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The epithelial lining of the skin, gut, and lungs has long been 
known as a protective barrier against infection and physical or 
chemical injury. As the primary organ that senses the external 
environment, it is now clear that the barrier epithelium also func-
tions as a key sensor and integrator of environmental cues. Aller-
gic diseases encompass a wide breadth of pathological immune 
responses to otherwise innocuous antigens that are encountered 
at barrier sites of the body. These responses, called type 2 immune 
responses, also provide protection against helminth infections. In 
allergic diseases, type 2 inflammation can drive atopic dermatitis 
(AD) in the skin; food allergies and eosinophilic esophagitis (EoE) 
in the gastrointestinal tract; or asthma, allergic rhinitis, and chron-
ic rhinosinusitis within the respiratory system. The prototypical 
type 2 response is characterized by induction of Th2 cells; B cell 
production of IgE; activation of specific innate cell populations 
such as type 2 innate lymphoid cells (ILC2s), eosinophils, mast 
cells, and basophils; and production of type 2 cytokines such as 
IL-4, IL-5, IL-9, and IL-13 by innate and adaptive immune cells. 
The itch response, mucus production, and bronchoconstriction 
may also be components of the type 2 allergic response.

Regulatory T cells (Tregs), which are important in maintain-
ing immune homeostasis, also regulate type 2 immunity at barrier 
surfaces. Mice that lacked the CNS1 gene regulatory region at the 
FOXP3 locus, which is required for peripheral induction of Tregs, 
spontaneously developed type 2 inflammation within the gastro-
intestinal tract and lungs (1). Mice whose Tregs lacked expression 

of the transcription factor RORα exhibited exaggerated type 2 skin 
inflammation in models of AD (2). This exaggerated inflammation 
in RORα-deficient Tregs may have been in part due to decreased 
expression of death receptor 3 (DR3; also known as TNF receptor 
superfamily member 25, or TNFRSF25) on Tregs. DR3 on Tregs 
can bind the ligand TL1A (also known as TNF superfamily member 
15, or TNFSF15) and may sequester TL1A to restrain TL1A-driven 
inflammation by Th2 cells and ILC2s. Additional data also suggest 
that Tregs can regulate ILC2 function through ICOS-ICOSL inter-
actions and production of IL-10 and TGF-β (3).

In epithelial regulation of allergic type 2 responses, three cyto-
kines — thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 — 
have emerged as critical mediators of type 2 inflammation. These 
cytokines alert the immune system to external insults and regulate 
tissue restoration and repair after injury. While our understanding of 
how these cytokines function initially focused on their roles early in 
type 2 responses, emerging data suggest that these three cytokines 
provide important tissue-specific signals to both innate and adaptive 
cell populations throughout type 2 inflammation. TSLP, IL-33, and 
IL-25 may therefore be important mediators of inflammation during 
allergic disease exacerbations and may prove to be key targets for 
therapeutic intervention even after disease is well established. This 
Review provides an overview of the regulation and function of TSLP, 
IL-33, and IL-25. We also discuss the current status of the develop-
ment of treatments that target TSLP, IL-33, or IL-25.

TSLP
TSLP is a member of the IL-2 family of cytokines that was initial-
ly identified as a pre–B cell growth factor (4). Epithelial cells in the 
lungs, skin, and gastrointestinal tract are thought to be the primary 
source of TSLP during both homeostatic and inflammatory condi-
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likely through its effects on DCs and T cells (28, 29, 33–35, 37–40). 
TSLP can also act directly on Tregs in the skin and has been impli-
cated in regulating the generation of Tregs in the thymus and 
microbiota- driven expansion and maintenance of Helios-negative 
Tregs in the gut (41–43). The impact of TSLP regulation of Tregs in 
allergic inflammation remains unclear.

In addition to DCs, basophils and innate lymphoid cells (ILCs) 
have also emerged as important innate effector cell populations 
downstream of TSLP. In mouse models, a TSLP/basophil axis has 
been shown to be important in experimental EoE and food allergy 
(44–46), and TSLP drove basophil hematopoiesis independent of 
IL-3 (47). In some models, TSLP-driven allergic inflammation was 
mediated by ILCs (48, 49). Given the importance of respiratory 
virus infections in driving asthma exacerbations, it is interesting 
to note that respiratory viruses can induce TSLP expression, and 
type I interferons induced during the antiviral response can play a 
counterregulatory role by modulating ILC2 activity (50–52). Sev-
eral recent publications have now suggested that a TSLP/ILC axis 
may play a pivotal role in steroid-resistant allergic airway inflam-
mation. TSLP signaling induced expression of the antiapoptotic 
protein BCL-XL in ILC2s and prevented corticosteroid-induced 
apoptosis of ILC2s in vitro (53). In vivo, TSLP signaling was not 
required to drive inflammation following OVA/IL-33 administra-
tion, but lack of TSLP signaling greatly enhanced the ability of 
dexamethasone to suppress inflammation in this model of allergic 
lung inflammation (53). Data from human subjects suggest a sim-
ilar and important role for a TSLP/ILC axis, since TSLP could also 
mediate resistance to corticosteroids in ILC2s from human PBMCs 
and bronchoalveolar lavage (BAL) fluid. Furthermore, TSLP levels 
in the BAL fluid from asthmatic patients were inversely correlat-
ed with dexamethasone-mediated inhibition of IL-5 production 
from BAL fluid ILC2s (54). Since steroid therapy is a cornerstone 
for many allergic and inflammatory diseases, further study of the 
TSLP/ILC axis is certainly warranted to determine whether simi-
lar mechanisms regulate inflammation at other tissue sites.

IL-33
IL-33 is an IL-1 family cytokine that may exert a broad spectrum 
of effects extending from early immune development to atopic 
disease exacerbations. IL-33 was initially named “nuclear factor 
in high endothelial venules” (NF-HEV) based on its high expres-
sion in the nucleus of HEVs (55). The link between IL-33 and type 
2 immune responses was established when IL-33 was identified 
as the ligand for suppression of tumorigenicity 2 (ST2; sometimes 
referred to as IL-1RL1, T1, or IL-33R) (56), which had been char-
acterized previously as an orphan receptor important in type 2 
responses in the lungs (57, 58). Genetic studies have reproducibly 
demonstrated significant associations between IL33 and IL1RL1 
genetic variants and asthma in humans (59–66). Genetic variants 
in IL1RL1 are also associated with AD risk (67), and genetic variants 
in the IL33 and IL1RL1 loci are associated with EoE risk (68, 69).

Epithelial cells at barrier surfaces and endothelial cells, both 
of which express IL-33 constitutively in the nucleus, are thought to 
be the primary sources of IL-33 during homeostatic and inflamma-
tory conditions (67, 70, 71). A variety of other hematopoietic and 
non-hematopoietic cell types have also been reported to express 
IL-33 under basal conditions or after treatment with inflammatory 

tions, although dendritic cells (DCs), basophils, and mast cells can 
also express TSLP (5–9). TSLP expression and release from epitheli-
al cells is increased in response to a broad array of stimuli, including 
mechanical injury, infection, inflammatory cytokines, and prote-
ases such as trypsin and papain (6, 10, 11). Two main isoforms of 
TSLP have been described in mice, but the functional consequence 
of these variants is unknown. In humans, a short isoform appears 
to be expressed in basal conditions, whereas a longer isoform is 
induced by inflammatory stimuli (12). Cleavage of human TSLP 
by serine proteases may also regulate TSLP protein levels or func-
tion, although it is unclear whether a similar regulatory mechanism 
exists in mice (13, 14). TSLP genetic variants and high levels of TSLP 
expression have been linked to atopic diseases such as AD, asthma, 
allergic rhinoconjunctivitis, and EoE (15). TSLP overexpression 
has also been reported in Netherton syndrome, a genetic disease 
caused by mutations in SPINK5 that manifests in type 2 inflamma-
tion at multiple sites (16), and in some nonatopic pulmonary diseas-
es such as chronic obstructive pulmonary disease (9).

TSLP is a distant paralog of IL-7 and shares a common recep-
tor subunit, IL-7Rα, with IL-7. TSLP binds the TSLP receptor (TSL-
PR) that is coupled with IL-7Rα to activate downstream pathways 
(17); TSLP-mediated signaling has been studied primarily in DCs 
and T lymphocytes, in which signaling occurred primarily through 
JAK/STAT pathways (18–20). A number of non-hematopoietic cell 
populations have been shown to express TSLPR and to be respon-
sive to TSLP. Although the implications in allergic inflammation 
are not known, the barrier epithelium can respond to TSLP, and 
TSLP mediated recovery from colonic inflammation in a mouse 
model of colitis by inducing intestinal epithelial production of 
secretory leukocyte peptidase inhibitor (SLPI) (21). A growing 
body of literature also suggests that TSLP can activate a subset of 
sensory neurons to drive the itch response in allergic diseases such 
as AD (22, 23).

TSLPR is broadly expressed within hematopoietic cell pop-
ulations (24). The highest expression is seen on specific myeloid 
DC populations (25–27), which have been shown to be import-
ant TSLP-responsive populations in both humans and mice. 
TSLP-stimulated DCs upregulated the costimulatory molecules 
CD40, CD80, CD86, and OX40L (28, 29). When cocultured 
with TSLP-conditioned DCs, naive syngeneic T cells proliferated 
but did not differentiate; naive allogeneic T cells cocultured with 
TSLP-conditioned DCs acquired an inflammatory Th2-like phe-
notype with production of IL-4, IL-5, IL-13, and TNF-α but not 
IL-10 (30). TSLP-conditioned DCs could also support the main-
tenance of Th2 effector memory cells and promotion of IgA2 class 
switching in the intestines (31, 32). The actions of TSLP directly 
on T cells can also promote type 2 responses. TSLP signaling on 
naive T cells in the presence of TCR stimulation promoted pro-
liferation and Th2 differentiation through induction of IL-4 gene 
transcription (33–35). Recent data demonstrated that TSLP could 
directly promote Th2 differentiation and type 2 cytokine expres-
sion from naive T cells in vitro, even in the absence of IL-4 (18). In 
vivo, in an OVA/alum immunization model using antigen-specific 
T cells, it was noted that T cells lacking TSLPR acquired an effec-
tor phenotype after immunization but were defective in the abili-
ty to generate Th2 memory (36). In a variety of models of allergic 
disease, TSLP can regulate induction of Th2 cells and Th9 cells, 
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responses in the lungs (120, 121). Memory Th2 cells, which express 
ST2 at higher levels than effector Th2 cells, are another important 
effector cell type responsive to IL-33 (122, 123). In vivo, after house 
dust mite (HDM) exposure, IL-33 signaling on memory Th2 cells 
induced amphiregulin production, which then drove osteopontin 
production by eosinophils (123, 124). It is interesting to note that 
EGFR, the receptor for amphiregulin, can form a complex with 
ST2, and EGFR was required for IL-33–induced IL-13 production 
during helminth infections in mice (125). In helminth infection, an 
ST2+ subset of memory Th2 cells was required to drive production 
of major basic protein (MBP) by eosinophils after infection (123, 
124). While ILC2 and pathogenic memory Th2 cell populations 
both express high levels of ST2 and share transcriptional and epi-
genetic profiles (126), Th2 cells but not ILC2s express DUSP10, 
a phosphatase that can negatively regulate IL-33–mediated cyto-
kine production (127). It is now also clear that IL-33 can promote 
the induction and function of Tregs in a variety of settings (103, 
128–130). The implications of this role for IL-33 in suppressing 
inflammation in allergic disease are not fully understood, though 
IL-33 was shown to negatively regulate allergic inflammation by 
inducing Tregs via an IL-33/mast cell/IL-2 axis (131).

In the developing lungs in mice, IL-33 has been shown to 
have an important role in establishing the pulmonary immune 
environment that influences the risk and development of allergic 
lung inflammation later in life. These studies have shown direct 
links between perturbations in IL-33/ST2 signaling in the perina-
tal period and subsequent type 2 responses to allergen. Following 
a perinatal increase in IL-33 expression in the lungs, pulmonary 
ILC2 frequencies increased (132–134). ILC2s mediated eosinophil 
accumulation in the lungs during the neonatal period and were the 
primary source of IL-13 in the neonatal lungs that drove the pheno-
typic polarization of pulmonary macrophages. Tissue insults such 
as hyperoxia that occur during the perinatal period can increase 
IL-33 expression and mobilize ILC2s, leading to increased suscep-
tibility to asthma later in life (135). IL-33 also drove a lung-specific 
transcriptional program in basophils in the developing lungs, since 
the gene expression profile of lung basophils from ST2-deficient 
neonatal mice was more similar to that of wild-type circulating 
basophils than to that of wild-type lung basophils (136). Thus, 
IL-33 signaling impacts all stages of allergy starting even from the 
establishment of the immune environment in the perinatal lungs.

IL-25
IL-25 (sometimes referred to as IL-17E) is a member of the IL-17 
cytokine family, although the functions of IL-25 have been shown 
to be quite distinct from those of other IL-17 cytokine family mem-
bers given IL-25’s ability to amplify type 2 inflammation at multi-
ple tissue sites (137–140). Blockade of IL-25 signaling can attenu-
ate allergic inflammation in a variety of mouse models (141–143). 
Although initial reports described IL-25 as a Th2 cell–derived cyto-
kine (137), epithelial cells, alveolar macrophages, mast cells, baso-
phils, and eosinophils have now also been reported as potential 
sources of IL-25 (141, 144–148). IL-25 was constitutively expressed 
by epithelial cells of the skin and lungs in subjects with asthma or 
atopic disease, and expression of IL-25 was higher in the skin and 
lungs of subjects with asthma and atopic disease than in the skin 
and lungs of control subjects (147, 148). In subjects with chronic 

stimuli (67, 70, 72–79). In specific contexts, cell types other than 
epithelial and endothelial cells may serve as important sources for 
IL-33. For example, mast cell–derived IL-33 may be important in 
experimental autoimmune encephalitis and in intestinal helminth 
infections (80, 81).

Like the activity of other IL-1 family cytokines, the activity 
of IL-33 is regulated both by its localization within the cell and 
by proteolytic cleavage. IL-33 contains an N-terminal chroma-
tin-binding motif and a predicted nuclear localization sequence. 
Although some studies suggest a role for IL-33 in transcription-
al regulation (82), the intranuclear localization of IL-33 in most 
cell types is thought to be important in sequestering this cyto-
kine to prevent inappropriate release (83). Transgenic mice that 
expressed a form of IL-33 that lacked the nuclear localization 
signal died of systemic inflammation (84). Although IL-33 lacks 
a signal sequence required for conventional secretory path-
ways, it can be released as an “alarmin” in response to cellular 
injury or stress (85, 86). Full-length IL-33 appears to be biolog-
ically active, but proteolytic cleavage of IL-33 at various sites 
can modulate its activity. Mast cell and neutrophil proteases 
can cleave and further activate IL-33 (87–89). Certain allergens 
also contain proteases that can cleave and further activate IL-33 
(90). In contrast, cleavage of IL-33 by caspase-1, -3, or -7 or oxi-
dation of IL-33 results in inactivation (91, 92). Splice variants of 
IL-33 also exist, although how these different isoforms differ in 
activity and regulation is not fully understood (93–95).

IL-33 binds a heteromeric receptor consisting of ST2 and 
its coreceptor IL-1 receptor accessory protein (IL-1RAcP). For-
mation of the IL-33/ST2/IL-1RAcP complex results in recruit-
ment of MyD88 and IL-1R–associated kinase (IRAK) to activate 
a variety of downstream signaling pathways (96). A soluble 
variant of ST2 (sST2) that lacks the transmembrane domain 
appears to function as a decoy receptor to negatively regulate 
IL-33/ST2 signaling (97, 98). ST2 is constitutively expressed 
on several immune cell types, including mast cells, ILC2s, Th2 
cells, and a subset of Tregs, and can be induced on many other 
immune subsets; as a consequence, IL-33 can also directly acti-
vate and induce cytokine production from a broad number of 
cell types (79, 99–109). Recently, leukotrienes and IL-33 have 
been shown to act together in a signaling circuit that may be an 
important amplifier of inflammation in allergic disease exac-
erbations. Signaling through the leukotriene receptor CysLT2R 
on alveolar cells drove the production of IL-33, which acted on 
T cells to upregulate T cell expression of the leukotriene recep-
tor CysLT1R (110, 111). Some non-hematopoietic cell types are 
also IL-33–responsive. ST2 expressed on human airway epithe-
lium may mediate inflammatory cytokine production from the 
bronchial epithelium (112, 113); and, like TSLP, IL-33 has also 
been shown to mediate the itch response through activation of 
sensory neurons (114).

IL-33 is a particularly potent activator of ILC2s, which produce 
type 2 cytokines such as IL-13 and IL-5 and upregulate surface 
OX40L and PD-L1 in response to IL-33 (107, 115–118). In mice, 
systemic IL-33 also mobilized ILC2 precursors from the bone mar-
row (119). In a papain-driven model of allergic lung inflammation, 
IL-33–mediated activation of ILC2s was important in inducing Th2 
cells in the draining lymph nodes and in promoting memory Th2 
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cells was further induced by succinate or helminth-derived prod-
ucts and mediated intestinal epithelial remodeling in response to 
colonizing protozoa, which protected against helminth infections 
(150, 153, 154). Few data exist on whether IL-25 expression and 
function are regulated by splicing or proteolytic cleavage; howev-
er, IL-25 has been reported to be a substrate for cleavage by matrix 
metalloproteinase 7 (MMP-7) (155).

IL-25 binds IL-17RB, and along with IL-17RA recruits the 
adapter protein Akt1 to activate downstream signaling pathways 
(138, 156–159). Cellular targets of IL-25 include T cells, ILC2s, 
specific myeloid populations, and invariant NKT cells, as well as 
non-hematopoietic cell populations such as fibroblasts, epithelial 
cells, endothelial cells, and mesenchymal cells (118, 137, 146, 147, 
160–166). An IL-25–responsive, steroid-resistant myeloid popu-
lation was a critical mediator of disease in a model of cockroach 
allergen–driven chronic allergic lung inflammation (167). In addi-
tion to acting on ILC2s, which are activated or elicited by TSLP 
and IL-33, IL-25 may also induce some functionally and pheno-
typically distinct ILC populations: multipotent progenitor (MPP) 
type 2 cells and IL-17–producing KLRG1hi cells (162, 165). A subset 
of NKT cells has also been shown to produce type 2 cytokines in 
response to IL-25 and could drive airway hyperresponsiveness in 
an OVA/alum model of allergic airway inflammation (164). As 
with TSLP and IL-33, T cells also appear to be important target 
cells in IL-25–mediated inflammation. Ex vivo analyses of human 
peripheral blood demonstrated high expression of IL-17RB tran-
script and protein in memory Th2 cells that was greatly enhanced 
by coculture with TSLP-conditioned DCs (147). Augmentation of 
Th2 differentiation and function by IL-25 appeared to be depen-
dent on IL-4, since naive T cells lacking IL-4 or antibody blockade 
of IL-4 abrogated the ability of IL-25 to induce Th2 differentiation 
in vitro (146). IL-25 does not appear to drive Th9 differentiation, 
but Th9 cells expressed IL-17RB and increased IL-9 production 
in response to IL-25 (168). Under homeostatic conditions, IL-25 
can play an important role in limiting IL-17 expression within the 
gut. Intestinal commensal microbiota drove expression of IL-25 
from the epithelium, which limited IL-23 expression and Th17 
cell expansion in the large intestines and limited IL-22 produc-
tion from RORγt+ ILCs (ILC3s) in the small intestines (169, 170). 
Although the implications in allergy are unclear, recent data also 
demonstrated an important role for IL-25 in driving keratino-
cyte proliferation and skin inflammation in an IL-17–dependent 
imiquimod-induced psoriasis model (171). Additional data linking 
IL-25 to Th17-type responses come from a hapten-mediated mod-
el of contact hypersensitivity (CHS). CHS mediated by transferred 
Th2 cells was comparable in wild-type and IL-25–deficient mice, 
yet transferred Th17 cells could drive inflammation in wild-type 
but not IL-25–deficient mice (172).

TSLP, IL-33, and IL-25: interplay and  
tissue-specific roles
Although TSLP, IL-33, and IL-25 can all promote type 2 inflamma-
tion through their effects on a broad array of cell populations (Fig-
ure 1 and Table 1), the downstream effector profiles can be distinct 
in response to these three cytokines (173), and cells may express dif-
ferent levels of receptors for TSLP, IL-33, or IL-25 in a tissue-depen-
dent manner (174). Studies in mouse models have demonstrated 

rhinosinusitis, solitary chemosensory cells (SCCs) appeared to be 
the primary source of IL-25 within the sinonasal epithelium, and 
SCCs were expanded in nasal polyp tissue compared with adja-
cent turbinate epithelium (149). Within the lungs and intestines 
in mice, IL-25 expression was restricted to tuft cells, a rare type 
of chemosensory epithelial cell (150–152). IL-25 expression by tuft 

Figure 1. TSLP, IL-33, and IL-25 regulate a diversity of responses in type 
2 immunity. (A) IL-33 release in the lungs at birth helps establish the 
pulmonary immune environment, which can influence asthma risk and 
development later in life. (B) TSLP acts directly on DCs to drive Th2 cell 
development; IL-25, along with IL-4, can also drive Th2 cell differentiation. 
(C) TSLP, IL-33, and IL-25 act on a broad array of innate immune cells and 
are particularly important in eliciting and activating ILC2s; IL-25 can also 
elicit MPP type 2 cells and IL-17+ KLRG1hi cells. (D) TSLP and IL-33 can act 
on sensory neurons to stimulate the itch response. (E) TSLP, IL-33, and 
IL-25 can promote adaptive type 2 responses through subsets of memory 
Th2 cells that are characterized by high receptor expression for TSLP, 
IL-33, and IL-25.
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tion or after HDM challenge despite the fact 
that lymph node priming of adaptive type 2 
immunity remained intact (126).

The recent identification of subsets 
of memory Th2 cells in humans and mice 
that are characterized by high expression of 
receptors for TSLP, IL-33, and IL-25 supports 
a role for these three cytokines in regulating 
adaptive immune responses in allergy. These 
Th2 subpopulations are enriched at affected 
sites in EoE and AD and constitute a higher 
frequency of circulating Th2 cells in subjects 
with seasonal allergies than in control sub-
jects (176, 177). It is interesting to speculate 
whether the increased responsiveness of 
these memory Th2 cells to TSLP, IL-33, and 
IL-25 may be important in mediating the 
allergic phenotype, since the mere presence 
or absence of allergen-specific T cells does 
not appear to distinguish allergic from nonal-
lergic subjects (178, 179). Additional research 
is required to assess whether each of these 
epithelial cell–derived cytokines is uniformly 
required across a spectrum of human allergic 
diseases or whether patterns of expression 
of these cytokines may distinguish distinct 
allergic endotypes or phenotypes.

Other epithelial cytokines
While TSLP, IL-33, and IL-25 have been 
highlighted as important epithelial cell–
derived cytokines in allergy because of 
their potent ability to drive type 2 respons-
es, it is important to note that numerous 
other cytokines produced by the barrier 
epithelium also have key roles in regulating 
allergic diseases. A growing body of liter-
ature implicates granulocyte-macrophage 
colony-stimulating factor (GM-CSF) in the 
regulation of allergic responses. GM-CSF 
was able to serve as an adjuvant to drive 
type 2 lung inflammation in response to 

low-dose HDM or OVA alone (180, 181), and blockade or loss of 
GM-CSF signaling attenuated allergic inflammation in a vari-
ety of mouse models (175, 182–185). Studies examining the role 
of GM-CSF in allergic lung inflammation suggest a primary role 
for GM-CSF during allergic sensitization (184). IL-1α may also be 
important during sensitization but not challenge since neutral-
ization of IL-1α but not IL-1β during sensitization reduced type 2 
inflammation in an HDM-driven asthma model, whereas inflam-
mation was not affected by blockade of IL-1α or IL-1β during the 
challenge phase in this model (175). In fact, TLR4-induced IL-1α 
from bronchial epithelial cells provided an important autocrine 
signal for GM-CSF and IL-33 release, suggesting that IL-1α may be 
one of the earliest triggers of type 2 immunity in the lungs. Stud-
ies of AD also suggest that keratinocyte release of IL-1α can drive 
chronic skin inflammation (186).

differential requirements for TSLP, IL-33, and IL-25. In some mod-
els, the allergen dose or mouse genetic background can influence 
the requirements for these epithelial cell–derived cytokines. At low 
doses of HDM, blockade of either IL-33 or GM-CSF but not TSLP 
attenuated HDM-driven allergic lung inflammation, but inflam-
mation driven by high-dose HDM was attenuated in the absence 
of TSLP signaling (175). C57BL/6 mice that lacked TSLP signaling 
had greatly attenuated skin inflammation after topical application 
of the vitamin D analog MC903 (48); yet, in BALB/c mice, IL-25 
may play a more important role than TSLP, since MC903-driven 
inflammation was decreased to a greater extent in mice that lacked 
the IL-25 receptor IL-17RB than in mice that lacked either TSLPR 
or ST2 (117). Some studies suggest a tissue-specific role for TSLP, 
IL-33, and IL-25, as mice lacking TSLP, IL-33, and IL-25 signaling 
had impaired type 2 immune responses in tissue in helminth infec-

Table 1. Cellular sources and targets of TSLP, IL-33, and IL-25

TSLP IL-33 IL-25
Sources

Non-hematopoietic Epithelial cells Epithelial cells Epithelial cells (esp. tuft cells, 
solitary chemosensory cells)

Stromal cells Endothelial cells
Fibroblastic reticular cells, 

fibroblasts, fibroblast-like cells, 
myofibroblasts

Adipocytes
Smooth muscle cells

Glial cells
Hepatocytes

Hematopoietic Dendritic cells Various myeloid cell types Alveolar macrophages
Mast cells Mast cells Mast cells
Basophils Platelets, megakaryocytes Basophils

Eosinophils
Th2 cells

Targets
Non-hematopoietic Epithelial cells Epithelial cells Epithelial cells

Sensory neurons Endothelial cells Endothelial cells
Stromal cells, fibroblasts Fibroblasts

Sensory neurons Mesenchymal cells
Glial cells

Cardiomyocytes

Hematopoietic Type 2 ILCs (ILC2s) Type 2 ILCs (ILC2s) Type 2 ILCs
CD4+ T cells CD4+ T cells (ILC2s, MPP type 2, IL-17+KLRG1hi)

(Th2, Th9, naive T cells) (Th2, Th1, Th17) CD4+ T cells (Th2, Th9, naive T cells)
Tregs Tregs iNKT cells

CD8+ T cells CD8+ T cells Specific myeloid populations
NKT cells NK cells

B cells iNKT cells
Mast cells B cells
Basophils Mast cells

Eosinophils Basophils
Dendritic cells Eosinophils

Monocytes, macrophages Dendritic cells
Macrophages
Neutrophils
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Studies have also highlighted a potential role for TGF-β, and, 
in particular, epithelial cell–derived TGF-β, in the pathogenesis of 
asthma. A critical role for TGF-β in mediating tolerance through 
Treg induction has been well established; thus, some studies 
have investigated TGF-β in allergy as a potential mode of therapy 
(187, 188). However, loss of TGF-β expression specifically from 

the bronchial epithelium reduced ILC2 accumulation and IL-13 
production in the lungs following HDM administration (189). 
The association of SNPs in the promoter and coding regions of 
the TGFB1 gene with asthma susceptibility and degree of atopy 
further supports an important role for TGF-β in allergic disease 
(190). Given the opposing roles that have been described for 

Table 2. Clinical trials of drugs targeting TSLP or IL-33/ST2A

Study title Clinical trial 
identifier

Stage Drug Condition/disease

Anti-TSLP clinical trials
Safety Study of AMG 157 in Healthy Subjects NCT00972179 Phase I Tezepelumab Healthy
A Phase 1 Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Immunogenicity  
of MEDI9929 After Single Administration in Healthy Male Japanese Subjects 

NCT01913028 Phase I Tezepelumab Healthy

A Study to Evaluate the Pharmacokinetics of MEDI9929 (AMG 157) in Adolescents with  
Mild to Moderate Asthma

NCT02512900 Phase I Tezepelumab Asthma

Double-blind, Multiple Dose Study in Subjects with Mild Atopic Asthma NCT01405963 Phase I Tezepelumab Asthma
Safety Study of AMG 157 in Healthy Subjects and Subjects with Atopic Dermatitis NCT00757042 Phase I Tezepelumab Healthy, atopic dermatitis
Anti-TSLP (AMG 157) Plus Antigen-Specific Immunotherapy for Induction of Tolerance  
in Individuals with Cat Allergy

NCT02237196 Phase I/phase II Tezepelumab Cat allergy/ 
hypersensitivity

Study to Evaluate the Efficacy and Safety of MEDI9929 (AMG 157) in Adult Subjects with 
Inadequately Controlled, Severe Asthma 

NCT02054130 Phase II Tezepelumab Asthma (191)

Effects of Anti-TSLP in Patients with Asthma (UPSTREAM) NCT02698501 Phase II Tezepelumab Asthma
Study to Evaluate Tezepelumab on Airway Inflammation in Adults with Uncontrolled 
Asthma (CASCADE)

NCT03688074 Phase II Tezepelumab Asthma

Phase 2a Study to Evaluate the Efficacy and Safety of MEDI9929 in Adults with  
Atopic Dermatitis (ALLEVIAD)

NCT02525094 Phase II Tezepelumab Atopic dermatitis (194)

Study to Evaluate Tezepelumab in Adults and Adolescents with Severe Uncontrolled 
Asthma (NAVIGATOR)

NCT03347279 Phase III Tezepelumab Asthma

Extension Study to Evaluate the Safety and Tolerability of Tezepelumab in Adults and 
Adolescents with Severe, Uncontrolled Asthma

NCT03706079 Phase III Tezepelumab Asthma

Study to Evaluate the Efficacy and Safety of Tezepelumab in Reducing Oral Corticosteroid  
Use in Adults with Oral Corticosteroid Dependent Asthma 

NCT03406078 Phase III Tezepelumab Asthma

Anti–IL-33/ST2 clinical trials
Proof of Concept Study to Investigate ANB020 Activity in Adult Patients with  
Severe Eosinophilic Asthma

NCT03469934 Phase II Etokimab Asthma

A Study Investigating the Efficacy, Safety, and PK Profile of ANB020 Administered  
to Adult Subjects with Moderate-to-Severe AD

NCT03533751 Phase II Etokimab Atopic dermatitis

Placebo-Controlled Study to Investigate ANB020 Activity in Adult Patients with  
Peanut Allergy

NCT02920021 Phase II Etokimab Peanut allergy

Etokimab in Adult Patients with Chronic Rhinosinusitis with Nasal Polyps  
(CRSwNP)

NCT03614923 Phase II Etokimab Chronic rhinosinusitis  
with nasal polyps

A First-in-Human, Double Blind, Single Dose Study in Healthy Subjects and Subjects  
With Mild Atopic Asthma

NCT01928368 Phase I AMG 282 Asthma

A Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of 
AMG 282 in Healthy Subjects and Subjects With Chronic Rhinosinusitis with Nasal Polyps

NCT02170337 Phase I AMG 282 Chronic rhinosinusitis  
with nasal polyps

Safety and Tolerability of MEDI3506 in Healthy Subjects, in Subjects With COPD  
and Healthy Japanese Subjects

NCT03096795 Phase I MEDI3506 Chronic obstructive 
pulmonary disease

Proof-of-Concept Study to Assess the Efficacy, Safety and Tolerability of SAR440340  
(Anti-IL-33 mAb) in Patients With Moderate-to-Severe Chronic Obstructive Pulmonary 
Disease (COPD)

NCT03546907 Phase II SAR440340 Chronic obstructive 
pulmonary disease

Efficacy and Safety Study of GSK3772847 in Subjects With Moderately Severe Asthma NCT03207243 Phase II GSK3772847 Asthma
Repeat Dose Study of GSK3772847 in Participants With Moderate to Severe Asthma With 
Allergic Fungal Airway Disease (AFAD)

NCT03393806 Phase II GSK3772847 Asthma with allergic  
fungal airway disease

Anti-ST2 (MSTT1041A) in COPD (COPD-ST2OP) NCT03615040 Phase II MSTT1041A Chronic obstructive 
pulmonary disease

AFrom ClinicalTrials.gov, accessed December 5, 2018. Includes trials that are completed or recruiting.
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TGF-β in suppressing or promoting allergic inflammation, further 
study is needed to better understand how TGF-β regulates type 2 
immunity at barrier tissue sites.

Development of biologics against epithelial 
cytokines
Although biological therapies directed against IgE and some effec-
tor cytokines have been developed, studies in mouse models sug-
gest that epithelial cell–derived cytokines such as TSLP, IL-33, and 
IL-25 may regulate allergic responses more broadly and through 
more diverse pathways than IgE or type 2 effector cytokines such 
as IL-4, IL-13, or IL-5. There is therefore growing interest in devel-
oping therapeutics to target TSLP, IL-33, and IL-25. Antibodies 
directed against IL-25 are under development but have not yet 
entered clinical trials. One antibody directed against TSLP and 
several antibodies that block IL-33/ST2 signaling are under devel-
opment (Table 2). Therapeutics directed against TSLP and IL-33 
have not yet been approved by the FDA, but several trials that have 
been conducted suggest that these antibodies may be both safe 
and effective in a variety of atopic diseases.

TSLP signaling blockade. Tezepelumab (AMG 157/MEDI9929) 
is a human IgG2 monoclonal antibody that binds human TSLP 
and prevents the binding of TSLP with TSLPR. Tezepelumab was 
effective in reducing rates of asthma exacerbations in patients 
with moderate to severe disease requiring long-acting β-ago-
nists and medium to high doses of inhaled glucocorticoids (191). 
A study of responses to allergen challenge in patients with mild 
allergic asthma suggested that tezepelumab affects both early and 
late asthmatic responses to allergen exposure (192). Treatment 
with tezepelumab did not affect total IgE levels in patients with 
mild asthma but did decrease blood eosinophil counts compared 
with those of placebo-treated control subjects. Allergen-induced 
bronchoconstriction after allergen challenge was also attenuated 
in tezepelumab-treated patients compared with controls. Studies 
are currently ongoing to evaluate the efficacy of tezepelumab as 
adjunctive therapy to immunotherapy in inducing long-term tol-
erance to cat allergen (193). ALLEVIAD, a phase IIa study of safe-
ty and efficacy of tezepelumab in adults with AD, has also been 
completed, and although higher numbers of subjects treated with 
tezepelumab reached an improvement of 50% or more in the 
Eczema Area Severity Index (EASI-50), the study did not reach 
the level of significance in this primary endpoint (194). It will be 
particularly interesting to establish whether blockade of TSLP 
may be effective in steroid-resistant asthma given recent studies 
suggesting a central role for TSLP and ILCs in steroid resistance 
in mouse models of allergic inflammation.

IL-33 signaling blockade. Etokimab (ANB020) is a human-
ized anti–IL-33 IgG1 antibody generated by AnaptysBio that is 

being evaluated in a number of studies in the treatment of AD, 
eosinophilic asthma, peanut allergy, and chronic rhinosinusitis 
with nasal polyps (195). In vitro analyses demonstrated high-af-
finity binding to IL-33 and inhibition of IL-33 activity on primary 
human cells. Phase I and phase IIa trials of etokimab have been 
completed. Etokimab demonstrated a favorable safety profile, 
and a single dose of etokimab suppressed IL-33 function for 85 
days based on ex vivo assays. In adult subjects with AD that was 
inadequately controlled with topical corticosteroids, single dos-
ing was also able to achieve an improvement of 50% or more in 
the EASI-50 eczema grading index (196). Interim analyses of a 
phase IIa study of etokimab in adults with severe eosinophilic 
asthma demonstrated improvements in forced expiratory volume 
(FEV1) at day 2 in etokimab-treated patients over patients receiv-
ing placebo, and differences in FEV1 measurements between 
etokimab-treated and placebo-treated patients remained signif-
icant at day 64 (197). Improvements in lung function also cor-
related with reductions in blood eosinophil numbers. Positive 
responses have also been reported in interim analyses of a phase 
IIa trial of etokimab in adult peanut allergy patients with a clini-
cal history of anaphylaxis (198).

Conclusions
Substantial progress has been made in understanding the 
mechanisms that underlie the development and progression 
of allergic diseases. The regulation of barrier tissue immune 
homeostasis by TSLP, IL-33, and IL-25 affects susceptibility to 
allergic disease development but also modulates the function of 
cell populations such as memory Th2 cells and ILCs that drive 
allergic disease exacerbations. Thus, biologics directed against 
these epithelial cell–derived cytokines may be effective across 
a broad spectrum of allergic diseases. Antibodies against IL-25 
are still in the early stages of development. The anti-TSLP anti-
body tezepelumab and the anti–IL-33 antibody etokimab have 
now shown promising results in a variety of allergic diseases. 
Ongoing and future studies will help establish whether biologics 
targeting TSLP, IL-33, or IL-25 can offer safe, effective, and ste-
roid-sparing treatments for allergy.
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