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Background: Although several studies link high levels of IL-6

and soluble IL-6 receptor (sIL-6R) to asthma severity and

decreased lung function, the role of IL-6 trans-signaling (IL-

6TS) in asthmatic patients is unclear.

Objective: We sought to explore the association between

epithelial IL-6TS pathway activation and molecular and clinical

phenotypes in asthmatic patients.

Methods: An IL-6TS gene signature obtained from air-liquid

interface cultures of human bronchial epithelial cells stimulated

with IL-6 and sIL-6R was used to stratify lung epithelial

transcriptomic data (Unbiased Biomarkers in Prediction of

Respiratory Disease Outcomes [U-BIOPRED] cohorts) by

means of hierarchical clustering. IL-6TS–specific protein

markers were used to stratify sputum biomarker data (Wessex

cohort). Molecular phenotyping was based on transcriptional

profiling of epithelial brushings, pathway analysis, and

immunohistochemical analysis of bronchial biopsy specimens.

Results: Activation of IL-6TS in air-liquid interface cultures

reduced epithelial integrity and induced a specific gene

signature enriched in genes associated with airway remodeling.

The IL-6TS signature identified a subset of patients with IL-

6TS–high asthma with increased epithelial expression of IL-

6TS–inducible genes in the absence of systemic inflammation.

The IL-6TS–high subset had an overrepresentation of frequent

exacerbators, blood eosinophilia, and submucosal infiltration of

T cells and macrophages. In bronchial brushings Toll-like

receptor pathway genes were upregulated, whereas expression

of cell junction genes was reduced. Sputum sIL-6R and IL-6

levels correlated with sputum markers of remodeling and innate

immune activation, in particular YKL-40, matrix

metalloproteinase 3, macrophage inflammatory protein 1b, IL-

8, and IL-1b.

Conclusions: Local lung epithelial IL-6TS activation in the

absence of type 2 airway inflammation defines a novel subset of

asthmatic patients and might drive airway inflammation and

epithelial dysfunction in these patients. (J Allergy Clin Immunol

2019;143:577-90.)

Key words: Asthma, lung epithelium, transcriptomics, hierarchical

clustering, IL-6 signaling, exacerbation frequency, eosinophils,

airway inflammation, remodeling, epithelial integrity

Type 2 (T2) inflammation defines one major asthma endotype,

but a significant proportion of asthmatic patients do not express

airway T2 inflammationmarkers and do not respond to treatments

targeting this pathway.1 Thus identification of the cellular and

molecular disease drivers beyond T2 asthma is required to

achieve disease control in these patients.

IL-6 is a pleiotropic cytokine that can be produced bymany cell

types in response to a wide array of inflammatory stimuli and

cytokines.2 In the classical pathway binding of IL-6 to its

membrane-bound receptor (IL-6R) induces recruitment and ho-

modimerization of the signal-transducing receptor glycoprotein

130, which leads to phosphorylation of signal transducer and acti-

vator of transcription (STAT) family transcription factors

(STAT3, STAT1, or both) by the Janus tyrosine kinase family (Ja-

nus kinase [JAK] 1, JAK2, and tyrosine kinase 2). In addition, it

causes activation of the mitogen-activated protein kinase and

phosphoinositide 3-kinase cascades.3,4 Classical signaling is

prominent in cells expressing high levels of IL-6R on their sur-

faces, such as neutrophils, macrophages, and some types of T

cells.5 In contrast, cell types with no or low expression of mem-

brane IL-6R depend on IL-6 trans-signaling (IL-6TS) mediated

by the soluble IL-6 receptor (sIL-6R), which associates with

glycoprotein 130 after forming a complex with IL-6.6 sIL-6R is

produced as a result of alternative mRNA splicing7 or through

shedding of IL-6R from the cell surface by a disintegrin and met-

alloprotease and meprin proteases8,9 in response to various in-

flammatory signals, such as C-reactive protein, IL-8, CXCL1,

bacterial pore-forming toxins, and LPS.10-13 Neutrophils have

been proposed as the main source of sIL-6R generated at sites

of inflammation,11 and a recent study showed that neutrophils

might be an important source of sIL-6R in the lungs of asthmatic

patients.14

Increased levels of IL-6 have been found in serum, sputum, and

bronchoalveolar lavage fluid (BALF) of asthmatic patients15-17

and also in BALF from patients with nonallergic asthma

compared with that from patients with allergic asthma, suggesting

a role for IL-6 in non-T2 asthma.18 Supporting this, a recent study

conducted in the University of California, San Francisco and Se-

vere AsthmaResearch Program asthma cohorts identified a strong

association between high systemic IL-6 levels and asthma

severity, whereas no correlation was found between IL-6 and

T2 inflammation biomarkers, including blood and sputum eosin-

ophil counts, blood IgE levels, and fraction of exhaled nitric oxide

values.19 As for IL-6, sIL-6R levels have been found to be signif-

icantly increased in serum,20 BALF,21 and sputum22 from asth-

matic patients compared with those from control subjects.

A role for IL-6 as an asthma disease driver is also emerging

from genetic evidence, and a genome-wide association study re-

vealed an association between the single nucleotide polymor-

phism rs4129267 in intron 8 of the IL6R gene and an increased

asthma risk.23

In this study we identified an IL-6TS–driven patient subset in

the Unbiased Biomarkers in Prediction of Respiratory Disease

Outcomes (U-BIOPRED) cohorts24 based on an epithelial IL-

6TS–specific gene signature. These patients were characterized

by their unique clinical and histopathologic features, including

a history of frequent exacerbations and a remarkable increase in

submucosal T-cell and macrophage infiltration, and they also
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showed markers of impaired epithelial barrier integrity and

airway remodeling.

METHODS

Primary cell culture and activation
Primary human bronchial epithelial cells (HBECs; Lonza, Basel,

Switzerland) were expanded to passage 2 in BEGM Bronchial Epithelial

Cell Growth Medium (Lonza). These cells were then seeded on 0.4-mm

Corning HTS Transwell 24-well permeable supports (Sigma-Aldrich, St

Louis, Mo) coated with PureCol (Advanced BioMatrix, Carlsbad, Calif) and

differentiated at the air-liquid interface (ALI) using PneumaCult-Ex and ALI

Media (STEMCELL Technologies, Vancouver, British Columbia, Canada),

according to the manufacturer’s protocol. Once fully differentiated, cells were

stimulated for 3 to 48 hours by means of basolateral addition of the human

recombinant proteins IL-4 and IL-13 (30 ng/mL; R&D Systems, Minneapolis,

Minn) or IL-6 and sIL-6R (10-150 ng/ml; PeproTech, Rocky Hill, NJ) diluted

in PneumaCult-ALI medium. JAK1 inhibitor (1 mmol/L)25 or dimethyl sulf-

oxide were added apically for 30 minutes in 200 mL of medium that was

removed before stimulation. Phosphorylation of STAT3 on tyrosine 705 was

quantified with a pSTAT3 detection kit (Meso Scale Discovery, Rockville,

Md), according to the manufacturer’s instructions.

Patient cohorts, transcriptomics, and proteomics
The U-BIOPRED study was a cross-sectional observational study using

baseline visits of the U-BIOPRED cohorts from 16 clinical centers in 11

countries across Europe. It included steroid-treated adults with asthma

classified and treated according to the Global Initiative for Asthma guidelines,

as well as healthy control subjects. Definitions for each group of subjects and

collection of clinical variables have been published previously by Shaw et al.24

The current study usd data from 147 subjects from the U-BIOPRED asthma

cohorts, including patients with mild-to-moderate asthma (n 5 36), patients

with severe asthma (n 5 49), smokers with severe asthma (n 5 18), and

healthy nonsmoking control subjects (n 5 44) who underwent fiberoptic

bronchoscopy for central airway epithelial cell brushings.26 Transcriptomic

data from brushings were obtained by using a HT HG-U1331 PMmicroarray

platform (Affymetrix Plus 2.0; Affymetrix, Santa Clara, Calif), as previously

described.27 Affymetrix Plus 2.0 microarray data were downloaded from the

U-BIOPRED/tranSMART database (August 2016 version). Blood samples

were collected,24 and biomarkers (IL-6 and sIL-6R) were analyzed by using

the SomaScan v3 platform (SomaLogic, Boulder, Colo), as previously

described.28

Unsupervised hierarchical clustering
Hierarchical clustering of U-BIOPRED gene expression data was

performed by using the average linkage and Euclidean metric methods, with

each variable normalized to a mean of 0 and variance of 1 by using Qlucore

Omics Explorer 3 (Qlucore, Lund, Sweden). Results were visualized as

dendrogram heat maps in which the color scale is given as the log2 fold change

with a range from 22.0 (blue) through 0.0 (grey) to 12.0 (red). Data from

multiple probes were collapsed to single genes by using the highest value.

Statistical analysis
Gene expression data were log2 transformed and analyzed by using general

linear model–based statistical tests adjusting for age, sex, and site code with

Qlucore Omics Explorer 3.3 (Qlucore). Benjamini-Hochberg multiple correc-

tion was used to control for the rate of false-positive results (referred to as q

value). Statistical analysis of clinical variables and biomarker data was per-

formed with Kruskal-Wallis tests in Spotfire 7.0.2 (TIBCO Spotfire). The P

value for MetaCore (MetaCore; Thomson Reuters, Toronto, Ontario, Canada)

pathway analysis and Ingenuity Pathway Analysis (IPA; Qiagen, Hilden, Ger-

many) was calculated by using the right-tailed Fisher exact test. All statistical

analyses of in vitro data were performed with the 2-tailed unpaired t test. All

data analyses, except analysis of gene expression data, were considered hy-

pothesis based, and significance was reached at a P value of .05 or less. Cor-

relations were tested with Spearman r statistics. Prism 6.0 software (GraphPad

Software, La Jolla, Calif) was used for data analysis and graphic

representation.

RESULTS

IL-6TS induces a specific gene expression profile

distinct from the T2 inflammation gene signature in

primary bronchial epithelial cells
Stimulation of primary HBECs grown as ALI cultures with

either recombinant IL-6 alone (classical IL-6 signaling) or in

combination with sIL-6R (IL-6TS) induced robust STAT3

phosphorylation within 30 minutes. The increase in STAT3

phosphorylation was considerably stronger in the presence of

sIL-6R, which was added at a concentration (150 ng/mL)

comparable with the levels found in sera of asthmatic patients.20

Moreover, only IL-6TS led to persistent STAT3 phosphorylation

after prolonged exposure with daily applications of IL-6 or IL-6/

sIL-6R (Fig 1, A). Pretreating cells with a JAK1-selective inhibi-

tor25 abrogated STAT3 phosphorylation induced by IL-6TS

(Fig 1, B and C).

To identify genes regulated by IL-6TS, we stimulated HBEC

ALI cultures for 24 hours with IL-6/sIL-6R, followed by global

gene expression analysis using RNA sequencing. In total, 8781

protein-coding genes (q < 0.05) were expressed differentially be-

tween IL-6/sIL-6R (IL-6TS)–stimulated and unstimulated con-

trol cells, whereas 6514 genes were affected by IL-6 alone. All

genes regulated by both IL-6 and IL-6/sIL-6R (6041 overlapping

genes) had a consistent direction of change, and IL-6/sIL-6R

consistently produced a stronger expression of the majority of

these genes than IL-6 on its own (Fig 1, D, and see Tables E1

and E2 in this article’s Online Repository at www.jacionline.

org). Expression of selected IL-6TS–inducible genes was vali-

dated by using quantitative PCR in 3 additional donors (see Fig

E1 in this article’s Online Repository at www.jacionline.org).

Several of the genes that were strongly induced by IL-6TS have

been associated with airway remodeling in patients with respira-

tory diseases and include genes for matrix metalloproteinases

([MMPs];MMP1,MMP3, andMMP12),29 chitinase-like proteins

(CHI3L1/YKL-40 and CHI3L2/YKL-39),30 osteopontin

(SPP1),31 and IL-33.32 The exact biological role of YKL-40 in

asthmatic patients remains unclear, but it correlates consistently

with airway obstruction and measures of airway remodeling,

such as thickness of the bronchial wall.30,33 MMP3 expression

has been found to be increased in BALF of patients with severe

asthma,34 and it has been implicated in emphysematous airway

remodeling in patients with chronic obstructive pulmonary

disease.35 Specific induction of YKL-40 and MMP3 by

IL-6/sIL-6R was confirmed also on protein levels in 6 different

HBEC donors (Fig 1, G).

As controls, we stimulated the HBEC ALI cultures with a

combination of IL-4 and IL-13 to induce a typical T2 inflamma-

tory gene profile, as confirmed by increased expression of T2

signature genes, including CCL26 and NOS2, which was previ-

ously reported by Choy et al.36 The IL-4/IL-13–induced gene

signature was distinct from the IL-6TS gene signature, and T2

stimulation of HBEC ALI cultures had no effect or only a weak

effect on the majority of IL-6TS–specific genes (Fig 1, D-F; see

Fig E2, A, and Table E3 in this article’s Online Repository at
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FIG 1. IL-6TS induces a specific JAK1-dependent gene expression pattern that is distinct from the T2

inflammation signature in ALI cultures. Primary HBEC ALI cultures were stimulated with IL-6, IL-6/sIL-6R, or

IL-4/IL-13. Cells were pretreated (30 minutes) with a JAK1 inhibitor (JAK1i) or dimethyl sulfoxide (DMSO)

control, where indicated. A-C, STAT3 phosphorylation. Fig 1, A and B, Data are representative of 2 indepen-

dent experiments. Fig 1, C, Three different HBEC donors (means and SDs).D and E, Cells were stimulated for

24 hours, and gene expression was assessed by using RNA sequencing, normalized, and compared with

nonstimulated control. The most upregulated genes are shown as heat maps of log2 fold change. F, Expres-

sion of indicated genes was analyzed by using quantitative PCR. Mean log2 fold change values from 3 HBEC

donors are shown.G, Secreted levels of YKL-40 andMMP3 after 24 hours of stimulation with IL-6 and sIL-6R

from 6 HBEC donors. H, Cells were stimulated for 24 hours with IL-6/sIL-6R. The effect of IL-6/sIL-6R (vs

DMSO, first column) and the effect of JAK1i on IL-6/sIL-6R stimulation (IL-6/sIL-6R/JAK1i vs IL-6/sIL-6R/

DMSO, second column) for the top-induced genes in Fig 1, D, is shown as a heat map of log2 fold change.

*P < .05, **P <_ .01, ***P <_ .001, and ****P <_ .0001, unpaired t test. NS, Nonstimulated control.
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www.jacionline.org). Furthermore, IL-6TS–induced gene expres-

sion was strongly reduced in the presence of the JAK1 inhibitor,

confirming the essential role of the JAK/STAT pathway for down-

stream IL-6 signaling in lung epithelium (Fig 1,H, and see Fig E2,

B, and Table E4 in this article’s Online Repository at www.

jacionline.org). Raw and processed data of all RNA sequencing

experiments are deposited in the National Center for Biotech-

nology Information GEO database (accession no. GSE113185).

IL-6TS–specific gene signature in lung epithelium

defines a novel subset of asthmatic patients
To investigate whether the IL-6TS pathway is activated in

airway epithelium of patients with asthma, we analyzed the

transcriptomic data derived from 103 central airways epithelial

brushings from the U-BIOPRED asthma cohorts, including

patients with mild-to-moderate (n 5 36) and severe (n 5 49)

asthma and smokers with severe asthma (n 5 18). Hierarchical

clustering analysis based on the genes most strongly induced by

IL-6TS in HBEC ALI cultures identified a set of 8 coclustered

genes (TNFAIP6, PDE4B, IL1R2, S100A9, S100A8, S100A12,

CHI3L1, and SPP1) that defined a clear subset of patients

(n 5 17) with increased expression of these IL-6TS–inducible

genes (referred to here as the IL-6TS–high subset; Fig 2, A). Un-

expectedly, this IL-6TS–high subset did not show increased

levels of systemic IL-6 and sIL-6R compared with the remaining

asthmatic patients (n 5 86; referred to here as the IL-6TS–low

subset) or healthy control subjects (n 5 95; Fig 2, B). The IL-

6TS–high subset showed a robust increase in expression of the

main IL-6/JAK/STAT3 pathway genes, such as MCL1, SOCS3,

and MAPKAPK2,37 compared with the IL-6TS–low subset and

healthy control subjects (Fig 2, C), confirming the connection

between the IL-6TS–high subset and IL-6 signaling. Taken

together, these results suggest that the identified IL-6TS–high

subset is driven by local rather than systemic IL-6 pathway

activation.

The same group of patients (apart from smokers) was clustered

based on expression of the T2 gene signature (POSTN, CLCA1,

and SERPINB2), which was previously shown to be a hallmark

of T2 inflammation,38 to examine the IL-6TS–high subset in rela-

tion to T2 inflammation. Therewas no enrichment of patients with

the epithelial T2 signature in the IL-6TS–high subset (Fig 2, D).

FIG 2. The IL-6TS–specific gene signature in bronchial epithelium defines a new IL-6TS–high patient subset

within the U-BIOPRED asthma cohorts. A, Hierarchical clustering of patients with transcriptomic data

derived from bronchial brushings (n 5 103) using the IL-6TS–specific gene signature (TNFAIP6, PDE4B,

IL1R2, S100A9, S100A8, S100A12, CHI3L1, and SPP1). High gene expression is denoted in red, and low

expression is denoted in blue. The subset of patients with increased IL-6TS gene signature (IL-6TS high)

is highlighted (red box).B, Serum levels of IL-6 and sIL-6R presented as change in relative fluorescence units

(RFU). C,Gene expression scores for the main IL-6/JAK/STAT3 pathway genes in bronchial brushings calcu-

lated from normalized and zero-centered gene expression values. Protein (Fig 2, B) and mRNA (Fig 2, C)

levels from the IL-6TS–high group (n 5 17) were compared with those in the rest of the asthmatic patients

(IL-6TS–low group, n5 86) and healthy control subjects (n5 44). Statistically significant differences are indi-

cated (Kruskal-Wallis test for protein levels: P <_ .05; Benjamini-Hochberg test for gene expression: q <_ 0.05).

D, Percentage of subjects with high expression of epithelial T2 inflammation–specific gene signature. The

distribution of patients with T2 asthmawas not significantly different (P5 .70, x2 test) between the 2 groups.

ns, Not significant.
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IL-6TS–high patient subset is characterized by

frequent exacerbations, eosinophilic airway

inflammation, and increased numbers of T cells and

macrophages infiltrating the airway submucosa
The IL-6TS–high and IL-6TS–low subsets did not differ in

respect to sex, steroid treatment, atopic status, or smoking history.

The proportion of patients with 3 or more exacerbations per year

was significantly greater in the IL-6TS–high subset compared

with the IL-6TS–low subset (Table I and see Fig E3 in this arti-

cle’s Online Repository at www.jacionline.org). Furthermore,

the number of patients with blood (>300 cells/mL) and sputum

(>20%) eosinophilia was significantly increased in the IL-6TS–

high subset, whereas the absolute numbers and proportions of

sputum macrophages were decreased compared with those in

the IL-6TS–low subset. Previous studies have shown IL-6 to be

associated with neutrophilic inflammation,19,39 but even though

we observed a trend toward increased sputum neutrophil numbers

in the IL-6TS–high subset compared with the IL-6TS–low subset,

the difference did not reach statistical significance.

Immunohistochemical analysis of bronchial biopsy specimens

showed significantly greater numbers of total immune cells,

including mast cells, neutrophils, eosinophils, T cells, and

macrophages, in the submucosa of patients with IL-6TS–high

versus IL-6TS–low asthma (Fig 3, A). This difference was driven

mainly by a striking increase in infiltration of CD31, CD41, and

CD81 T cells and CD681 macrophages (P5 .0008, P5 .00007,

P 5 .0003, and P 5 .001, respectively) but not by granulocytes

(Fig 3, B and C, and Table I).

Reduced expression of genes related to lung

epithelial barrier function in the IL-6TS–high patient

subset
We found reduced expression of several genes involved in

barrier function in epithelial brushings from the IL-6TS–high

subset, with major differences observed for expression of the

epithelial cell junction components b-catenin (CTNNB1); clau-

dins 1, 8, and 18 (CLDN1/CLDN8/CLDN18); and the gene en-

coding zonula occludens-1 (all q < 0.05), whereas there was

no difference in expression of occludin (OCLN; Fig 4, A).

To evaluate the functional effect of IL-6TS on epithelial barrier

integrity in vitro, we performed prolonged stimulation of HBEC

TABLE I. Clinical characteristics of the IL-6TS–high versus IL-6TS–low subsets from the U-BIOPRED asthma cohorts

Parameter IL-6TS-high IL-6TS-low P value

Group size 17 86

Female sex (%) 41.2 53.5 .35

Body mass index (kg/m2) 28.3 6 1.6 29.1 6 0.6 .70

Age (y) 43.9 6 3.9 46.2 6 1.5 .59

Patients with severe asthma (%) 70.0 64.0 .6

Smokers with severe asthma (%) 11.8 18.6 .5

Never smokers (%) 70.6 68.6 .87

Pack years 17.8 6 12.1 16.0 6 3.5 .78

ICS, high dose (%) 70.6 63.9 .60

Maintenance OCS (%) 37.5 (n 5 16) 26.8 (n 5 82) .39

FEV1 (% predicted) 77.8 6 5.8 80.7 6 2.3 .56

Exacerbations (no./previous year) 3.0 (2.3-4.0 [n 5 10]) 2.0 (1.0-3.0 [n 5 52]) .096

Exacerbations, >_3/previous year (%) 70.0 (n 5 10) 36.5 (n 5 52) .049*

History of exacerbations (no./year) 2.5 (0.0-4.0 [n 5 16]) 1 (0.0-2.0) .13

History of exacerbations, >_3/y (%) 50.0 (n 5 16) 23.3 .028*

Positive atopic status (%) 87.5 (n 5 16) 79.0 (n 5 76) .43

Total IgE (IU/mL) 131 (43-566) 105 (40-290) .48

Serum CRP (mg/mL) 2 (0.6-5.0) 1.4 (0.6-3.2) .64

FENO (ppb) 22.7 (19.0-48.8 [n 5 16]) 23.8 (16.0-54.5 [n 5 82]) .98

Blood eosinophils (3 1000/mL) 0.3 (0.14-0.5) 0.2 (0.1-0.3) .050*

Blood eosinophils, >300/mL (%) 47.0 15.1 .0028*

Sputum eosinophils (%) 1.7 (0.8-26.2 [n 5 10]) 0.7 (0-4.6 [n 5 33]) .14

Sputum eosinophils, >3% (%) 40.0 (n 5 10) 33.3 (n 5 33) .70

Sputum eosinophils, >20% (%) 40.0 (n 5 10) 6.1 (n 5 33) .007*

Blood neutrophils (3 1000/mL) 4.4 (3.4-7.3) 4.1 (3.0-5.9) .46

Sputum neutrophils (%) 61.9 (47.7-76.5 [n 5 10]) 45.3 (31.9-63.4 [n 5 33]) .13

Sputum neutrophils, >60% (%) 50.0 (n 5 10) 30.3 (n 5 33) .25

Sputum macrophages (%) 16.7 (7.2-28.4 [n 5 10]) 44.0 (27.6-63.7 [n 5 33]) .0089*

Sputum macrophages (no.) 125.0 6 36.9 (n 5 10) 235.3 6 20.7 (n 5 33) .011*

Submucosal CD31 T cells (cells/mm2) 70.8 6 15.0 (n 5 17) 35.7 6 3.6 (n 5 70) .0008*

Submucosal CD41 T cells (cells/mm2) 29.3 6 6.3 (n 5 17) 10.9 6 1.3 (n 5 70) .00007*

Submucosal CD81 T cells (cells/mm2) 38.2 6 6.9 (n 5 17) 17.2 6 1.9 (n 5 70) .0003*

Submucosal CD681 macrophages (cells/mm2) 7.0 6 1.3 (n 5 17) 3.1 6 0.4 (n 5 70) .0011*

Data are presented as percentages, means 6 SEs, or medians (interquartile ranges [Q1-Q3]). Number of subjects is 17 in the IL-6TS–high subset and 86 in the IL-6TS–low subset,

unless stated otherwise. For P values, the Kruskal-Wallis test was used for continuous data, and the x2 test was used for categorized data.

CRP, C-reactive protein; FENO, fraction of exhaled nitric oxide; ICS, inhaled corticosteroids; ICS, high dose, 1000 mg or more fluticasone or equivalent; OCS, oral corticosteroids.

*Statistically significant (P <_ .05).
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ALI cultures and observed that a combination of IL-6/sIL-6R, but

not IL-6 or sIL-6R on their own, resulted in extensive loss of

epithelial integrity, asmeasured based on transepithelial electrical

resistance (Fig 4,B andC). These results suggest that IL-6TS con-

tributes specifically to compromised epithelial integrity as a

feature of asthma involving local activation of the IL-6TS

pathway.

Transcriptional profiling links the IL-6TS–high

subset with immune cell migration and Toll-like

receptor signaling
Separation of the identified IL-6TS–high subset from the rest of

the patients was evident alsowhen comparing global transcription

profiles (20,233 available mRNAs) in lung epithelial brushings.

Remarkably, a total of 4417 transcripts were expressed differen-

tially (q < 0.05) in the IL-6TS–high subset compared with the

IL-6TS–low subset, and 6491 transcripts were expressed differen-

tially compared with healthy subjects.

Involvement of the differentially expressed transcripts in the

IL-6TS–high subset in specific pathophysiologic processes was

investigated by using IPA disease function analysis. This showed

a striking enrichment of genes involved in activation of cell

movement, especially migration and chemotaxis of leukocytes

(see Table E5 in this article’s Online Repository at www.

jacionline.org), an observation well-aligned with the increased

submucosal infiltration of immune cells detected in the IL-6TS–

high subset (Fig 3). Activation of the same cell migration func-

tions emerged after analysis of the transcripts induced by IL-6/

sIL-6R stimulation of ALI cultures, providing a further

connection between IL-6TS signaling and immune cell infiltra-

tion, as observed in the IL-6TS–high subset (see Table E5).

MetaCore pathway analysis identified Toll-like receptor (TLR)

signaling as the most strongly activated pathway in the IL-6TS–

high subset (see Table E6 in this article’s Online Repository at

www.jacionline.org), which is in agreement with identification

of TLR2, TLR4,MYD88, and CD14 as upregulated genes in these

subjects (Fig 5, A). In addition, there was increased expression of

TREM1, which is known to cooperate with TLR signaling,40 and

several proinflammatory mediators directly induced by TLR2 and

TLR4, such as IL8, CCL4 (macrophage inflammatory protein

[MIP] 1b), IL-1b, IL6, and TNF-a (Fig 5).

Confirmation of the IL-6TS–high asthma subset in

independent replication cohorts
Next, we sought to confirm the existence of an IL-6TS–high

subset in 2 independent replication cohorts of asthmatic patients.

Hierarchical clustering of transcriptomic data based on the IL-

6TS–specific 8-gene signature was done in a cohort including 38

patients with mild-to-moderate or severe asthma (replication

cohort 1)41,42 and in a cohort including 17 patients with severe

asthma (replication cohort 2) with epithelial brushing samples

from central and/or peripheral airways.43 This analysis clearly

clustered patients from both cohorts into an IL-6TS–high and

an IL-6TS–low subsets (see Fig E4, A and B, in this article’s On-

line Repository at www.jacionline.org). Importantly, the IL-6TS–

high subset was again associated with gene upregulation related

to TLR signaling, including TLR2, MYD88, TREM1, and CCL4

(see Fig E4, C).

FIG 3. The U-BIOPRED IL-6TS–high subset is characterized by significantly higher numbers of T-cell and

macrophage infiltration in the submucosa. Immunohistochemical analysis of immune cells in glycol

methacrylate resin–embedded biopsy specimens from patients with IL-6TS–high (n 5 17) and IL-6TS–low

(n 5 70) asthma from the U-BIOPRED asthma cohorts. A, Total immune cells. B, AA11 mast cells, elastase-

positive neutrophils, and EG21 eosinophils. C, CD31, CD41 and CD81 T cells and CD681 macrophages. Sta-

tistically significant differences (P <_ .05, Kruskal-Wallis test) are indicated. ns, Not significant.
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IL-6TS surrogate sputum biomarkers YKL-40,

MMP3, IL-8, MIP-1b, and IL-1b define an IL-6TS–

high subset in the Wessex Severe Asthma Cohort
A putative IL-6TS–high patient subset was identified by means

of hierarchical clustering of asthmatic patients (n 5 146; British

Thoracic Society [BTS] groups 4 and 5) from the Wessex Severe

Asthma Cohort22 based on levels of 5 sputum biomarkers associ-

ated strongly with IL-6TS, namely YKL-40 andMMP3 surrogate

biomarkers induced by IL-6TS stimulation of ALI cultures

in vitro (Fig 1, F and G) and IL-8, MIP-1b, and IL-1b, which

were found to be significantly overexpressed in epithelial brush-

ings of IL-6TS–high patients from the U-BIOPRED cohort (Fig

5, B).

TheWessex IL-6TS–high subset (n5 24) was comparablewith

the U-BIOPRED IL-6TS–high subset in size (around 16% of the

asthmatic patients in both cohorts), as well as in clinical

characteristics (Fig 6, A, and Table II), including significantly

increased blood eosinophil numbers (P5 .0008), higher percent-

ages of patients with blood eosinophilia (>300 cells/mL;

P 5 .0004), and a reduced proportion of sputum macrophages

(P5 .009). In addition, sputum neutrophil counts were increased

in the Wessex IL-6TS–high patient subset (P 5 .01).

Importantly, the Wessex IL-6TS–high subset was associated

with significantly increased levels of sputum sIL-6R (P < .0001)

and IL-6 (P < .0001), whereas there was no difference in serum

C-reactive protein levels (Fig 6, B-D), providing evidence for a

local IL-6TS–driven inflammation. Also, there was no difference

in levels of classical T2 biomarkers, including serum periostin

(Fig 6, E) or sputum IL-5 and eotaxin (see Fig E5, E and F, in

this article’s Online Repository at www.jacionline.org).

DISCUSSION
Although increased levels of IL-6 and sIL-6R in asthmatic

patients have been observed by others,22,23,44 the molecular un-

derstanding of the role of IL-6 signaling in asthmatic airways is

limited. Herewe generated a gene signature induced by activation

of IL-6TS in HBEC ALI cultures and used this signature to iden-

tify an asthmatic patient subset in the U-BIOPRED cohorts with

signs of lung epithelial IL-6TS pathway activation. We revealed

FIG 4. Decreased expression of epithelial junction proteins in patients with IL-6TS–high asthma from the U-

BIOPRED cohorts. A,mRNA levels of epithelial junction components in bronchial brushings from the U-BIO-

PRED asthma cohorts. Gene expression from the IL-6TS–high group (n5 17) was compared with that in the

rest of the asthmatic patients (IL-6TS–low group, n5 86) and healthy control subjects (n5 44). Gene expres-

sion scores, calculated from normalized and zero-centered gene expression values, are shown. Statistically

significant differences are indicated. q <_ 0.05, Benjamini-Hochberg test. ns, Not significant. B, Transepithe-

lial electrical resistance (TEER) was measured in HBEC ALI cultures after stimulation with sIL-6R (150 ng/

mL), IL-6 (150 ng/mL), and IL-6/sIL-6R (both 150 ng/mL). Data are representative of 2 independent experi-

ments. **P <_ .01 and ***P <_ .001, unpaired t test. C, Effect of IL-6TS on reduction of epithelial integrity after

48 hours of stimulation with 20 ng/mL IL-6 and 50 ng/mL sIL-6R was confirmed in 6 different HBEC donors.

***P <_ .001, unpaired t test. NS, Nonstimulated control.
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that patients with IL-6TS–driven asthma were characterized by a

history of frequent exacerbations and significantly increased sub-

mucosal infiltration of T cells and macrophages. Furthermore,

they showed reduced expression of genes regulating epithelial

barrier function and an increased expression of TLR pathway

activation and remodeling genes in their epithelial brushings.

Interestingly, the IL-6TS–high asthma subset had increased blood

eosinophil counts despite not being enriched with patients with

T2 inflammation in the lung epithelium. This suggests that the

eosinophilia observed in the IL-6TS–high subset is disconnected

from T2 inflammation and results in a direct or indirect conse-

quence of IL-6 signaling in the airways. Our results emphasize

that asthmatic patients with eosinophilia need to be further strat-

ified with respect to the biological driver of the eosinophilic lung

infiltration, which might not necessarily be T2 inflammation.38

Although the understanding of the mechanism leading to sys-

temic eosinophilia in the IL-6TS–high subset requires further

study, it is tempting to speculate that IL-6TS promotes the

observed phenotype by inducing IL-33 expression, which is a

potent activator of mature eosinophils,45 and it can also regulate

eosinophil development within the bone marrow46 and tissue.47

In support of this hypothesis, IL33 was one of the genes most

strongly induced on stimulation of primary bronchial epithelial

cells with IL-6/sIL-6R but not with IL-4/IL-13 (Fig 1, D and F,

and see Fig E1, B).

Importantly, despite upregulation of IL-6/JAK/STAT3 pathway

genes in epithelial brushings from the IL-6TS–high subset, these

patients did not show increased serum IL-6 and sIL-6R levels.

This suggests that the IL-6TS–high subset described in this study

is distinct from the recently described IL-6–high asthma subset

characterized by systemic IL-6 inflammation, metabolic dysfunc-

tion, and obesity19 and instead represents a separate entity with

local IL-6TS–driven airway inflammation.

Activation of the IL-6 pathway has been associated previously

with neutrophilic and mixed granulocytic airway inflammation in

asthmatic patients.48,49 A connection between IL-6–dependent

inflammation and a mixed granulocytic phenotype was observed

also in a mouse cockroach-induced asthma model, where specific

blocking of IL-6TS reduced accumulation of both eosinophils and

neutrophils in BALF.48 However, although the IL-6TS–high sub-

set described in this study was significantly enriched with highly

eosinophilic patients, there were no significant differences in

blood or sputum neutrophil counts between the IL-6TS–high

and IL-6TS–low subsets. Instead, we observed a striking increase

of airway submucosal T-cell populations and macrophages in the

IL-6TS–high subset, indicating increased airway inflammation in

these patients. In line with this observation, a link between the IL-

6TS–high subset and activation of immune cell migration was

shown by using IPA of differentially expressed transcripts be-

tween the IL-6TS–high and IL-6TS–low subsets. The correlation

between IL-6TS and immune cell infiltration is also consistent

with previous studies showing that IL-6TS is essential for macro-

phage and T-cell recruitment to the site of acute inflammation in

mice.11,50 IL-6TS has been proposed to coordinate a temporal

FIG 5. TLR pathway genes are upregulated in bronchial brushings from U-BIOPRED patients with IL-6TS–

high asthma. mRNA levels of TLR signaling and costimulatory molecules (A) and TLR signaling–inducible

proinflammatory mediators (B) in bronchial brushings from the U-BIOPRED asthma cohorts. Gene expres-

sion from the IL-6TS–high group (n 5 17) were compared with that of the rest of the asthmatic patients (IL-

6TS–low group, n 5 86) and healthy control subjects (n 5 44). Gene expression scores are calculated from

normalized and zero-centered gene expression values. Statistically significant differences are indicated.

q <_ .05, Benjamini-Hochberg test.
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switch from initial infiltration of neutrophils to a more sustained

population of mononuclear leukocytes by regulating the expres-

sion of CXC and CC chemokines,11 which could potentially

explain the absence of a strong neutrophilic inflammation compo-

nent in the airways of patients in the U-BIOPRED IL-6TS–high

subset.

Another key feature of the patients with IL-6TS–high asthma

was decreased levels of several cell junction transcripts, with

particularly low levels of claudins (1, 8, and 18) and b-catenin.

Furthermore, we demonstrated that IL-6TS impairs epithelial

integrity in vitro in HBECALI cultures, providing a direct link be-

tween IL-6TS and epithelial dysfunction. Previous reports have

shown that dysfunctional cell junctions are closely connected to

the severity and progression of asthma and that decreased expres-

sion of cell junction proteins, such as zonula occludens-1, clau-

dins, and b-catenin, in asthmatic patients might result in cell

junction disruption and decreasing epithelial barrier function.51-54

Epithelial barrier defects and reduced cell junction integrity in

the intestines are linked to microbial dissemination and inflam-

mation through TLR signaling, and it has been shown that Hae-

mophilus influenzae and Streptococcus pneumoniae exploit

TLR2- and TLR4-mediated downregulation of cell junction com-

ponents to facilitate translocation across the lung epithelium.55-57

Notably, TLR signaling was the most significantly activated

pathway in the IL-6TS–high subset, as shown by using MetaCore

pathway analysis of differentially expressed transcripts. In addi-

tion to the significant upregulation of essential TLR pathwaymol-

ecules, patients in the IL-6TS–high subset also exhibited

significantly increased expression of proinflammatory mediators

(IL-8, CCL-4 [MIP-1b], IL-1b, IL-6, and TNF-a) known to be

induced in response to TLR2 and TLR4 triggering.58,59 These re-

sults point to hyperactivation of TLR pathways in response to bac-

terial colonization as one possible cause of the reduced expression

of cell junction proteins and the promotion of submucosal inflam-

mation. An important clinical phenotype of the IL-6TS–high sub-

set was the history of frequent exacerbations, which could be

related to colonization of the airways, with pathogens such as H

influenzae
60 triggering an uncontrolled innate inflammatory

response.

The potential connection between the IL-6TS–high subset and

microbial colonization is supported by a recent publication

showing increased sputum bacterial numbers in a subset of

patients with asthma and chronic obstructive pulmonary disease,

the so-called cluster 2 or IL-1b–high cluster, which is also

characterized by significantly increased sputum IL-6 and sIL-6R

levels.44

In a replication cohort of patients with treatment-resistant

severe asthma all receiving high doses of inhaled steroids,43 the

IL-6TS–specific signature was present in nearly half of the pa-

tients, suggesting that the IL-6TS–high phenotype correlates

FIG 6. Identifying and characterizing the IL-6TS–high subset in the Wessex Asthma Cohort based on IL-6TS

surrogate biomarkers in sputum. A, Identification of the IL-6TS–high subset in the Wessex Asthma Cohort

by hierarchical clustering of patients (BTS groups 4 and 5, n 5 146) based on high (red) versus low (blue)

expression of the IL-6TS–high surrogate biomarkers YKL-40, IL-8, MIP-1b, IL-1b, and MMP3 in sputum. Sub-

set of patients with increased IL-6TS gene signature (IL-6TS–high group) is highlighted (red box). B and C,

Sputum sIL-6R and IL-6 levels in the Wessex IL-6TS–high subset compared with the IL-6TS–low subset and

healthy control subjects. D and E, Serum C-reactive protein (CRP) and periostin levels in theWessex IL-6TS–

high subset compared with the IL-6TS–low subset and healthy control subjects. Log10 transformed data are

shown. Values of less than the detection range are marked by squares. Median values and statistically sig-

nificant differences are indicated. P <_ .05, Kruskal-Wallis test. ns, Not significant.
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with disease severity. In yet another replication cohort consisting

of patients with mild-to-moderate and severe asthma,41,42 the IL-

6TS–high subset overlapped with the majority of patients with se-

vere asthma, further strengthening the association of epithelial

IL-6TS with asthma severity.

It should be noted that identification of the IL-6TS–high subset

in the U-BIOPRED cohort was based on a relatively small number

of epithelial brushings with available transcriptomic data. To

overcome this limitation, we validated the findings from U-

BIOPRED in a larger sputum biomarker data set obtained from

the Wessex Severe Asthma Cohort.22 In this cohort a putative IL-

6TS–high subset was identified by using hierarchical clustering of

asthmatic patients based on levels of the IL-6TS surrogate bio-

markers YKL-40, MMP3, IL-8, MIP-1b, and IL-1b in induced

sputum. As in U-BIOPRED, the Wessex IL-6TS–high patients

were characterized by blood eosinophilia, without a significant in-

crease in levels of T2 biomarkers. Furthermore, the IL-6TS–high

subset was associated with increased sputum neutrophil counts,

supporting the connection between IL-6 signaling and neutro-

philic inflammation proposed by other studies.19,39 Finally, the

significantly increased sputum levels of sIL-6R and IL-6 directly

link the Wessex IL-6TS–high subset to a local IL-6–driven in-

flammatory response.

The role of local IL-6 signaling as a disease driver in patients

with chronic airway disease is supported further by a transgenic

mouse model driven by local overexpression of IL-6 in lung

tissue. These mice showed emphysema-like airspace enlarge-

ment, thickening of the airway walls, subepithelial airway

fibrosis, and accumulation of mononuclear immune cells in the

peribronchiolar space.61

In conclusion, we used an IL-6TS–specific epithelial gene

signature to identify and describe a novel asthmatic patient subset

with IL-6TS pathway activation in the lung epithelium as a

biological driver. We showed that these patients constitute a

molecular phenotype characterized by an increased exacerbation

rate, T2 inflammation–independent eosinophilia, increased sub-

mucosal inflammation, activation of innate signaling pathways,

increased markers of airway remodeling, and decreased expres-

sion of epithelial junctions components. This novel IL-6TS–high

asthma subset appears to be associated with poor asthma control,

and our results might provide one further step toward a stratified

medicine approach to addressing a significant unmet medical

need in patients with severe asthma.
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Key messages

d A subset of asthmatic patients (IL-6TS–high subset)

distinct from T2 asthma shows lung epithelial IL-6TS

pathway activation in the absence of systemic IL-6

inflammation.

d The IL-6TS–high subset constitutes a novel asthma

phenotype associated with frequent exacerbations, eosino-

philia, airway inflammation, remodeling, and impaired

epithelial integrity.

d Identification of local airway IL-6TS pathway activation

as a potential disease driver might open up a stratified

medicine approach to treating asthma.
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