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Tumor metastasis is a multistep process by which tumor
cells disseminate from their primary site and form second-
ary tumors at a distant site. Metastasis occurs through a
series of steps: local invasion, intravasation, transport,
extravasation, and colonization. A developmental program
termed epithelial–mesenchymal transition (EMT) has been
shown to play a critical role in promoting metastasis in
epithelium-derived carcinoma. Recent experimental and
clinical studies have improved our knowledge of this
dynamic program and implicated EMT and its reverse
program, mesenchymal–epithelial transition (MET), in
the metastatic process. Here, we review the functional
requirement of EMT and/or MET during the individual
steps of tumor metastasis and discuss the potential of
targeting this program when treating metastatic diseases.

Epithelial and mesenchymal cell types have long been
recognized by their unique cell morphology and organi-
zation in tissues. Epithelial cells form polarized sheets or
layers of cells that are connected laterally via several
types of cellular junctions, including adherens junctions,
desmosomes, and tight junctions. In addition, epithelial
cells anchor themselves to the underlying basement mem-
brane via hemidesmosomes to maintain apical–basal
polarity. Both desmosomes and hemidesmosomes fur-
ther connect with the epithelial-specific cytokeratin
intermediate filaments. In contrast, mesenchymal cells
embed themselves inside the extracellular matrix (ECM)
and rarely establish tight contact with neighboring cells.
During specific embryonic morphogenesis processes such
as mesoderm formation and neural crest development,
epithelial cells can exhibit enormous plasticity and
transit into a mesenchymal state by activating the
epithelial–mesenchymal transition (EMT) program. Af-
ter EMT, these cells lose their epithelial junctions and
switch to producing vimentin filaments. The func-
tional hallmark of the EMT program is to allow sta-
tionary epithelial cells to gain the ability to migrate and

invade during developmental morphogenesis (Boyer
and Thiery 1993; Hay 1995).
Although epithelial cells convert into the mesenchy-

mal state during developmental EMT, entering the EMT
program is not necessarily an irreversible commitment,
as evident during kidney tubule formation. These epithe-
lial cells can activate a transitory EMT program and then
undergo a reverse process called mesenchymal–epithelial
transition (MET) to continue their differentiation paths
(Thiery et al. 2009; LimandThiery 2012). Inmany instances,
the identification of an epithelial versus amesenchymal
state can be relatively fluid, and a partial EMT/MET
frequently occurs to fulfill unique developmental tasks.
These dynamic EMT/METevents highlight the enormous
flexibility of presumably differentiated cells during mor-
phogenesis.
In the past decade, an increasing number of studies

have provided strong evidence for the reinitiation of the
EMT developmental program in carcinoma progression
and metastasis. This EMT program in tumor metastasis
possesses many morphological and molecular features
similar to those of the developmental EMT program.
Importantly, due to the heterogeneity and constantly evolv-
ingmicroenvironment in human tumors, the EMTprogram
in metastasis adapts to these conditions to allow tumor
cells to successfully metastasize.
While EMT has been accepted as a critical program

during embryogenesis, its role in carcinoma metastasis
has been under debate (Tarin et al. 2005; Thomson et al.
2005; Garber 2008; Ledford 2011; Chui 2013). Many cell
culture and mouse tumor model studies have clearly
demonstrated the importance of EMT in tumor progression.
However, the EMT process in human cancer, if present,
remains difficult to identify, since carcinoma cells undergo-
ing EMT share many similar morphological and molecular
features with surrounding stromal fibroblasts. Further-
more, although primary tumors and circulating tumor
cells (CTCs) present EMT features, distant metastases
are generally epithelial in morphology, suggesting that,
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if functional, the EMT program is likely to be dynami-
cally regulated during metastasis. In 2002, Jean Paul
Thiery (2002), proposed the reversible EMT metastasis
model in which primary epithelial tumor cells activate
EMT to invade and disseminate throughout the body,
while, upon arriving at distant sites, disseminated tumor
cells (DTCs) undergo a reversion process, or MET, to form
epithelial metastases. This intriguing hypothesis has
brought EMT research to the forefront of carcinoma
metastasis study.

The molecular program of EMT

Given that a number of recent reviews have focused on
the molecular pathways regulating EMT/MET (Thiery
et al. 2009; De Craene and Berx 2013; Zheng and Kang
2013), this section aims to provide an overview of the
cellular and molecular definition for EMT/MET and
establish a foundation for detailed discussions of these
pathways in the context of tumor metastasis. The com-
plex morphological and cellular changes during EMT
require the cooperation of a large number of molecular
signaling pathways and regulators. Based on their func-
tionalities during EMT, we categorize them into three
groups: the effector molecules that execute the EMT
program (EMT effectors), the transcription factors that
orchestrate the EMT program (EMT core regulators), and
the extracellular cues that activate the EMT program
(EMT inducers).

EMT effectors

Many of the hallmark EMT effector molecules are sub-
cellular structure proteins that demarcate the epithelial
or mesenchymal identity of a cell. During EMT, key
molecular components of these structures are subjected
to various levels of regulation. For example, the genes
encoding various epithelial junction proteins, such as
E-cadherin, a-catenin, and g-catenin, are down-regulated at
themRNA and protein levels. Among them, E-cadherin is
regarded as a gatekeeper of the epithelial state in various
epithelial cell types. During EMT, E-cadherin gene tran-
scriptional repression (Batlle et al. 2000; Cano et al. 2000;
Hajra et al. 2002), promoter methylation (Graff et al.
1995; Kanai et al. 1997; Saito et al. 1998), and protein
phosphorylation and degradation (Zhou et al. 2004;
Bachelder et al. 2005; Lester et al. 2007) have all been
observed in response to various inducing signals. Further-
more, intermediate filaments are shown to switch from
cytokeratin to vimentin during EMT. Increased vimentin
levels are also a consistent marker during various EMT
events, while cytokeratin subtype switches tend to be
variable and tissue type-specific.
Some additional key EMTeffectormolecules are proteins

that promote cell migration and invasion during EMT.
Fibronectin, an extracellular protein required for mesen-
chymal cell migration, is frequently induced upon activa-
tion of EMT. To promote cellular invasion through the
ECM during EMT, a PDGF/PDGF receptor (PDGFR) auto-
crine loop is activated to promote invadopodia-mediated

ECM degradation (Eckert et al. 2011). A number of non-
epithelial cadherins, such as N-cadherin, and cell surface
proteins, such as CD44 (Kuo et al. 2009) and integrin b6
(Bates et al. 2005), are induced and thought to be critical for
proper cell migration. All of these proteins have been used
to define the occurrence of EMT in tumors.

EMT core regulators

Execution of the EMT program involves the transcrip-
tional alteration of many genes regulating cell adhesion,
mesenchymal differentiation, cellmigration, and invasion.
In general, three core groups of transcriptional regulators
have been consistently shown to be critical during
various EMT events, thus being regarded as the core EMT
regulators.
The first group is the transcription factors of the Snail

zinc finger family, including Snail1 and Snail2, both of
which are capable of directly binding to the E-boxes of
the E-cadherin promoter to repress its transcription (Batlle
et al. 2000; Cano et al. 2000; Hajra et al. 2002). The second
group is the distantly related zinc finger E-box-binding
homeobox family proteins Zeb1 and Zeb2, which are also
able to suppress E-cadherin transcription (Comijn et al.
2001; Eger et al. 2005) via a double-negative feedback loop
controlling Zeb1/Zeb2 and miRNA-200 family expression
(Christoffersen et al. 2007; Bracken et al. 2008; Burk et al.
2008; Gregory et al. 2008; Korpal and Kang 2008; Korpal
et al. 2008; Park et al. 2008; Kim et al. 2011b). Both the
Snail and Zeb families of transcription factors have also
been shown to repress the expression of other cellular
junction proteins, such as claudins and ZO-1 (Ohkubo and
Ozawa 2004; Vandewalle et al. 2005). The third group is
the basic helix–loop–helix (bHLH) family of transcription
factors, including Twist1 (Yang et al. 2004), Twist2 (Fang
et al. 2011), and E12/E47 (Perez-Moreno et al. 2001), all of
which can induce EMT alone or cooperatively. For exam-
ple, Twist1 can not only repress E-cadherin through induc-
tion of Snail transcription factors (Li et al. 1995; Yang et al.
2004; Casas et al. 2011) but also activate programs associ-
ated with tumor invasion (Eckert et al. 2011), thus co-
ordinating two major aspects of the EMT program.

EMT inducers

During tumor progression, EMT induction in tumor cells
has not been associated with genetic alterations of the
EMT core transcription factors, perhaps due to their
essential roles in embryonic morphogenesis. Instead,
carcinoma cells are thought to undergo EMT in response
to a combination of extracellular signals in the tumor
microenvironment. Many EMT-inducing signals tend to
be cell type- or tissue type-specific and probably require
the cooperation between multiple pathways. All major
developmental signaling pathways, including TGF-b,
Wnt, Notch, and growth factor receptor signaling cas-
cades, have been implicated in some aspect of the EMT
program. Most notably, the TGF-b pathway appears to be
a primary inducer of EMT (Katsuno et al. 2013). For
example, TGF-b and BMPs have been shown to induce
the EMT core transcription factors Snail1/2, Zeb1/2, and
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Twist1 (Thiery et al. 2009; Eckert et al. 2011). Interest-
ingly, the ability of TGF-b/Smad signaling to induce EMT
depends on the cooperation of several other pathways,
including activation of the Ras kinase cascade via acti-
vated receptor tyrosine kinases (RTKs) or Ras mutations
(Grunert et al. 2003) and cooperation from the Wnt/
b-catenin/LEF-1 signaling pathway (Nawshad et al.
2005). One of the major sources of TGF-b in tumors is
the stromal fibroblast cells in the tumor microenviron-
ment (Hanahan and Weinberg 2011).
In addition to growth factor signaling, inflammatory

cytokines and hypoxia in the tumor microenvironment
have also been shown to promote EMT. The inflamma-
tory cytokine TNFa can stabilize Snail1 via NF-kB
activation (Wu et al. 2009) and induce Twist1 expression
via IKK-b and NF-kB p65 activation (Li et al. 2012).
Cytokines in the tumor microenvironment can also
activate Stat3 via JAK kinases to induce Twist1 expres-
sion (Lo et al. 2007; Cheng et al. 2008). Hypoxic responses
mediated by HIF-1 were also shown to induce the
expression of Twist1 and Snail1 to promote EMT (Yang
et al. 2008; Mak et al. 2010). Together, these studies
indicate that extracellular cues from the tumor microen-
vironment play a critical role in activating EMT.
In summary, the EMT program involves a large number

of cellular and molecular alterations. Since EMT-induc-
ing signals are diverse and often context-dependent, EMT
effectors and core transcription regulators are most
widely used as molecular markers of EMT in human
cancers. Further analysis of how individual EMT-induc-
ing signals impinge on the EMT core regulators and

effectors will provide a more comprehensive inventory
of key players in EMT.

EMT/MET in tumor metastasis

The metastatic process is thought to consist of several
steps. The initial escape from the primary site requires the
epithelial tumor cells to become motile and degrade the
underlying basement membrane and ECM; breakdown of
these barriers initiates invasion into the nearby tissue
parenchyma (step I: invasion). The next step of metastasis
is termed intravasation, during which tumor cells invade
across the endothelial lamina, penetrate into the blood or
lymphatic vessels, and thereby enter the systemic circu-
lation (step II: intravasation). Once in the circulation, only
a small number of the disseminated neoplastic cells appear
to be capable of surviving various insults within the
circulation (step III: systemic transport). Eventually, some
of the surviving cells may arrest in the vascular lumen and
extravasate through the capillary endothelium into the
parenchyma of distant organs (step IV: extravasation). In
the new stromal environment, an even smaller subset of
tumor cells establish micrometastases with the potential
to proliferate into fully malignant, secondary tumors that
are clinically detectable and eventually life-threatening
(step V: colonization) (Thiery 2002; Fidler 2003; Kalluri and
Weinberg 2009).
To clearly define the role of EMT in metastasis, we

discuss both experimental and clinical evidence of EMT
and its reversion program, MET, during the appropriate
individual steps of tumor metastasis (Fig. 1).

Figure 1. Model for reversible EMT over time. Epithelial cells undergo genetic transformation to become carcinoma in situ.
Microenvironmental and genetic factors can promote the malignant conversion of these cells to activate the EMT program. During
these early stages of tumor development, tumor cells that have undergone EMTcan invade the local matrix (step I) and intravasate into
the vasculature (step II). These epithelial–mesenchymal-transitioned cells are then transported in the circulation and survive via
various prosurvival mechanisms (step III). At the distant tissue site, maintenance of the EMT program is required to help tumor cells
extravasate into the parenchyma (step IV) to establish micrometastases. This initial seeding of tumor cells at distant sites can occur
rapidly, after which cells may remain ‘‘dormant’’ for a long period of time. Subsequent colonization in distant organs requires the
reversion of EMT and/or activation of the MET program to establish secondary tumors (step V).
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Step I: EMT in malignant conversion and local invasion

Malignant conversion

Tumor initiation is often characterized by both genetic
changes intrinsic to the tumor cells and alterations in the
local microenvironment that promote tumor progression.
Activation of the EMT program is classically thought to
be a late stage event in malignant cancer to promote
metastasis. However, several studies have implicated a
possible role of EMT core transcription factors in the
initial malignant transformation. Expression of Twist1
mRNAwas detected in atypical ductal hyperplasia, a very
early stage of primary breast tumor development in the
MMTV-Neumouse tumor model (Husemann et al. 2008).
Twist1 was also shown to override oncogene-induced
senescence and apoptosis by binding to p53 and pro-
moting its degradation (Valsesia-Wittmann et al. 2004;
Ansieau et al. 2008; Lee and Bar-Sagi 2010; Piccinin et al.
2012). By inhibiting p53, Twist1 was able to cooperate
with oncogenes such as Her2 and H-ras to promote
malignant transformation (Valsesia-Wittmann et al.
2004; Ansieau et al. 2008; Morel et al. 2012; Piccinin
et al. 2012), suggesting a potential role of EMT genes in
tumor initiation.
Activation of EMT is considered essential to allow

carcinoma cells to lose cell–cell junctions and dissociate
from each other for single-cell migration and invasion.
For example, TGF-b pathway activation in EpH4-Ras
mouse mammary carcinoma cells resulted in the loss of
E-cadherin-mediated adherens junctions and gain of mes-
enchymal markers in cell culture and mouse tumor
xenografts (Oft et al. 1996, 1998; Janda et al. 2002).
Intercrossing the mouse pancreatic b-cell tumor (RIP-Tag2)
model with transgenic mice that maintain E-cadherin
expression in b-cell tumors arrested tumor development
at the early adenoma stage, whereas expression of a dom-
inant-negative form of E-cadherin induced early invasion
and metastasis (Perl et al. 1998). Furthermore, mice
carrying a genetic deletion of the E-cadherin gene on
a mammary-specific p53-null background developed in-
vasive lobular carcinomas, a subtype of breast cancer that
presents individual migrating tumor cells (Derksen et al.
2006). Together, these studies strongly support a role of
EMT in promoting single-cell invasion in primary tumors.

Degradation of the ECM

Carcinoma invasion requires tumor cells to gain the
ability to degrade the underlying basement membrane
and ECM. The EMT program is involved in this process
through up-regulation of various matrix degradation en-
zymes by the EMT core regulators. Snail1 expression in
MDCK epithelial cells and MCF-7 breast carcinoma cells
increased MT1-MMP, MT2-MMP, and MMP9 expression
(Olmeda et al. 2007a; Ota et al. 2009) and facilitated the
breakdown of the basementmembrane (Hotary et al. 2006;
Ota et al. 2009). Conversely, Snail1 inhibition in epidermal
and breast carcinoma cells decreased MMP9 expression
and tumor growth and metastasis (Olmeda et al. 2007a,b).
Consistent with these results, Snail2 was found to play an

essential role in regulating tumor metastasis through
induction of MT4-MMP and MMP2 (Shih et al. 2005;
Huang et al. 2009). Interestingly, proteases have also been
implicated in activating EMT by disrupting cell–cell
junctions. Radisky et al. (2005) showed that MMP3 in-
duces expression of Rac1, which increases reactive oxygen
species (ROS) production and Snail1 expression to pro-
mote EMT (Orlichenko and Radisky 2008). Together,
these results suggest a possible interplay between the
loss of cellular junctions and the induction of proteases
during EMT to promote tumor invasion.
More recently, there is emerging evidence that EMT

transcription factors can also induce the formation of
specialized subcellular structures called invadopodia to
invade local ECMs (Eckert et al. 2011; Murphy and
Courtneidge 2011). Invadopodia are actin-based protru-
sions that recruit various proteases such as membrane-
tethered proteases (MT-MMPs), ADAMs, and MMPs, etc.
to cell–matrix contact points to degrade ECM (Murphy
and Courtneidge 2011). The EMT core transcription
factor Twist1 was found to promote invadopodia forma-
tion through induction of PDGFRa expression and Src
activation (Eckert et al. 2011). TGF-b was also shown to
induce invadopodia formation in EpH4 and MCF10A
mammary epithelial cells through up-regulation of Twist1
(Eckert et al. 2011) and the focal adhesion protein Hic-5
(Pignatelli et al. 2012) to promote matrix degradation and
invasion. Furthermore, Zeppo1, a novel metastasis pro-
moter that can repress E-cadherin expression, was found to
induce EpH4.9 cells to form invadopodia-like structures in
three dimensions (Slorach et al. 2011). Together, these
studies suggest that the EMT program not only allows
carcinoma cells to dissociate from each other but also
provides them the ability to degrade ECM for single-cell
invasion to initiate the metastatic cascade (Fig. 2).

Clinical evidence of EMT in primary tumor invasion

In the past, identification of carcinoma cells undergoing
EMT in human tumor tissues has largely relied on histo-
logical analysis of E-cadherin expression. A partial loss of
E-cadherin is associated with carcinoma progression and
poor prognosis in various human tumor types, consistent
with the role of E-cadherin as a caretaker of the epithelial
state in carcinomas (Hirohashi 1998; Vincent-Salomon and
Thiery 2003). In a few carcinoma subtypes, E-cadherin is
lost at an early stage of the disease, so the tumor types
present a permanent EMT phenotype. For example, a por-
tion of lobular breast carcinomas (Berx et al. 1995, 1998)
and diffuse gastric cancers (Becker et al. 1994; Oda et al.
1994) contain E-cadherin gene nonsense or frameshift
mutations, while transcriptional suppression or post-
translational modification of E-cadherin also contributes
to the lack of E-cadherin expression in these tumors
(Droufakou et al. 2001). Furthermore, in many late stage
human carcinomas, E-cadherin expression appears to be
heterogeneous, with E-cadherin-negative tumor cells in-
terspersed within foci of E-cadherin-positive areas in the
tumor (Bukholm et al. 1998, 2000), suggesting that some
carcinoma cells might have undergone EMT.
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Recent progress in gene expression profiling has shed
more light on the prevalence of EMT in human cancer.
Most notably, microarray analysis classified a claudin-
low subtype of breast ductal carcinoma with low expres-
sion of E-cadherin and found that this subtype was
enriched with an EMT gene signature including EMT
core transcription factors Snail1, Twist1/2, and Zeb2 (Prat
et al. 2010). In addition, immunohistochemical analysis
of 28 molecular markers in 479 invasive breast carcino-
mas revealed clustering of EMT markers in tumors with
a basal-like phenotype (Sarrio et al. 2008). Further anal-
ysis of these invasive basal/triple-negative subgroups
found tumor cells that are double-positive for keratin
and vimentin at the invasive front (Sorlie et al. 2001;
Livasy et al. 2006; Rakha et al. 2006; Bonnomet et al.
2012). In colorectal carcinoma, ZEB1- and Snail1-positive
cells with a mesenchymal morphology at the invasive
front showed strong nuclear b-catenin signals (due to an
APC mutation), suggesting that colon carcinoma cells,
but not stromal cells, have undergone EMT (Brabletz
et al. 2001, 2005; Spaderna et al. 2006). Recently, Celesti
et al. (2013) performed Twist1 immunostaining in com-
bination with fluorescent in situ hybridization (FISH)

analysis of chromosome translocation unique to human
colorectal tumor cells and found that 17 out of 20 human
colon tumors contained Twist1+ tumor cells with a mes-
enchymal phenotype. Together, these studies provide
convincing clinical evidence of the occurrence of EMT
(or at least partial EMT) in primary human carcinomas.

Step II: EMT in tumor cell intravasation

Following local invasion, tumor cells need to undergo an
intravasation process to enter into the vasculature (lym-
phatic or blood vessels) for systemic dissemination. The
precise mechanism of how tumor cells cross the endo-
thelial barrier is largely unknown. Because of their size,
tumors cells may require additional machinery to intra-
vasate, unlike the smaller leukocytes that rely on di-
apedesis to migrate between endothelial cell (EC) junc-
tions (Miles et al. 2008). The EMT program is thought to
modulate the migratory and invasive properties of carci-
noma cells to promote entry into the vasculature.
Technological advances in transendothelial assays,

chick chorioallantoic membrane (CAM) assays, and in-
travital live imaging have facilitated the investigation of

Figure 2. EMT in local invasion and intravasation. Activation of the EMT program is mostly characterized by the loss of E-cadherin
expression. In order to invade through local basement membrane (surrounding the tumor or the tumor vasculature), these
mesenchymal tumor cells up-regulate several secreted (MMPs) and membrane-tethered (MT-MMPs) proteases to break down ECM
components. In addition, EMT factors can up-regulate specialized cellular structures such as invadopodia to promote local invasion.
Expression of proteases can further induce EMT by breaking down cell–cell junctions, resulting in a positive feedback loop during
malignant transformation of these cells.
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EMT during the intravasation process. Using a transendo-
thelial migration assay, Drake et al. (2009) found that
Zeb1 expression in PC-3 human prostate cancer cells was
required for enhanced migration through the EC barrier
and increased metastatic colonization. Using a modified
CAM assay that allows visualization of chorionic epithe-
lium-derived vascular basement membrane, Ota et al.
(2009) found that MCF-7 breast cancer cells expressing
Snail1 could transmigrate through the underlying cho-
rionic basement membrane and intravasate into the host
vasculature. More interestingly, they showed that over-
expression of Snail1 promoted intravasation through
activation of membrane-bound MT1-MMP and MT2-
MMP but not secreted MMPs, suggesting that direct
contact between tumor cells and the endothelium is
likely to be required for intravasation (Ota et al. 2009).
Although further advances in in vivo imaging techniques
are needed to carefully investigate the mechanisms
regulating intravasation, these studies support a role of
EMT in promoting carcinoma cells to breach through
endothelium during intravasation (Fig. 2).

Step III: EMT in systemic transport

Upon entering systemic circulation, surviving tumor cells
must possess the proper machinery to survive anoikis and
then attach onto the blood vessel wall to prepare for
extravasation from the circulation. Many recent studies
in human cancer patients andmouse tumor models have
identified the presence of EMT molecular markers in
CTCs using various methods, including immunostain-
ing, in situ hybridization, RNA sequencing, real-time
quantitative PCR, and expression analysis (Yu et al.
2011). In general, most studies detected expression of
EMT markers in CTCs; however, the functional signif-
icance of EMT in CTCs still awaits further evaluation.

Experimental evidence for EMT in CTCs

Currently, only a limited number of reports using mouse
tumor models directly examine the involvement of
EMT in producing CTCs. This may be due in part to
the challenges in capturing CTCs that have fully un-
dergone EMT, given that current isolation methods rely
primarily on using epithelial markers, such as EpCam, to
capture CTCs from the blood or bone marrow (Yu et al.
2011). To investigate tumor cell dissemination in vivo,
Husemann et al. (2008) used the MMTV-Her2 mouse
mammary tumor model and found increased Twist1
expression in hyperplastic lesions during early primary
tumor development. Concomitantly, these mice pre-
sented increased DTCs in the bone marrow at this stage,
suggesting that EMTmay be partially responsible for the
induction of CTCs/DTCs (Husemann et al. 2008). Consis-
tent with these findings, in a K-Ras-driven mouse pancre-
atic tumor model, Rhim et al. (2012) detected circulating
pancreatic tumor cells at the premalignant stage of tumor
progression. The majority of these CTCs presented a mes-
enchymal phenotype and expressed Zeb2, indicating acti-
vation of the EMT program in these cells (Rhim et al.

2012). To demonstrate that activation of EMT directly
promotes the production of CTCs, Tsai et al. (2012)
examined the number of CTCs in a squamous cell
carcinoma mouse tumor model in response to Twist1
induction. Indeed, Twist1 induction dramatically in-
creased the number of CTCs compared with control
mice, and these CTCs presented an EMT phenotype
with loss of E-cadherin and expression of vimentin (Tsai
et al. 2012). In the MDA-MB-468 breast tumor xenograft
model, expression of Snail1 and Snail2 also increased the
presence of vimentin-positive CTCs (Bonnomet et al.
2012). In these experimental studies, an increase in CTCs
was associated with an increase in metastasis incidence,
suggesting that EMT-induced CTCs directly contribute to
effective metastasis formation.
Recent insightful studies have also revealed a potential

mechanism for maintaining the mesenchymal state of
CTCs. Labelle et al. (2011) found that CTCs were prefer-
entially associated with platelet cells, which are a major
source of TGF-b production in the blood. Importantly,
depletion of platelets or inhibition of TGF-b secretion
solely in platelets drastically reduced distant metastases
(Labelle et al. 2011). Consistent with these experimental
data, mesenchymal CTCs isolated from breast cancer
patients were found clustered with platelet cells, and
gene expression profiling of these CTCs found an enrich-
ment of the TGF-b pathway (Yu et al. 2013). Together,
these studies suggest that successful metastasis may
depend on the maintenance of a mesenchymal state in
CTCs.
One potential hypothesis for why CTCs need to main-

tain the EMT program is that EMT can prevent single
tumor cells from detachment-induced anoikis while in
circulation. For example, CTC survival may be aided by
microtubule-based membrane protrusions called micro-
tentacles that are thought to allow CTC aggregation and/
or cell attachment to the blood wall. These structures
have previously been shown to form in detached breast
tumor circulating cells (Matrone et al. 2010a,b; Whipple
et al. 2010). Expression of Twist1 or Snail1 in human
mammary epithelial cells promotes microtentacle for-
mation in detached cells, suggesting that EMT could aid
CTC survival via microtenacle-based attachment of
CTCs to leukocytes, platelets, and endothelium (Fig. 3;
Matrone et al. 2010a).

Clinical evidence for EMT in CTCs

Many recent clinical studies have highlighted the use of
CTCs as a prognostic marker for cancer progression and
an indicator of therapeutic response. Studies in patients
with metastatic breast and colorectal cancer showed that
CTCs serve as an independent predictor of progression-
free survival and overall survival (Christoffersen et al.
2007; Cohen et al. 2008). Interestingly, many clinical
studies also detected the presence of EMT molecular
markers in the CTCs. For example, CTCs from breast
cancer patients showed reduced expression of epithelial
markers and/or increased mesenchymal markers (Aktas
et al. 2009; Kallergi et al. 2011; Raimondi et al. 2011;
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Mego et al. 2012). Expression of Twist1 in DTCs isolated
from bone marrows of breast cancer patients was corre-
lated with early distant relapse (Watson et al. 2007). Using
a similar approach, CTCs isolated from hepatocellular
carcinoma (HCC) patients with metastasis expressed
almost 20 times more Snail1 transcripts when compared
with patients with no metastasis, demonstrating a poten-
tial functional role of Snail1 in HCC metastasis (Min
et al. 2009). A recent study by Yu et al. (2013) quantified
the proportions of CTCs with epithelial or mesenchymal
phenotypes and found an association of mesenchymal
CTCs with disease progression. One caveat of many
studies involving CTCs is that, as previously discussed,
the current CTC isolation methods rely primarily on
using epithelial markers to capture CTCs. Thus, CTCs
in the mesenchymal state may be missed during isola-
tion (Paterlini-Brechot and Benali 2007; Pantel and Alix-
Panabieres 2010; Kang and Pantel 2013). New technical
advances are required to explore the potential utility of
CTCs in both monitoring therapeutic responses and
predicting cancer patient survival.

Step IV: EMT in tumor cell extravasation

Many classic studies of EMT regulators have used exper-
imental metastasis assays, such as tail vein injection and
intracardiac injection, to investigate tumor cell extrava-
sation in the organ of interest. Studies have suggested
that extravasation is a relatively rapid process (i.e., tumor
cells extravasate 1–2 d following tail vein injection)
(Cameron et al. 2000; Mendoza et al. 2010). However,
tail vein assays involve injecting high numbers of tumor
cells directly into the circulation. These injected tumor
cells arrive at the lung microvasculature in such a large
quantity that this process often results in intravessel
growth rather than the sequential step of tumor growth
in the tissue parenchyma following tumor cell extrava-
sation. Thus, experimental models that more closely

mimic physiological dissemination are needed to analyze
the extravasation step.
Recently, new experimental systems have been de-

veloped to investigate how EMT is involved in the
extravasation step. Stoletov et al. (2010) established an
extravasation assay in zebrafish, which are optically
transparent and allow real-time imaging of cell move-
ment. Using this elegant system, they found that Twist1
expression in breast tumor cells promoted tumor cell
extravasation through a b1 integrin-independent mecha-
nism. Furthermore, they showed that Twist1-expressing
cells formed large dynamic membrane protrusions during
extravasation (Stoletov et al. 2010). Interestingly, Shibue
et al. (2012) found that upon arriving at the distant tissue
parenchyma, tumor cells present filopodium-like protru-
sions (FLPs) that contain integrin b1 to interact with the
ECM. Not only was FLP formation found to be essential
for successful metastasis, but the ability of various breast
tumor cells to generate FLPs was correlated with their
mesenchymal states, and their formation can be induced
by the expression of Twist1 and Snail1 (Shibue et al.
2012). Together, these data indicate that the EMT pro-
gram may promote extravasation and the initial lodging
of tumor cells in distant organs (Fig. 3).

Step V: Reversion of EMT in metastatic colonization

As discussed, primary carcinomas and CTCs show strong
cellular and molecular signatures of EMT; in contrast,
resulting macrometastases are largely epithelial, which
suggests that the involvement of EMT during metastasis
is likely to be dynamic. Indeed, Chao et al. (2010) showed
that tail vein injection of mesenchymal MDA-MB-231
cells into the secondary organ environment resulted in re-
expression of E-cadherin through the passive loss of
methylation in the E-cadherin promoter. Using vimentin
as the mesenchymal marker, Bonnomet et al. (2012)
found that primary MDA-MB-468 tumor xenografts and

Figure 3. EMT in systemic transport and extravasa-
tion. Experimental and clinical samples have revealed
an EMT signature in CTCs. This signature provides
a possible biomarker to monitor tumor progression
and/or therapeutic response. Experimental evidence
suggests that platelets play a critical role in maintain-
ing EMT activation in CTCs by providing the TGF-b
signal. Furthermore, studies suggest that activation of
EMT promotes microtentacle formation that allows
tumor cell attachment to the endothelium and pro-
motes cell survival. In order to extravasate at distant
sites, tumor cells maintain an EMT phenotype and
express cellular protrusions that allow extravasation,
which is mediated by b1 integrin signaling.
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the resulting lung metastases showed a heterogeneous
expression pattern of vimentin, while CTCs expressed
high levels of vimentin, Snail1, and Snail2. This suggests
that vimentin-positive CTCsmight have undergoneMET
to form vimentin-negative macrometastasis. Two recent
studies have provided concrete experimental data to
support such epithelial–mesenchymal plasticity during
tumor metastasis. Using an inducible Twist1 mouse
bearing skin tumors, it has been demonstrated that
activation of EMT promotes the early steps of metastasis,
including local invasion, intravasation, and extravasa-
tion. However, the loss of an EMT-inducing signal at the
distant site was essential for cell proliferation and macro-
metastasis formation (Tsai et al. 2012). Consistent with
these studies, Ocana et al. (2012) showed that down-
regulation of a novel EMT inducer, Prrx1, in BT549
human breast cancer cells was required for lung metas-
tasis colonization upon tail vein injection. Specifically,
Prrx1 cooperated with Twist1 to promote a more invasive
phenotype, while loss of Prrx1 was required to revert
EMT (Ocana et al. 2012). Together, these studies strongly
argue that reversion of EMT is essential for metastasis
colonization.
Why do tumor cells need to revert to an epithelial state

to grow into macrometastases? Studies in cell culture
showed that induction of EMT by Snail1 and Zeb2
directly represses cell division by inhibiting Cyclin D
activity (Vega et al. 2004; Mejlvang et al. 2007). In an in
vivo skin tumor model, activation of Twist1 was found to
be associated with reduced tumor cell proliferation (Tsai
et al. 2012). Since colonization demands tumor cells to
restart proliferation upon extravasation into a foreign
microenvironment, reversion of EMT may be required
to provide such growth advantage. While these studies
suggest that the induction of proliferation likely plays
a key role in the reversion of EMT during colonization, it
remains unanswered which signaling pathways couple
EMT with cell proliferation. Other studies suggest that
EMT regulators might provide additional assistance for
metastatic colonization. The miR-200 family members
are negative regulators of the EMT inducer Zeb1 and vice
versa (Christoffersen et al. 2007; Bracken et al. 2008; Burk
et al. 2008; Gregory et al. 2008; Korpal and Kang 2008;
Korpal et al. 2008; Park et al. 2008; Kim et al. 2011b).
Interestingly, re-expression of miR-200 family members
was shown to enhance colonization possibly by repres-
sing Sec23a-mediated secretion of metastasis-suppressive
proteins, including Igfbp4 and Tinagl1 (Fig. 4; Korpal et al.
2011).
Another unanswered question is how the EMT rever-

sion process occurs in distant organs. In other words: Is
the absence of an EMT-inducing signal sufficient for EMT
reversion? Are additional MET-inducing signals required
to actively promote MET? Recent studies indicate that
both scenarios are possible in promoting EMT reversion.
In a skin tumor model, the absence of a Twist1 signal (or
the withdrawal of Twist1-activating signal) in DTCs
resulted in macrometastasis formation (Tsai et al. 2012).
However, this study does not exclude the possibility that
additional MET-inducing signals may also contribute to

colonization. Gao et al. (2012) showed that versican
expression by myeloid cells in the lung metastatic niche
promoted lung colonization by inducing MET, thus
supporting the notion that signal inputs from the meta-
static niche could regulate epithelial–mesenchymal plas-
ticity in distant sites. Although it is currently unknown
how microenvironmental signals regulate MET, EMT
core transcription factors are considered primary targets
for such regulation. For example, a number of EMT core
transcription factors are negatively regulated by miRNAs,
including miR-200 family members that regulate Zeb2 as
well as miR-34 family members that regulate Snail1 and
Zeb1. It is possible that microenvironmental signals could
impinge on these miRNAs to turn off EMT at distant
organs (Fig. 4; Kim et al. 2011a; Siemens et al. 2011). Given
that micrometastasis outgrowth is a key rate-limiting step
in metastasis, more studies on the molecular regulators of
METcould shed light on therapeutic approaches to inhibit
tumor colonization.
Adding to the complexity of metastatic colonization is

the clinical observation that DTCs can remain ‘‘dor-
mant’’ for many years before regrowth. These cells are
thought to reside in the secondary tissue parenchyma as
a micrometastatic lesion or in the bone marrow and
mobilize to secondary sites prior to regrowth (Hedley
and Chambers 2009). Due to the lack of specific molec-
ular markers to detect and isolate dormant micrometa-

Figure 4. Mechanisms of EMT reversion. Colonization at
distant sites requires the reversion of EMT to promote tumor
cell proliferation. The interplay between EMT activators and
inhibitors (i.e., METactivators) plays a critical role in metastatic
outgrowth. The loss of EMT activators such as Twist1 or Prrx1
appears to be required to promote EMT reversion. However,
signals from the microenvironment in distant sites may also
shift the balance from EMT activators to EMT inhibitors or
MET activators. It is unknown when or how these factors are
regulated during tumor progression, which may impact treat-
ment of metastatic disease.
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stases from epithelial organs in cancer patients and mouse
tumor models, our current understanding of tumor dor-
mancy is largely based on micrometastases isolated from
the bone marrow. In one study, micrometastases from the
bone marrow of breast cancer patients were isolated, and
Twist1 expression was identified as a marker for early
distant metastasis relapse (Watson et al. 2007). This result
is consistent with a role of EMT in promoting tumor cell
dissemination, as discussed earlier. More importantly,
together with the notion that reversion of EMT is required
for macrometastasis colonization, they suggest that the
inability to revert EMT in DTCs might contribute to
metastasis dormancy. Further studies using relevant ex-
perimental tumor models are needed to better evaluate the
involvement of EMT in tumor cell dormancy.
While large numbers of studies have demonstrated a

cell-autonomous role of EMT in promoting tumor cell
dissemination, an alternative ‘‘cooperative’’ model pro-
poses a supporting role for tumor cells that have un-
dergone EMT to aid metastasis. By mixing uniquely
labeled epithelial tumor cells and mesenchymal tumor
cells to generate primary tumors, Tsuji et al. (2008) reported
that epithelial cells require the cooperation of mesenchy-
mal cells to lead the way for intravasation and CTC
generation. However, only the epithelial tumor cells, but
not the mesenchymal tumor cells, could generate macro-
metastases (Tsuji et al. 2008). In addition, the collaboration
between tumor-initiating cells (TICs) and cells having
undergone EMT accelerated metastatic colonization by
the TICs (Celia-Terrassa et al. 2012). Both studies suggest
that epithelial and mesenchymal tumor cells may co-
operate to successfully form metastatic tumors (Tsuji
et al. 2009). However, given that the mesenchymal tumor
cells used in these studies have undergone a permanent
EMT and cannot colonize in distant organs, it is plausible
that the epithelial tumor cells still need to undergo a
dynamic EMT/MET process to succeed in generating
macrometastases.

Emerging frontiers of EMT

EMT and cancer stem cells (CSCs)

The role of CSCs or TICs in tumor progression has been at
the forefront of cancer research in recent years (Nguyen
et al. 2012). CSCs are generally characterized by their
ability to initiate tumors in serial dilution transplanta-
tion assays. They express multiple cell surface markers,
including CD44high, CD24low, and CD133high, depending
on the tumor type. Interestingly, a number of studies have
demonstrated that EMT activation can generate CSCs or
disseminated cells that have tumor-initiating properties.
Studies by the Weinberg group (Mani et al. 2008) and the
Puisieux group (Morel et al. 2008) showed that activation
of EMT by TGF-b, Snail1, Twist1, and Zeb1 in normal
human mammary epithelial cells can promote a CSC-
like phenotype with tumor-initiating properties. In mouse
mammary epithelial cells, Snail2 was found to be a critical
player in regulating normal mammary stem cells (Guo
et al. 2012). Twist1 was also found to be capable of

suppressing CD24 expression, providing a direct connec-
tion between an EMT transcription factor and CSC gener-
ation (Vesuna et al. 2009). In breast cancer cells, activa-
tion of urokinase-type plasminogen activator receptor
(uPAR) was found to reversibly activate EMT, and
activation of this pathway was capable of generating
CSC-like properties (Lester et al. 2007; Jo et al. 2009,
2010). More interestingly, recent studies also found that
basal breast cancer non-CSCs are populations that can
generate CSCs de novo, and the CSC plasticity is con-
trolled by the chromatin state of the Zeb1 promoter
(Chaffer et al. 2011), further highlighting the critical role
of EMT regulators in regulating CSC plasticity during
tumor progression.
Consistent with these experimental results, numerous

studies have provided correlative evidence relating EMT
to the emergence of a CSC phenotype in human cancers.
In breast cancer patients, disseminated breast cancer cells
from pleural effusions, which likely have undergone
EMT, are enriched for a CD44high, CD24low CSC-like
population (Al-Hajj et al. 2003). In addition, stem cells
isolated from normal breast tissue or breast cancers
express a number of canonical EMT markers. Of clinical
significance, studies have shown that the tumor immune
response resulted in EMT-associated emergence of
CD44high–CD24low CSCs (Santisteban et al. 2009).
Despite the strong evidence of a pro-CSC-forming role

by EMT core regulators, there are experimental data that
implicate EMT as having a negative impact on TICs.
Celia-Terrassa et al. (2012) showed that cancer cells with
a pronounced epithelial phenotype were enriched with
highly metastatic TICs, whereas the mesenchymal-like
cells lacked TICs. Furthermore, forced expression of
Snail1 in the phenotypically epithelial cells suppressed
their self-renewal and metastatic capabilities, suggesting
that EMT activation may in fact suppress the tumor-
initiating properties of CSCs (Celia-Terrassa et al. 2012).
These contradictory results could be due to the difference
in additional genetic/epigenetic alterations in the indi-
vidual cell types studied. A recent study found that
removing an EMT regulator, Prrx1, was required for the
tumor-initiating ability of breast cancer cells expressing
Twist1 (Ocana et al. 2012). Future studies to clearly define
the difference in signaling pathways regulating EMT
versus TICs will provide much-needed information on
how the EMT program and TIC regulation are intervened.

EMT and drug resistance

One major obstacle in cancer therapy is that cancer
patients can develop resistance to treatment over time.
An increasing number of reports suggests a potential role
of EMT in conferring drug resistance. Studies using
colorectal cell lines have shown that expression of EMT
inducers Snail1 or TGF-b in SMAD4-null cells increased
resistance to chemotherapy (Hoshino et al. 2009;
Papageorgis et al. 2011). Conversely, colorectal cell lines
that were rendered oxaliplatin-resistant showed pheno-
typic and gene expression changes consistent with EMT
(Yang et al. 2006; Kawamoto et al. 2012). Interestingly,
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tumor specimens taken from patients who had received
1 wk of preoperative chemotherapy prior to surgery
resection displayed a more mesenchymal gene signature
compared with prechemotherapy biopsy samples. Fur-
thermore, recurrent tumors frequently exhibited an
EMT gene signature (e.g., decreased E-cadherin and in-
creased vimentin) (Kawamoto et al. 2012). Shintani et al.
(2011) found that, in non-small-cell lung carcinoma
(NSCLC) patients, tumor biopsy prior to chemotherapy
treatment showed epithelial markers but that this
phenotype shifted toward mesenchymal markers follow-
ing treatment. Consequently, the disease-free survival
rate was lower in patients whose tumors presented an
EMT phenotype compared with EMT-negative tumors
(Shintani et al. 2011).
Besides the evidence of drug resistance to chemother-

apy, recent studies have also suggested a role of EMT in
drug resistance toward targeted therapies. Using several
human NSCLC lines, Thomson et al. (2005) demon-
strated that cell lines expressing epithelial markers were
more sensitive to epidermal growth factor receptor
(EGFR) inhibition, whereas cells lines presenting mes-
enchymal markers were more resistant to treatment. In
gefitinib-resistant PC9/AB2 lung cancer cells, Notch1
was found to promote EMT. Knockdown of Notch1
reverted the EMT phenotype and rendered these cells
sensitive to gefitinib (Xie et al. 2012), implicating a
strong correlation between EMT activation and drug
resistance.
While it remains unknown whether and how the EMT

program directly impinges on drug resistance, several
possible mechanisms might be in play. First, since acti-
vation of EMT reduces cell proliferation (Vega et al. 2004;
Mejlvang et al. 2007), slowing the cell cycle machinery
will increase resistance to chemotherapy, which gener-
ally targets highly proliferative cells. Second, EMT core
transcription factors, including TGF-b, Snail1, Snail2,
and Twist1, have been shown to confer resistance to cell
death via various pathways, most notably by antagoniz-
ing p53-mediated apoptosis (Inoue et al. 2002; Kajita et al.
2004; Vega et al. 2004; Gal et al. 2008), thus providing
a potential survival advantage. Third, as discussed above,
the EMT program can promote CSC properties. CSCs
were found to be inherently more resistant to conven-
tional cancer chemotherapies than rapidly proliferating
progenitor cells and differentiated tumor cells. These
CSCs were also found to be responsible for tumor reoc-
currence and capable of establishing metastases (Phillips
et al. 2006; Li et al. 2008). Indeed, conventional chemother-
apy is shown to enrich CSCs in breast cancer patients. For
example, mammospheres isolated from chemotherapy-
treated breast tumors showed similar mammosphere-initi-
ating capacity after eight passages in culture, whereas cells
from untreated tumors vanished within three passages,
suggesting again an increase in CSCs after chemotherapy
(Yu et al. 2007). Li et al. (2008) further demonstrated that
chemotherapy increased the number of CD44high–CD24low

cell population and that these cells have stem-like features.
Together, these studies strongly indicate that activation of
EMT contributes to cancer therapy resistance.

Future directions in therapeutic targeting of EMT/MET

Metastatic diseases are responsible for >90%of carcinoma-
related deaths. Given the strong evidence supporting
a critical role of EMT in tumor metastasis, targeting this
process is thought to be a promising approach to treat
invasive cancer. However, current treatment modalities
remain limited in their efficacy in targeting cells un-
dergoing EMT. This may be due in part to potential drug
resistance in this population of cells (as discussed above)
and the lack of appropriate targets in the core EMT
program. Because EMT core transcription factors re-
main technically challenging to target, targeting the
activation or the functional consequence of EMT is
perhaps the more effective approach. Several groups
have performed high-content drug screens to identify
potential inhibitors of EMT in response to various
EMT-inducing signals. Interestingly, the majority of
the compounds obtained appear to be involved in
inhibiting the specific EMT-inducing signals used in
the screen. For example, rapamycin and 17-AGG were
identified as inhibitors of TGFb-induced EMT by mod-
ifying the TGFb pathway (Reka et al. 2011), while
inhibitors of ALK5, MEK, and SRC could interfere with
EMT in response to EGF, HGF, and IGF-1 (Reka et al.
2011; Chua et al. 2012). Salinomycin was also identi-
fied as inducing selective killing of E-cadherin-null
breast epithelial cells compared with E-cadherin-positive
cells (Gupta et al. 2009), although its molecular action
toward EMT is unknown.
The plasticity of EMT in metastasis provides another

level of complexity regarding the appropriate time win-
dow to target EMT in patients. Several studies suggest
that targeting the TGFb pathway to inhibit EMT or
blocking tumor cell invasion through inhibiting PDGR
signaling may be appropriate as metastasis prevention
strategies in early stage carcinomas. Once tumor cells
have disseminated from the primary tumor, inhibiting
EMT could be counterproductive, since reversion of
EMT appears to be beneficial for disseminated carci-
noma cells to regain proliferation and colonize distant
organs (Tsai et al. 2012). Instead, the EMT features in
CTCs and disseminated dormant tumor cells present
several unique opportunities for therapeutic interven-
tion. First, since DTCs present molecular markers of
EMT, unique EMT surface markers expressed in these
cells could be ideal targets for T-cell-based immunother-
apy. Second, since an increasing number of studies
suggest a role of EMT in promoting chemoresistance,
combining chemotherapies with EMT inhibitors holds
promise to overcome chemoresistance in dormant tu-
mor cells, thus providing a unique therapeutic approach
to eradicate dormant tumor cells. Last, preventing the
reversion of the EMT program in dormant micrometa-
stases would be a novel approach to prevent resurrection
of dormant tumor cells. In the near future, improving
our understanding of the molecular regulation of the
dynamic EMT/MET programs during tumor metastasis
will help to provide much-needed effective treatment to
eradicate metastatic diseases.
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