

FIG. 9. In-plane (2D) radial distribution functions for the epi-

taxial hcp-fcc transition (a) at the third layer from the template and

(b) at the tenth layer from the template. Curves for different values

of a /aHS are shifted by 3 for clarity. Values for a /aHS are indicated

at the right side of every curve.

FIG. 10. (Color online) Distributions of the parameter for dif-

ferent values of a /aHS along the hcp-fcc transition. The different

symbols correspond to the different values of a /aHS as given in the

inset.
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extent order, as expressed by single-particle displacements
with respect to the template, persists in the z direction. In
Figs. 12(a) and 10(d), the perfectly repeating lattices of both
hcp(1100), giving rise to a projected hexagonal symmetry,
and fcc(100), showing a projected square symmetry, are
clearly visible. Furthermore, the shift in the orientation of
nearest neighbors between a /aHS=1.055 and a /aHS=0.986 is
also visible when comparing Figs. 12(a) and 10(b): the clear
hexagons from Fig. 12(a) have been slightly distorted and a
transition towards a more square symmetric lattice can al-
ready be seen. There are also small regions, such as in the
bottom left corner of Fig. 12(b), where dislocations propa-
gate in successive layers. This behavior of small regions
where lateral particle coordinates are invariant over a trans-
lation in height and regions where these coordinates have a
broader spread can even more clearly be seen for larger
template-crystal stresses in Fig. 12(c). Thus, the initial relax-
ation of stress caused by a template deformation is relaxed in
localized defect grains that persist in height in the sample.
The fact that a single dislocation persists in height is not so
surprising as this basically says that a defect or dislocation in
a layer disturbs ordering in successive layers. However, what
is surprising is the fact that these dislocations are grouped in
localized grains and that the lateral displacements in such a
defect grain seem to be directional, with the direction of
successive displacements being uniform over several ten par-
ticle diameters wide [Figs. 12(c) and 10(f)], or even almost
uniform throughout the entire crystal [as in Fig. 12(e)]. Note
that this direction in Fig. 12(e) is along one of the fcc(100)-
lattice vectors.

In Fig. 13 the behavior of the root-mean-squared displace-
ment with respect to the template, Dn, is shown. First, in Fig.
13(a) the distribution of values for D in all layer doublets n is
shown. As can be seen, the distribution for the hcp crystal at
a /aHS=1.055 is sharply peaked with a maximum for D
smaller than 0.1 mm. This is exactly in correspondence with
what one would expect for a perfectly layered crystal and
with the trajectory plot in Fig. 12(a). For smaller a /aHS the
peak positions shifts to larger D, showing the larger displace-
ments of particles with respect to the template that could also
be observed in Figs. 12(b) and 10(c). At a /aHS=0.959 we
can see a split distribution consisting of a sharp peak at D

=0 mm and a broad one with a shallow peak at D
=0.25 mm that slowly decays to zero at D=0.80 mm. For
a /aHS=0.890, the distribution sharpens again with the peak
position shifting back to D=0.20 mm. Furthermore, the dis-
tribution at D=0 mm has disappeared again. This illustrates
the transition to the fcc lattice. Note as well that the area
under the curve has become larger, showing that an increased
number of particles belongs to a trajectory that can be linked
to the template. This can also be seen in the inset in Fig.
13(a) where the relative number of particles that are linked in
a trajectory is plotted as a function of depth in the sample.

In Fig. 13(b) Dn is shown as a function of double-layer
index. Here it can be clearly seen that the sharp distribution
with averaged value of kDl=0.1 mm that we observed for

a /aHS=1.055 corresponds entirely to lattice vibrations as its
averaged value is constant throughout the crystal. Relative to
the mean interparticle distance this value kDl /RHS<0.07,

which is well below the Lindemann criterion that states that
the relative mean-squared displacement has a value of 0.15 at
melting. A similar situation can be observed for a /aHS

=0.890, corresponding to the (100)-oriented fcc crystal. Thus
we can conclude that the larger offset of kDl=0.2 mm is due

to the mismatch of the fcc(100) lattice with the template. For
all other values of a /aHS, kDl increases as a function of depth

in the sample. Note that n=5 corresponds to eight layers
deep. For a /aHS=0.986, we see that in the bottom of the
sample kDl starts at 0.1 mm, but starts slowly increasing after

the first six layers due to the relaxation of the stressed tem-
plate positions. For the other values of a /aHS, this also hap-
pens starting from the fcc value of D=0.2 mm, where for the
two smallest values of a /aHS the curves are rapidly
diverging.

Positive isotropic deformations of the hcp(1100) lattice

The same analysis that was performed above on the struc-
tural evolution over negative isotropic deformations of the
hcp(1100) template can be carried out over positive,
stretched, deformations. The behavior of the linear number
density as function of a /aHS (not shown) is similar to that
shown for negative deformations: starting from a perfectly
layered crystal, peaks gradually broaden due to out-of-plane
displacements and again overlap, leading to a situation with
a constant offset density with small oscillations for a /aHS

=1.397. For this highest value of a /aHS, the layers are not
well defined anymore after eight layers, as the oscillations
decay and only a constant density with single-binsize wide
noise peaks remains. Both for the isotropic expansion as well
as for isotropic shrinkage of the template unit cell around the
optimal value, there is a sharp decrease in w /wHS, followed
again by an increase when the number of out-of-plane dis-
placements further increases. For a /aHS=1.397, the layer
spacing of layers 3–8 was extrapolated to find the position of
a “tenth” layer for comparison with the other results.

In Fig. 14 the in-plane 2D gsrd for the third and for the

tenth layer above the template is given, again starting with
a /aHS=1.055, the value that corresponds to hcp-crystal
growth. Already at a /aHS=1.068 the effect of the expanded
template can be seen, resulting in displacements of a small

FIG. 11. (Color online) Distribution plot of the projected sixfold

bond-orientational order parameter c6
proj for the hcp-fcc transition.

The different symbols correspond to a /aHS=1.055 (up-triangle),

0.986 (circle), 0.959 (down-triangle), 0.890 (diamond), 0.822 (star),

and 0.753 (square).
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amount of particles towards larger particle-particle separa-
tions than for a /aHS=1.055: the second curve from the bot-
tom shows peak broadening to larger distances, especially in
the small extra “kinks” in the first and third maxima. Fur-

thermore, the density in between second and third peaks in-
creases. At a /aHS=1.151 this effect is more pronounced: the
second and third peaks almost completely overlap and the
long-ranged correlations disappear. At the largest isotropic

FIG. 12. Lateral displacement curves (LDC’s) of particles in the first 20 layers above the template. (a) a /aHS=1.055, (b) a /aHS

=0.989, (c) a /aHS=0.959, (d) a /aHS=0.890, (e) a /aHS=0.822, (f) a /aHS=0.753. Panels (a) and (d) again correspond to perfect hcp and fcc

crystals, respectively. In the other panels directional shifts in particle positions due to stress relaxation are visible.
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deformation of a /aHS=1.397, sharp peaks are again coming
up, but their relative positions do not seem to correspond
anymore to the hcp(1100) lattice.

When looking at Fig. 14(b), it can be seen that the
stressed structure in the bottom layers relaxes back to the
hcp(1100) lattice when moving further away from the tem-
plate. Even at a /aHS=1.151, the translational correlations in
the 2D gsrd of the tenth layer correspond to those of the

hcp(1100) lattice over up to 10 mm, indicating the possibility
for rearrangements from the stressed surface layers.

The behavior of the j parameter (Fig. 15) is consistent
with the behavior described above. Initially, at a /aHS

=1.068 the distribution broadens, indicating small particle
displacements from the hcp(1100) lattice. Then, for larger
a /aHS, the distribution shifts to higher values of j. Thus,
though the deformation of the unit cell is isotropic, the dis-
tribution of nearest-neighbor distances becomes more asym-
metric. In fact, in Fig. 14 it can be seen that the nearest
neighbor distance remains constant throughout the deforma-
tions, so the positions of next-nearest neighbors shift rela-

tively more with the deformed lattice than do nearest neigh-
bors. As can be seen this shift of the distribution sets
through, while meanwhile also a peak at zero develops cor-
responding to defected regions with a close-packed unit cell.
The relaxation towards the hcp(1100) lattice at especially the
template with a /aHS=1.151 can also be clearly seen when
comparing the distributions for third and tenth layers.

In Fig. 16 it can be seen that the deformed nearest-
neighbor distributions still maintain a strong hexagonal sym-
metry in a two-layer projection up to a /aHS=1.151. Although
the decay towards zero becomes of longer range, the main

FIG. 14. In-plane (2D) radial distribution functions for the iso-

tropically stretched hcp template (a) at the fourth layer from the

template and (b) at the tenth layer from the template. Curves for

different values of « are shifted by 3 for clarity. Values for a /aHS

are given on the right side of each curve.

FIG. 15. (Color online) Distributions of the j parameter for

different values of a /aHS for a stretched hcp template. The lower

curves give values for the fourth layer in the sample; the upper

curves for the tenth layer in the sample. Different line types corre-

spond to the different values for a /aHS as given in the inset.

FIG. 13. (Color online) (a) Distribution of the root-mean-

squared xy displacements D of particles in successive layers. The

inset shows the relative number of particles contained in LDC’s as

a function of two-layer index n. The different lines correspond to

a /aHS=1.055 (solid), 0.986 (dash), 0.959 (short dash), 0.890 (dash-

dot-dot), 0.822 (dash-dot), and 0.753 (dot). (b) The averaged D as a

function of n. The symbols correspond to different values of a /aHS

as given in the inset. Lines connecting data for each a /aHS have

been drawn to guide the eye, where the line type for each a /aHS

corresponds to that in (a).
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distribution remains centered around 0.8, corresponding to
the hcp(1100) lattice. Also indicative of a relaxation process
is the flattening of the root-mean-squared displacements with
respect to the template (Fig. 17) for a /aHS=1.068 at n=3,
corresponding to the fourth layer, to a value of D=0.2 mm.
For a /aHS=1.151 the curve seems to be slowly converging
as well, though a thicker crystal has to be examined to clarify
whether this is actually the case. For a /aHS=1.397 the rela-
tive number of particles contained in LDC’s is already below
0.6 at n=2 (not shown) and, as mentioned before, after eight
layers it is not possible anymore to distinguish individual
layers. In fact the distribution of values for D showed a
single peak at zero (not shown), such as the first peak in the

distributions for the lowest values of « in Fig. 13(a), indicat-
ing that almost all of these LDC’s consist of uncorrelated
positions.

Finally, in Fig. 18 the values for both kjl3 and kc6
projl3,4

are shown for all of the isotropically stretched templates,
both positive and negative. Here, the influence of the defor-
mations of the template on both order parameters can be
clearly seen: the j parameter follows the direction of the
deformation, becoming larger for stretching the template and
smaller for shrinking, while c6

proj indicates the disturbance of
in-plane symmetry when the template is deformed with re-
spect to a /aHS=1.055. Figure 19 shows two examples of
structures that were denoted as disordered according to the
criteria given before. As can be seen for the isotropic defor-
mation with a /aHS=1.247, the structure of the template is
still locally visible, but with a considerable amount of de-
fects, including “stacking faults” which destroy local sym-
metry and translational order. At a template deformation with
a /aHS=1.40 and c /cHS=1.23, no effect of the template other
than absence of ordering is visible anymore.

FIG. 16. (Color online) Distribution plot of c6
proj for the

stretched hcp template for a projection of third and fourth layers

(lower curves) and 10th and 11th layers (upper curves). The differ-

ent lines correspond to a /aHS=1.055 (solid), 1.068 (dash), 1.151

(dash-dot), and 1.397 (short dash).

FIG. 17. Root-mean-squared displacements of particles relative

to the template as a function of double-layer index for different

values of a /aHS for the stretched hcp(1100) template.

FIG. 18. (Color online) The development of both the layer-

averaged values for the order parameters j (in layer 3) and c6
proj (in

layer 3 and 4) as a function of template-crystal mismatch for the

isotropically stretched templates.

FIG. 19. Confocal microscopy images of colloidal structures

that were qualified as disordered in this study (a) At a height of

3 mm above a template with a /aHS=1.247. Structuring in the tem-

plate direction is still visible, but with a lot of defects and height

differences (vaguely visible out-of-focus particles). (b) At a height

of 1.3 mm above a template with a /aHS=1.40 and c /cHS=1.23. In

both images the scale bar indicates 5 mm.
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Anisotropic „c /a… deformations

Starting from two points for the isotropically stretched
template, an anisotropic stretch of the template in the direc-
tion of the c axis was performed. The structural evolution for
these deformations is given in Fig. 5. Both stretches were
performed starting from a unit cell with sa /aHS ,c /cHSd val-

ues slightly off the regime that was identified as the best for
growing a hcp crystal, namely, at sa /aHS ,c /cHSd
= s0.99,0.99d and at sa /aHS ,c /cHSd= s1.08,1.08d. Starting

from the shrunken unit cell, the hcp crystal remains stable up
to c /cHS=1.05 a /aHS, after which (111)-oriented crystals
grow over the template. From the stretched template the sta-
bility regime is larger, up to c /cHS=1.15a /aHS, leading at
c /cHS=1.5 to a new supercrystal structure that we will treat
in the following section. For templates with a larger stretch,
a (111)-oriented crystal nucleates in this case as well. For
both series, an anisotropic stretch of the template unit cell
with c /cHS=1.02 leads to better hcp crystal quality than for
c /cHS=1.0 and c /cHS=1.01. As this behavior was found to be
similar for both series, we will limit ourselves here to the
series starting from sa /aHS ,c /cHSd= s1.08,1.08d.

In Fig. 20 the j parameter for five different values of
sc /cHSdsa /aHSd

−1 is given. The bottom curves correspond to

the fourth layer from the bottom and the upper curves for the
tenth layer. As can be seen, all curves for c /cHS=1.0a /aHS to
1.07a /aHS have a main distribution with a maximum slightly
below j=1.0, corresponding to what was seen before for a
template stretched compared to the ideal values, together

with a smaller distribution of values close to 0.0, indicating
the presence of defects. For the fourth layer, the maximum of
the distribution decreases going from c /cHS=1.0a /aHS to
1.01a /aHS, but at c /cHS=1.02a /aHS increases again and
shifts from 0.95 to a slightly smaller value of 0.85. Further-
more, the distribution at j=0, and thus the number of de-
fects, decreases. This behavior is even more pronounced in
the tenth layer. Where for c /cHS=1.0a /aHS and 1.01a /aHS

the maximum of the distribution at j=0 has doubled relative
to the fourth layer, this is not the case for c /cHS

=1.02a /aHS and even 1.07a /aHS. The increase of peak height
at j=1.0 and the shift of this distribution towards slightly
smaller values has also become more pronounced. For all
four curves this distribution has sharpened, indicating that
the distribution of nearest-neighbor distances for particles
where this distribution is hcp(1100)-like has relaxed from the
stressed stretched unit cell of the template towards ideal
hcp(1100) higher in the sample. This change is more pro-
nounced for c /cHS=1.02a /aHS and 1.07a /aHS than for
c /cHS=1.0a /aHS and 1.01a /aHS. For c /cHS=1.07a /aHS the
small distribution of large asymmetries at j=1.7 in the fourth
layer has disappeared in layer 10.

The distribution of c6
proj for layers 3 and 4 and layers 10

and 11 are shown in the lower and upper parts of Fig. 21,
respectively. Here, the increase in crystalline order for
c /cHS=1.02a /aHS compared to 1.0a /aHS and 1.01a /aHS is
even more clearly visible. Already in layers 3 and 4 the curve

FIG. 20. (Color online). The distribution of the j parameter for

the anisotropically stretched template with a /aHS=1.076. The dif-

ferent line types correspond to the different values of the axis ratio,

sc /cHSdsa /aHSd−1, as given in the inset. The lower curves corre-

spond to the fourth layer; the upper curves to the tenth layer.

FIG. 21. (Color online) Distribution plots for c6
proj for the an-

isotropically stretched template with a /aHS=1.076 for a projection

of fourth and fifth layers (lower curves) and 10th and 11th layers

(upper curves). Different line types correspond to axis ratios of

sc /cHSdsa /aHSd−1=1.00 (solid line), 1.01 (dash), 1.02 (dash-dot),

1.07 (short dash), and 1.50 (dash-dot-dot), respectively.
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for c /cHS=1.02a /aHS has a 1.5 times higher maximum than
for c /cHS=1.0a /aHS and 1.01a /aHS, while the small shoulder
at c6

proj=0.35 has disappeared. In layers 10 and 11 these
differences are even better visible. Furthermore, the large
increase in hcp crystal order higher in the sample for c /cHS

=1.07a /aHS is also clearly evident: not only has the maxi-
mum value increased to almost 0.1, similar to the relaxation
at c /cHS=1.02a /aHs, the shoulder at c6

proj=0.35 that has be-
come more pronounced for c /cHS=1.0a /aHS and 1.01a /aHS

has completely disappeared for c /cHS=1.07a /aHS.

Non-close packed HS crystal

In Fig. 20 it can be seen that at c /cHS=1.50a /aHS the
distribution of j contains a remarkably sharp and, compared
to the hcp distributions also narrow, distribution centered at
0.5. This strongly indicates the emergence of a structure with
a replicating unit cell that has half the asymmetry in nearest-
neighbor distances than has the hcp(1100) unit cell. The dis-
tribution of c6

proj in Fig. 21 shows a distinct peaked distribu-
tion as well, here with a maximum at c6

proj=0.20. The
behavior of these two order parameters is different from that
of the other crystalline structures that we encountered over
the hcp(1100) template before, such as fcc(100) (see Figs. 10
and 11) and hexagonal.

In Fig. 22(a) rz for the structure on this template is shown.
The structure consists of sharp layers, with a peak width
comparable to that of the hcp and fcc crystal in Fig. 7. The
distance between the peaks has a constant value of Dz

=0.50±0.01 mm. The constant “offset” density of about 0.15
times the average peak height is caused by small defect
grains that were found to coexist with this structure (also
note the distribution of j at 0 in Fig. 20). The fact that there
is a split first peak is probably caused by the fluorescence of
the template which makes the determination of particle po-
sitions close to the template harder. The small interlayer
spacing of 0.50 mm suggests a low in-plane density. In fact,
if we look at the 2D gsrd in Fig. 22(b), it can be seen that the

first peak of the hcp(1100) lattice is almost completely ab-
sent. Thus the mean interparticle distance has increased to-
wards a value of about 2 mm, showing that indeed the in-
plane density is lower than for the close-packed planes. The
first two peaks in 2D gsrd actually fall on the same positions

as the second and third peaks in the hcp(1100)–2D gsrd. For

larger distances peak positions in both functions slowly run
out of registry with each other.

In Fig. 23(a) an image of a small part of the crystal is
shown with spheres drawn at the determined xyz positions.
Both the small interlayer spacing as well as the open in-plane
structure are clearly visible in this image. Figure 23(b) shows
the xy coordinates for particles in Fig. 23(a) projected onto a
single plane. The positions in successive layers exactly fol-
low the zigzag of the stretched hcp(1100) lattice with the
coordinates for particles in layers i and i+1 falling in differ-
ent “lanes” displaced in the a-axis direction. The extra space
created by stretching the template in the c direction is ac-
commodated by shifting positions in layers i and i+2 within
these lanes by 1 mm, as indicated with the arrows drawn in
Fig. 23(b). These shifts indicate that the structure should be

FIG. 22. (a) Linear number density perpendicular to the tem-

plate for a crystal at an anisotropically stretched template with

a /aHS=1.076 and an axis ratio of sc /cHSdsa /aHSd−1=1.50.

FIG. 23. (Color online) (a) Image showing particle coordinates

in a small part of our real-space data set in layers 3–7 for the crystal

at an anisotropically stretched template with a /aHS=1.076 and an

axis ratio of sc /cHSdsa /aHSd−1=1.50. The image in the middle

shows a top view, the other two the respective side views. Spheres,

with diameter drawn to scale, have been colored corresponding to

their layer index: green for layer 3, blue for layer 4, red for layer 5,

gold for layer 6, and black for layer 7. (b) A projection of xy particle

coordinates for the spheres (a) onto a single layer. The symbols

corresponding to the different layers are given in the legend next to

the graph. Positions indicated with filled symbols have been con-

nected with solid lines and open symbols with dashed lines, in order

to indicate the template-induced alignment. The arrows indicate the

shift in particle positions with the original template ABA sequence

between layers 3, 5, 7, and 9s=3d and layers 4 and 6, respectively.
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periodic when translated over six layers, and indeed we have
found that the particle positions in the ninth layer fall on top
of those in layer 3.

For the hard-sphere scaled volume fraction of this crystal
we found a value of w /wHS=0.78, compared to w /wHS

=0.92 for the crystal grown on a templateless part of the
bottom wall. This value is however higher than that for the
best hcp crystal in this series of anisotropic deformations,
namely, that at c /cHS=1.02a /aHS, which was w /wHS=0.74.
This again highlights that the distorted crystals that grow at
the deformed templates are, strictly speaking, not close
packed as well. As noted before and visible in Figs. 20 and
21 the non-close-packed superstructure alternates with defect
grains. This can be due to the fact that our deformed
hcp(1100) template is not the best suited template to grow
this crystal structure. The most obvious choice for the “ideal”
template would seem to be a template that has an anisotropic
stretch of the axis ratio of 1.50, such as in this case, but
starting from the ideal hcp(1100) plane or, as there may
again be prefreezing or wetting, starting from the hcp(1100)

template that generated the best quality hcp crystal. It would
certainly be interesting to further examine the growth condi-
tions for this peculiar hard-sphere crystal structure.

SUMMARY AND DISCUSSION

In this paper we have demonstrated the possibility to
grow crystal structures that are metastable in bulk crystalli-
zation using colloidal epitaxy. For colloids interacting
through a hard-sphere-like potential, a hcp(1100) pattern was
found to induce hcp crystal formation. Modification of this
surface pattern gives the possibility to directly dictate the
crystal’s stacking sequence, which was illustrated by growth
of a “double hcp” (dhcp) crystal.

For the hcp(1100) template the evolution of crystal struc-
ture over template-crystal mismatch was studied using a 3D
real-space analysis. The first step in our analysis consisted of
examining the degree of layering parallel to the template. A
template-crystal mismatch was found to lead to out-of plane
displacements of particles, in accordance with observations
in molecular epitaxy [41,42]. Thus in further research on
colloidal epitaxy, the width of peaks and/or the relative depth
of minima in the linear number density perpendicular to the
template may be used as parameters for probing the quality
of the epitaxially grown crystal and for identifying the best
conditions for epitaxial crystal growth. Relatively small val-
ues for the layer width and an interlayer density of essen-
tially zero correlate with sharp peaks and long-ranged in-
plane order as evidenced in a 2D gsrd and with the

indications given by the other parameters that we have used.
For the hcp crystal these conditions were met at an isotropi-
cally stretched template with lattice parameters a /aHS

=c /cHS=1.055. Scaling the template isotropically from these
values led to the out-of-plane displacements mentioned
above. For a template where the unit-cell dimensions were
shrunken to a /aHS=0.89, there was a structural transition to a
(100)-oriented fcc crystal. Further shrinkage as well as large
isotropic stretches led to disorder in the first layers over the
template. The volume fraction of the epitaxially grown crys-

tal was found to vary with template-crystal mismatch, with
the highest volume fraction crystal growing at the isotropi-
cally stretched template.

For a hard-sphere system in zero gravity, Heni and Löwen
demonstrated that nonhexagonal surface patterns prefreeze
and/or wet at a unit cell of which both lattice spacings are
stretched by a factor of 1.035 [38,39]. This may be readily
explained by the fact that a solution crystallizing at lower
volume fractions than bulk freezing has correspondingly
larger lattice parameters than for a crystal at bulk volume
fractions. Thus our result that an isotropically stretched tem-
plate grows the best quality hcp crystal may be an indication
that the hcp(1100) shows prefreezing or even wetting. Re-
cently, Pronk and Frenkel have shown that a deformation of
the hard-sphere crystal structure, such as the one implied by
our template, changes the relative stability of hcp and fcc
crystal structures [40]. The difference however remains
small, on the order of 10−2kBT per particle in favor of hcp.

For the isotropically stretched template we also found the
highest volume fraction, which was furthermore almost simi-
lar to the volume fraction of the untemplated close-packed
crystal. This last fact is not in correspondence with what one
would expect for a stretched unit cell. The reason why this
higher volume fraction was reached was that the distance
between the hcp(1100) planes in this crystal was smaller than
what would be expected for the stretched hcp(1100)-lattice
vectors. This is probably caused by compression of the crys-
tal when more particles sediment and crystallize on top of it:
at first a few layers wet or prefreeze at the stretched template,
but when during sedimentation the pressure increases, the
crystal cannot isotropically compact as decreasing the in-
plane lattice vectors would result in an increase in interlayer
distance opposite to the gravitational field. Thus the stretched
in-plane lattice vectors are preserved and the interlayer dis-
tance in the crystal is smaller to accommodate the higher
volume fraction. For the (100)-oriented fcc crystal an ap-
proximately 0.8 times lower volume fraction than that of the
hcp crystal was found, which was also lower than that for
any of the other defected hcp crystals. The quality of the
crystal, as judged from the behavior of the various order
parameters used, was however comparable to that of the best
hcp crystal. Furthermore, the in-plane nearest-neighbor dis-
tance did not noticeably change between the hcp and the fcc
crystal, indicating that the fcc crystal also showed prefreez-
ing or wetting. Apparently, the (1100)-oriented hcp crystal
can be compressed much more to accommodate the increas-
ing osmotic pressure than the (100)-oriented fcc crystal. In-
deed, for the fcc crystal we found a layer spacing that was a
factor 1.11 higher than the expected value based on the ef-
fective hard-sphere radius, while for the (1100)-oriented hcp
crystal these two values corresponded. Pronk and Frenkel
found that the elastic constants of fcc and hcp crystals can be
surprisingly different, with differences up to 20% [40]. The
deformations and compressions reported here are however
far beyond the scope of their calculations.

The dependence of volume fraction on template-crystal
mismatch starting from the stretched template that yielded
the highest volume fraction and best quality crystal was as
follows: A small deviation of lattice parameters from the
ideal ones led to a sharp decrease in volume fraction after
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which there was again a rise in volume fraction when the
layer width further increased. The reason for this may be the
possibility to accommodate a larger number of particles per
layer at a larger layer width, through cooperative out-of-
plane displacements, similar to the buckling mechanism ob-
served in confined systems [51–53].

Based on layerwise defined order parameters the struc-
tural evolution was examined in more detail. This analysis
showed the structural relaxation in subsequent layers above a
mismatch template. However, it should be noted that the
sample used in the experiment with isotropically shrunken
and expanded unit cells consisted of only thin crystals, with
a sediment thickness of about 20 mm. As such the osmotic
pressure at the tenth layer is considerably lower than at the
template. This however hardly changed the calculated hard-
sphere volume fraction calculated over the range in z

spanned by the first ten layers. Furthermore, in the experi-
ments with the anisotropically stretched templates a higher
initial volume fraction was used, which resulted, over the
range of layers examined, in a constant volume fraction of
almost 0.74 corresponding to complete compaction. In these
crystals similar relaxation and rearrangements as a function
of height were still observed. It is known from molecular
epitaxy that structural transitions can take place at over 20
layers above a mismatch substrate [54]. For a system of
density-matched colloids, we have recently found that a
stressed surface crystal can extend for over 30 layers deep
[24]. The dependence and extent of epitaxial crystal structure
on sediment thickness need to be explored in more detail in
further research, both for the mismatch structures as well as
for the “perfect” epitaxial crystals. This will also give addi-
tional insight into the strength of the entropic interaction of
the templated wall with the hard-sphere system.

By analyzing particle positions in successive layers with
respect to template and to each other, and thus constructing
lateral sxyd displacements curves (LDC’s), the location of

and correlations between dislocations and defects were stud-
ied. The root-mean-squared displacements in these LDC’s
provided a sensitive order parameter for crystal quality. For
the hcp crystal these were found to be constant at 0.14 times
the particle radius and for the fcc crystal constant at 0.28
times the particle radius. For small mismatches these values
increase and diverge higher in the crystal. Furthermore, these
trajectory plots give insight in correlated displacements of
particle due to surface strain. At increasing mismatch and
thus increasing particle displacements with respect to perfect
crystal positions there is a structural breakup in crystal grains
and defect grains, with these displacements being localized
in the latter. Furthermore, particle displacements in these de-
fect grains were strongly correlated in their direction. These
results strongly suggest the application of correlation func-
tions in analyzing local stress and local defect grains.

The structural analysis presented in this work is mostly
based on a layerwise, 2D analysis. Nevertheless, for an epi-
taxially grown crystal, defects and dislocations caused by a
template-crystal mismatch affect the crystal structure in a 3D
way, as also followed from the results presented above. A
thorough investigation of stress relaxation in epitaxially
grown crystals, especially in the cases where the interlayer

density has increased to substantial nonzero values and thus

the definition of layers is not strictly applicable anymore, has

to include 3D order parameters as well, especially for the

larger template-crystal mismatches. By performing a 3D

analysis, information about dislocation concentrations, dis-

tances between bound dislocation pairs, and correlation

lengths can be retrieved.

In a study in which a detailed analysis of defects and

dislocations is performed it has to be ensured that the crys-

tals are properly equilibrated during sedimentation. This

equilibration crucially depends on the interplay between

sedimentation and crystallization and, more specifically, the

time scales associated with both processes [55,56]. In this

study the initial volume fractions were similar to those used

in a recent investigation of the crystallization process of sedi-

menting colloids at a plain hard wall [55]. The time scales

associated with the relaxation of structural defects can, how-

ever, be much larger than those associated with crystal nucle-

ation and growth [56]. For a more elaborate discussion of

equilibration during crystal growth of sedimenting colloids,

we refer to Refs. [55,56]. In further research the influence of

equilibration on epitaxial colloidal crystal growth has to be

investigated as well.

The variation of the c /a ratio by anisotropically stretching

the template unit cell starting from either a slightly isotropi-

cally shrunken or stretched unit cell compared to the ideal

values for epitaxial growth was found to lead to better qual-

ity crystals as evidenced by the criteria mentioned above. For

both the shrunken and the stretched unit cell, this occurred at

a 1.02 stretch of the c axis. For the shrunken unit cell larger

deformations finally led to the occurrence of (111)-oriented

hexagonally stacked crystals. For the stretched unit cell a

non-close-packed superstructure occurred at a 1.50 stretch
along the c axis. This structure consisted of regularly stacked
crystal planes that followed the stretched hcp (1100) lattice,
with the stacking being periodic over six crystal layers. This
result even more clearly shows the possibility to create meta-
stable crystal structures using colloidal epitaxy and opens
perspectives for the growth of colloidal, hard-sphere quasi-
crystals.

The stability range of this and possibly other, non-close-
packed crystal structures could be broadened when interac-
tions would be made of longer range than purely hard-
sphere-like. For a bilayer system of particles interacting
through a screened repulsive pair potential, Messina and Lö-
wen have recently shown various interesting changes in the
phase behavior as a function of screening length [57].
Among these was the notion that crystal structures that are
only stable in a small density range in a hard-sphere system
become the stable crystal structure over a much larger den-
sity window as the range of the interaction is increased. In
this respect, the addition of a repulsive component to the
particle-particle interactions may pose less strict require-
ments on the template topography. We have recently demon-
strated that for a system of long-range repulsive colloids the
template need not be a 2D representation of a crystal plane: a
simple 1D pattern was found to already induce the growth of
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crystal structures that would be metastable without the sur-

face pattern [24]. Epitaxial growth on a one-dimensional sur-

face pattern still has to be investigated for a hard-sphere

system, but this may already be an indication that bulk meta-

stable structures can be stabilized over a much broader range

of the respective parameters in a soft-sphere system than in a

hard-sphere system as was shown by Messina and Löwen to

be the case for a confined bilayer system.
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