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is of fundamental importance for the development of new 
strategies of early cancer detection and effective cancer 
treatment approaches that will be translated into clinical 
practice.  Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Distant metastasis development is the main cause of 
death in cancer. Metastatic lesions are hardly manageable 
in clinical practice as they are often too widespread or too 
large to be removed by surgery and frequently exhibit in-
creased resistance to chemotherapy. Thus the under-
standing of the metastasis process is of key significance 
for treatment improvement and decreasing the death rate 
of cancer patients.

  In order to progress, tumors of epithelial origin need 
to acquire features which enable them to: (1) loosen cell-
cell contact, breach the basal membrane and dissociate 
from the tumor mass, (2) invade neighboring tissue, in-
travasate into blood or lymph vessels and (3) extravasate 

 Key Words 

 Breast cancer  �  Epithelial-mesenchymal transition  �  
Cancer stem cells  �  Circulating tumor cells 

 Abstract 

 The occurrence of either regional or distant metastases is an 
indicator of poor prognosis for cancer patients. The mecha-
nism of their formation has not yet been fully uncovered, 
which limits the possibility of developing new therapeutic 
strategies. Nevertheless, the discovery of circulating tumor 
cells (CTCs), which are responsible for tumor dissemination, 
and cancer stem cells (CSCs), required for tumor growth 
maintenance, shed light on the metastatic cascade. It seems 
that CTCs and CSCs are not necessarily separate populations 
of cancer cells, as CTCs generated in the process of epithelial-
mesenchymal transition (EMT) can bear features character-
istic of CSCs. This article describes the mechanisms of CTC 
and CSC formation and characterizes their molecular hall-
marks. Moreover, we present different types of EMT occur-
ring in physiological and pathological conditions, and we 
demonstrate its crucial role in providing CTCs with a CSC 
phenotype. The article delineates molecular changes ac-
quired by cancer cells undergoing EMT that facilitate metas-
tasis formation. Deeper understanding of those processes
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from vessels in distinct organs to create secondary 
tumor(s)  [1] . Epithelial tumor cells gain invasiveness and 
migratory abilities in the process of epithelial-mesenchy-
mal transition (EMT), which is essential for successful 
metastatic spread  [2, 3] . The process of EMT is very like-
ly to be responsible for drug efficiency decrease and thus 
anticancer therapy failure. Moreover, it appears that 
stem-like cells can arise as a result of EMT  [4, 5] . Circu-
lating tumor cells (CTCs), isolated from the blood of 
breast cancer patients, may be linked to both cancer stem 
cells (CSCs) and EMT processes as they can possess fea-
tures of CSCs as well as phenotypic changes characteris-
tic of EMT  [6–9] . Altogether, these cells are predestined 
to be an active source of metastases due to their potential 
stem cell features and EMT traits which allow them to 
disseminate effectively.

  A considerable effort has been dedicated to elucidating 
the molecular background of tumor invasion and metas-
tasis, and an enormous amount of data on the subject has 
been generated. Here we review the emerging picture of 
EMT as the hallmark in metastasis formation, linking 
both circulating tumor cells and the formation of cells 
with cancer stem cell phenotypes. We delineate the clin-
ical significance of CTCs as such and their molecular 
characteristics as predictive and prognostic tools in can-
cer management.

  EMT in Physiology and Pathophysiology 

 EMT is a multi-step process involving molecular and 
cellular changes in epithelial cells. Restrained and immo-
bile epithelial cells gain a mesenchymal phenotype, char-
acterized by an enhanced motility and ability to degrade 
ECM  [10–15] . This leads to the weakening of cell-cell ad-
hesion due to the downregulation of epithelial proteins, 
mainly E-cadherin but also claudins, occludins and cyto-
keratins  [2, 15–17] . Cells that have undergone EMT show 
changes in apicobasal polarity which leads to a spindle-
shaped morphology  [18, 19] . The characteristic features 
of a mesenchymal phenotype are high expression of N-
cadherin as well as fibronectin, vimentin, tenascin C, col-
lagen VI- �  and laminin- � 1  [13, 16, 17, 20, 21] . These 
changes observed in the EMT process are governed by 
transcription factors such as TWIST1, SNAIL, SLUG, 
SIP1  [14, 22] . To date a number of different EMT inducers 
such as Wnt, Hedgehog, EGF and TGF- �  have been un-
veiled  [23, 24]  and molecular pathways have been delin-
eated. For example, the binding of TGF- �  to proteins ex-
pressed on the surface of breast cancer cells activates the 

expression of SNAIL and SLUG which suppress E-cad-
herin expression  [25] .

  EMT plays a critical role in a number of physiological 
and pathophysiological conditions. Depending on the 
mechanisms, different classes of EMT have been pro-
posed: embryonic and developmental EMT referred to as 
type I, fibrotic and wound-healing EMT referred to as 
type II and cancer progression EMT known as type III 
 [11–14, 26, 27] . 

  EMT type I (classic EMT) besides embryonic develop-
ment also occurs during postnatal growth. Furthermore, 
it plays a role in maintaining epithelial homeostasis. The 
steps of EMT during this process are specific and well 
defined. Normal epithelial cells are cuboidal and remain 
in contact with each other through adherent and tight 
junctions. They are also attached to the basal membrane 
by integrins. Adherent junctions are composed mainly of 
E-cadherin, catenins and actin, while claudin and occlu-
dins are more characteristic of tight junctions. EMT in-
ducers downregulate the expression of the components of 
both tight and adherent junctions, which results in loos-
ening of the apicobasal polarity of the cells and disassem-
bling of the basal membrane  [28, 29] . This process is ac-
companied by changes in the cytoskeleton, such as the 
replacement of peripheral actin elements by stress fibers, 
which are crucial for cells to liberate from the epithelium 
and acquire migratory properties  [22, 30] . All the afore-
mentioned changes, together with simultaneous protease 
activity, lead to cell delamination and invasion  [31] . Pri-
mary mesenchymal cells generated in this way have the 
potential to subsequently go through the process of mes-
enchymal-epithelial transition (MET), the reverse of 
EMT, and thus generate secondary epithelia  [27] . During 
embryonic development, cells may undergo EMT a num-
ber of times; hence, almost all organs in adults arise as a 
result of one or several rounds of EMT followed by MET.

  The ability of cells to undergo the process of EMT and 
subsequently reverse is called epithelial plasticity. A 
unique example of this phenomenon is the postnatal de-
velopment of the mammary gland. The developmental 
cycle of the breast is long-lasting, since the mammary 
gland achieves its full dimensions after the first lactation 
during mammary gland involution. During this complex 
organ evolution, epithelial cells need to go through many 
rounds of proliferation, invasion and cell death  [32, 33] . 

  EMT type II (fibrotic EMT) is triggered by injury and 
mainly generates fibroblasts in order to reconstruct 
wounded tissues  [3, 12, 34, 35] . In physiological condi-
tions fibroblasts and immune cells release inflammatory 
factors (e.g. different cytokines) and extracellular matrix 



 EMT: A Phenomenon Linking CTCs and 
CSCs 

Pathobiology 2012;79:195–208 197

proteins which stimulate cells to undergo EMT. Once the 
inflammation subsides the process is terminated. Under 
pathological conditions of persistent inflammation, con-
tinuous EMT of normal epithelial cells can lead to fibro-
sis and organ (lung, liver, kidney) damage  [3, 12, 34–37] . 

  Similarly to fibrosis, the oncogenic process can dis-
turb homeostasis in cells and induce EMT type III. The 
oncogenic EMT enables epithelial cells to acquire motile 
and invasive phenotype characteristics for mesenchymal 
cells, which is essential in metastatic cascade  [2] . Many 
EMT features typical for development are present in on-
cogenic EMT, however, they are less ordered and coordi-
nated. Although it seemed to be predictable that the same 
mechanism could be responsible for the delamination of 
cells, both in the development and metastatic spread of 
epithelial cancers, the contribution of the EMT process to 
tumor progression has only recently been commonly ac-
cepted  [38–40] . This was caused by the transient charac-
ter of EMT in tumors and technical difficulties in identi-
fying migrating cancer cells on pathological specimens 
 [4, 41–43] . EMT occurs in restricted places within a tu-
mor (such as a leading edge  [44] ) and the micrometer-
thick slices allow observation of only a limited area of a 
tumor cross section. However, the altered shape of tumor 
cells and the process of intravasation have been shown in 
vivo in animal models using intravital microscopy, which 

allows real-time monitoring of fluorescently labeled tu-
mor cells, and adjustment of the depth of focus and con-
trast  [45] . Moreover, the lack of direct clinical evidence 
for EMT in cancer was boosted by the observation that 
secondary tumor sites histopathologically resemble cells 
of the primary tumor from which they originated. This 
can be explained by the occurrence of the MET process 
once tumor cells have extravasated into distant organs 
 [27] . Disseminated cancer cells need to regain their epi-
thelial phenotype in order to initiate the growth of a sol-
id tumor at the secondary site. The studies of Chao et al. 
 [46]  demonstrated that the secondary organ microenvi-
ronment can induce the process of MET in the mesen-
chymal-like MDA-MB-231 breast cancer cell line and in 
primary explants by reexpression of E-cadherin. A few 
other studies have described the phenomenon of a switch 
between EMT and MET in bladder, colorectal and ovar-
ian cancer  [39, 47, 48]  ( fig. 1 , model A). It should also be 
mentioned that changes between epithelial and mesen-
chymal phenotype in carcinoma cells may lead to the 
arising of hybrid phenotypes which ‘accumulate’ features 
of both cell types  [18, 49, 50] . Cells do not need to under-
go a full transition to a mesenchymal phenotype or even 
to show any changes typical of EMT. In fact, they can stay 
morphologically well differentiated and take part in the 
metastasis process. This process is known as ‘collective’ 
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  Fig. 1.  The role of EMT in cancer invasion. 
Two models have been proposed for EMT 
involvement in cancer metastasis. After 
stimulation, carcinoma cells activate a 
program of EMT and phenotypical chang-
es occur, leading to the formation of either 
a pure population of highly invasive mes-
enchymal-like cells or sets of cell clusters 
with ‘hybrid’ phenotypes. Model A: after 
undergoing full EMT, mesenchymal-like 
cancer cells disseminate from the tumor 
mass and reach the circulatory system. 
Once they extravasate in a distant organ, 
they undergo MET and create metastases 
 [12, 50] . Model B: cancer cells disseminate 
and migrate as clusters of cells with differ-
ent phenotypes; cancer cells that pass 
through full EMT lead the partial EMT 
and non-EMT cells. All cell types enter the 
circulation, but only non-EMT cancer 
cells are able to extravasate and create me-
tastases  [55] .   

C
o

lo
r v

er
si

o
n 

av
ai

la
b

le
 o

n
lin

e



 Książkiewicz   /Markiewicz   /Żaczek    Pathobiology 2012;79:195–208198

or ‘cohort’ migration in which cells do not disseminate 
and invade as individuals but as multicellular clusters. It 
is possible that in the cluster of migrating cells many in-
termediates between epithelial and mesenchymal pheno-
types coexist. The invasive front of the tumor consists of 
mobile invasive cells resulting from EMT, followed by un-
changed tumor cells with epithelial characteristics  [50–
52] . This type of cell migration occurs both in breast can-
cer and during regular development  [53, 54] . An interest-
ing model of collective migration in cancer was described 
by Tsuji et al.  [55]  where only cooperation between EMT 
and non-EMT cancer cells enabled a successful process 
of metastasis. EMT cells with an invasive phenotype, re-
sponsible for matrix degradation and penetration of local 
tissue and vessels, lead non-EMT cells and enable their 
intravasation. Non-EMT cells endowed with adhesive 
properties are able to attach to the vessel wall and extrav-
asate, successfully creating metastasis  ( fig. 1 , model B). 
During breast cancer development, both the EMT pro-
cess and partial EMT can be observed. EMT, for example, 
is representative of infiltrating lobular carcinoma. Partial 
EMT manifests itself as cell cohorts and partially dedif-
ferentiated tubules found in invasive ductal carcinoma 
 [50] . The existence of more than one cellular mechanism 
for tissue invasion is obvious both in branching morpho-
genesis and in epithelial cancers; however, a lot of effort 
must be put into understanding the dependence of these 
processes.

  Cancer Stem Cells and Metastasis 

 In the last decade the understanding of the metastasis 
process has changed considerably. A stochastic model of 
tumor development and maintenance was challenged by 
‘cancer stem cell hypothesis’  [56–58] . The stochastic 
model assumes that all cells in cancer are equally malig-
nant and every single cell has the potential of reconsti-
tuting a primary tumor under favorable circumstanc-
es, although the probability of this event is low  [59, 60] . 
According to this concept, heterogeneity within the pop-
ulation of tumor cells develops during tumor progression 
due to the effect of genomic instability and the accumula-
tion of mutations. Then, in the process of clonal selection, 
the tumor is enriched for cells endowed with metastatic 
properties, which can disseminate and form secondary 
tumors  [61, 62] . ‘Cancer stem cell hypothesis’ implies the 
preexistence of functional heterogeneity within tumor 
cells with a discrete subpopulation of CSCs, able to initi-
ate and maintain tumor growth and bulk nontumorigen-

ic cells  [57, 58, 63–66] . Evidence for the existence of CSCs 
was first reported by Bonnet and Dick  [58]  in acute my-
elogenous leukemia, and then shown for breast cancer 
 [57]  and other malignancies  [64–67] . CSCs are so termed 
through their analogy with normal stem cells. Similarly, 
CSCs possess the ability to self-renew in vivo and differ-
entiate. They can give rise to a phenotypically diverse 
progeny composed of both tumorigenic cells with indefi-
nite proliferation potential and nontumorigenic cells 
with limited proliferation potential. This way they recre-
ate the whole repertoire of cell subpopulations observed 
in the original tumor. However, in contrast to normal 
stem cells, they do not need to exhibit multilineage dif-
ferentiation ability  [58, 68, 69] . In spite of their name, 
CSCs do not necessarily arise from normal tissue stem 
cells. They can also originate from more differentiated 
progenitor cells which underwent transformation  [70, 
71] . Alternatively, CSCs may arise through an EMT pro-
cess from transformed epithelial cells and achieve migra-
tory and tumor-spreading properties  [5, 72, 73] . In an ex-
perimental system, the induction of EMT in immortal-
ized, nontumorigenic human mammary epithelial cells 
resulted in acquisition of the CD44 + /CD24 –/low  pheno-
type, characteristic of breast cancer stem cells  [4] . CD44 
is a cell-adhesion molecule involved in binding cells to 
hyaluronic acid, whereas CD24 is a negative regulator of 
the chemokine receptor CXCR4, a molecule involved in 
breast cancer metastasis  [74] . It must be kept in mind that 
the heterogeneity of tumorigenic ability existing between 
different types of breast tumors must not necessarily be 
related only to the CD44 + /CD24 –/low  phenotype. It has 
been shown that the CD44 + /CD24 –/low  subpopulation of 
cells is present in most (but not all) basal-like tumors, es-
pecially in BRCA1 hereditary breast cancer. However, 
this subpopulation of cells is present in only a few HER2-
positive tumors  [75] . Ever since Al-Hajj et al.  [57]  defined 
the CSC subpopulation in breast cancer on the basis of 
CD44 and CD24 expression, their status has been exam-
ined in other tumors. Cells with the CD44 + /CD24 –/low  
phenotype were postulated to be stem-like cells respon-
sible for tumor initiation in non-small cell lung cancer 
and prostate cancer  [76, 87] . Interestingly, in pancreatic 
cancer, a subpopulation with a high coexpression of 
CD24 (CD44 + /CD24 + /ESA + ) was identified as being en-
dowed with tumorigenic activity in NOD/SCID mice 
 [78] . Similarly, in gastric cancer CD44 + /CD24 +  cells were 
recognized as cells with stemness features  [79] . CD44 and 
CD24 are also listed among colon CSC markers, although 
combined with CD166 and CD133, respectively  [80, 81] . 
Expression of CD24, CD44 and CD133 is correlated with 
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the invasiveness and differentiation of colorectal carci-
noma, but not with patient outcome  [82] . The list of stem-
ness markers is still growing, both cancer type-specific 
and universal. Mostly, markers have been identified 
through the exploration of cell surface proteins and since 
many of them are important for cellular adherence 
(CD24, CD133, CD166) they are probably involved in 
forming new tumors  [83] . However, focusing on markers 
involved only in the cell attachment can be a source of 
false conclusions since the enhanced ability of these cells 
to grow in new environments does not necessarily need 
to be a hallmark of stemness itself. It is also important to 
identify functional markers for CSCs, to which, for ex-
ample, ALDH1 belongs (present in breast, colon, pancre-
atic carcinoma  [84–86] ) or  Wnt   [61, 90] . ALDH1 is a 
marker for both normal and malignant stem cells and it 
is thought to have a role in the early differentiation of 
stem cells  [84, 88] . Within breast cancer cells with a 
CD44 + CD24 –/low  phenotype, a subpopulation of ALDH1-
positive cells endowed with a prominent tumor-initiating 
ability was found. Moreover, expression of ALDH1 alone 
in breast cancer samples correlated with poor clinical 
outcome  [88] . Other proteins proposed as stemness mark-
ers in breast cancer include the following: CD133  [89] , 
OCT-4  [90]  and NANOG-1  [91] . OCT-4 is a transcription 
factor taking part in the self-renewal of undifferentiated 
embryonic stem cells and its expression can reprogram 
unipotent stem cells to pluripotent cells  [92] . High ex-
pression of OCT-4 was observed in CD44 + /CD24 –  cancer 
cells isolated from primary breast cancer tumors  [93]  and 
in ALDH1-expressing cells of the 4T1 murine breast can-
cer cell line  [94] . OCT-4 can also act together with an-
other transcription factor involved in the pluripotent 
state of stem cells – NANOG-1  [95, 96]  – and their expres-
sion is elevated in mammospheres, which are formed by 
cells enriched for metastatic potential  [94, 97] . CD133 
function is not yet well understood, however, it might be 
involved in cell differentiation and epithelial-mesenchy-
mal interaction  [98] . CD133-positive breast cancer cells 
frequently express other stem cell markers –  NOTCH1 , 
 ALDH1 ,  SOX1, CD44  – and are highly tumorigenic in an-
imal models  [99]  . 

  Features of CSCs such as motility, invasion, survival 
in circulation, dormancy and ability to interact with mi-
cromilieu at a secondary tumor location imply that these 
cells might be responsible for the development of overt 
metastasis  [56, 100–102] . Such a mechanism, explaining 
metastatic spread through the existence of mammary 
stem and progenitor cells already at the beginning of tu-
mor transformation, is supported by experiments em-

ploying gene expression profiling. Liu et al.  [103]  devel-
oped a gene signature which consists of 186 genes differ-
entially expressed in normal breast epithelium and in 
breast CD44 + /CD24 –/low  cells. This signature was signif-
icantly correlated with metastasis-free and overall sur-
vival. Another study employing microarray analysis of 
CD44 + CD24 –/low  cells versus CD44 – /CD24 +  cells isolat-
ed from breast cancer tumors confirmed that these two 
subpopulations of cells are genetically distinct from each 
other, and the gene expression profile of the breast cancer 
stem cell fraction (CD44 + /CD24 –/low ) resembles a profile 
characteristic of stem cells  [104] . Analogically to normal 
breast stem cells, this subpopulation of breast cancer 
cells was able to form mammospheres in vitro  [4, 105] .

  CTCs and Metastasis 

 CTCs are cells which manage to separate from the tu-
mor mass and enter the bloodstream. They are defined as 
tumor cells originating from either primary sites or me-
tastases and circulating freely in the peripheral blood. 
They have been detected in a majority of epithelial can-
cers, including those from breast, prostate, ovary, lung 
and colon, but are extremely rare in healthy people  [106] . 
CTCs may constitute seeds for the subsequent growth of 
metastasis in distant organs according to Paget’s ‘seed 
and soil hypothesis’  [107] . However, CTCs may also be 
capable of self-seeding back to the original organs, which 
infers increased aggressiveness of the existing tumor 
 [108],  or they can settle in other organs such as bone mar-
row, a point at which they are termed disseminated tumor 
cells (DTCs)  [109]  and can serve as a reservoir of tumor 
cells responsible for future recurrence  [110] . 

  CTCs represent a heterogenous population of tumor 
cells with the potential of forming various metastases. 
From experimental models it is estimated that about 1 
million cells per 1 g of tumor tissue can spread daily into 
the bloodstream  [111] . In mouse models where cells were 
injected intraportally, only 1 CTC in 40 was able to estab-
lish metastatic foci, and 1 in 100 micrometastases could 
form a tumor at day 13 after injection  [112] . This metas-
tasis inefficiency is mainly the effect of anoikis and ex-
plains the low survival rates of CTCs in vessels after leav-
ing the tumor mass  [112–114] . Moreover, only some soli-
tary cells which extravasate in distant organs are able to 
proliferate, and finally, not every established microme-
tastasis can overcome the step of new vessel formation 
and develop into macrometastasis  [112] .
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  The first document describing CTCs in the peripheral 
blood of cancer patients dates from 1989  [115]  and since 
that moment the interest in the clinical significance of 
CTCs has been increasing. CTCs are called ‘liquid biopsy’ 
since they are a potential alternative to invasive biopsies 
as a source of tumor material for the detection, character-
ization and monitoring of nonhematologic cancers. The 
clinical applications of CTCs are strictly dependent on the 
development of reliable techniques for CTCs detection. 

  Despite huge efforts and numerous studies, CTCs de-
tection is still technically challenging, mainly due to their 
paucity and biological heterogeneity  [116] . Currently 
used approaches for CTCs isolation and detection are 
based on the properties which distinguish CTCs from 
abundant blood cells. This includes the presence of spe-
cific proteins (CellSearch, CTC-chip, RARE, MagSweep-
er) and gene transcripts (AdnaTest), size (ISET technol-
ogy), density (Oncoquick), electric charge, secretion of 
specific proteins (EPISPOT) or invasive properties  [117] . 
There are many issues concerning reliable CTC detection 
which are still a matter of debate. They concern the ac-
curacy, sensitivity and specificity of the techniques, the 
optimal cutoff for CTC enumeration, optimal markers 
for CTC identification or ability to determine the cell 
condition (viable or apoptotic, dividing or nondividing). 
Unfortunately, there is a great interlaboratory variability 
regarding the techniques used, and no tumor marker 
identified so far is specific enough to detect rare CTCs. 
The most widely used approach relies on the epithelial 
molecule – EpCAM – the expression of which is present 
in 60–100% of breast cancers  [118, 119] . However, the 
study of Sieuwerts et al.  [120]  showed that EpCAM-based 
CTC detection does not recognize breast cancer cells be-
longing to a normal-like subtype, which is characterized 
by aggressive behavior. This deficiency of assay sensitiv-
ity can be overcome by using the additional surface mark-
er CD146, which is frequently expressed on cells lacking 
EpCAM  [121] . Additional drawbacks of the epithelial 
marker-based isolation and detection methods were re-
vealed when it was discovered that the EMT, which oc-
curs in CTCs, causes downregulation of epithelial mark-
ers and renders CTCs undetectable. Therefore, experi-
ments aimed at the analysis of the EMT process itself, or 
the EMT-induced stemness of CTCs, should not rely sole-
ly on a single marker but on a few markers  [122, 123] , and 
possibly also include mesenchymal markers induced by 
EMT  [116] . There is an urgent need for optimization and 
clinical validation of the developed techniques of CTC 
detection and isolation. Progress in this matter will large-
ly depend on better characterization of CTC phenotypes 

and deeper understanding of the mechanisms involved in 
their generation and survival.

  Currently, it is evidently clear that cells detach from 
tumors well before a metastasis is clinically visible  [124, 
125] . Therefore, CTCs enable tracking of one of the first 
steps in a metastatic cascade and provide great potential 
for prognosis and monitoring of treatment response in 
many cancers. The presensce of CTCs was demonstrated 
to be an independent adverse prognostic factor in meta-
static  [126–128]  and early breast cancer  [129] , metastatic 
colorectal cancer  [130] , castration-resistant prostate can-
cer  [131, 132]  or resectable non-small cell lung cancer 
 [133, 134] . 

  Since CTCs can be obtained repeatedly in a noninva-
sive manner, they may be used to choose the optimal 
therapy, predicting the response to it and monitoring its 
efficacy. The number of CTCs in patients with breast, 
lung, prostate and other cancers was decreased after the 
initiation of effective chemotherapy, hormonal therapy 
or targeted therapy  [125, 127, 128, 135, 136] . Treatment-
induced changes in CTCs numbers measured at different 
time points were also proven to be a reliable surrogate 
marker of response to treatment  [137–139] . 

  Not only enumeration of CTCs, but also determina-
tion of their molecular profiles provides information 
which is important from a clinical point of view. It was 
found that CTCs may be genetically different from the 
primary tumor they derive from, and that the differences 
might influence patient response to therapies, which are 
currently prescribed on the basis of the primary tumor 
characteristics. For example, HER2-positive CTCs were 
reported in breast cancer patients who had HER2-nega-
tive primary tumors, and vice versa, HER2-negative 
CTCs were observed in patients with HER2-positive tu-
mors  [140, 141] . Analogical dissimilarities between CTCs 
and primary tumors have been demonstrated for epider-
mal growth factor receptor (EGFR)  [142] , estrogen recep-
tor alpha, and progesterone receptor  [143] . These differ-
ences might be explained by the strong selection of a
specific cell population during dissemination or by the 
methodological limitations of a biomarker (such as 
HER2) determination  [116] . In addition, CTCs may also 
get to the blood circulation from secondary sites  [108] , 
and may be similar in genotype and phenotype to the 
cells from metastatic sites instead of the primary origin. 

  Moreover, the characterization of CTCs may allow ex-
amination of the molecular evolution of tumor cells dur-
ing the course of treatment, which may be particularly 
important in monitoring of the development drug resis-
tance  [136] . Recently, real-time CTCs genotyping during 
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treatment with EGFR-targeted therapies against non-
small cell lung cancer  [136]  and breast cancer  [144]  has 
been reported. Thus, it seems that treatment decisions 
may be based on the molecular profile of CTCs. The on-
going analyses of the results of clinical trials, such as the 
Southwest Oncology Group trial SWOG S0500 (www.
clinicaltrials.gov, identifier: NCT00382018) on metastat-
ic breast cancer patients, the German Breast Group
GEPARQuattro trial (www.germanbreastgroup.de/en/
trials/neoadjuvant/geparquattro.html) and the SUCCESS 
trial on nonmetastatic breast cancer patients (www.
success-studie.de), should provide more comprehensive 
knowledge of the CTC-based tailoring of treatment. 

  Recent studies have revealed that CTCs may be linked 
to both cancer stem cells and the EMT process  [13, 145] , 
which adds additional value to the clinical utility of 
CTCs. The expression of EMT-related proteins, such as 
vimentin or TWIST1, has been found in CTCs obtained 
from breast cancer patients  [146, 147] . CTCs with a hybrid 
(epithelial/mesenchymal) phenotype have also been 
found in patients with metastatic non-small cell lung 
cancer  [148]  and prostate cancer  [9] . Interestingly, mes-
enchymal markers on CTCs occur more frequently in 
metastatic breast cancer than in breast cancer at an early 
stage  [146] , and allowed more accurate prediction of 
worse prognosis than the expression of epithelial markers 
alone  [147] . In patients with primary breast cancer the 
overexpression of EMT-inducing transcription factors 
(TWIST1, SNAIL1, SLUG, ZEB1, and FOXC2) was more 
frequently detected in those who received neoadjuvant 
therapies than in those who did not, which suggests that 
neoadajuvant therapy is unable to eliminate CTCs under-
going EMT  [149] . Moreover, the overexpression of EMT 
markers on CTCs was often accompanied by the presence 
of the stem cell markers ALDH1 in breast cancer at all 
stages of the disease  [6–8]  and CD133 in castration-resis-
tant prostate cancer  [9] . The existence of a subpopulation 
of CTCs with a stem cell-like CD44 + CD24 –  phenotype 
and ALDH1 expression has also been described in meta-
static breast cancer  [150] . In addition, CTCs from patients 
with primary or metastatic breast cancer have been 
shown to express receptors and activated signaling ki-
nases of the EGFR/HER2/PI3K/Akt pathway  [142] , which 
is one of the major pathways involved in the regulation of 
mammary stem/progenitor cells, promoting the prolif-
eration and inhibition of apoptosis  [151] . It has recently 
been demonstrated that, similarly to mammary stem 
cells  [152] , CTCs found in primary breast cancer patients 
are mostly triple-negative – estrogen receptor-negative, 
progesterone receptor-negative and HER2-negative  [153] . 

  The data concerning the occurrence of EMT in DTCs 
are scarce and not conclusive. Cell lines derived from 
DTCs of breast cancer patients show low expression of 
CK8, CK18 and CK19 cytokeratins, and increased levels 
of vimentin, which resembles characteristic features of 
EMT  [154, 155] . Moreover, elevated TWIST1 expression 
was found in EpCAM-enriched bone marrow samples 
 [156] , which suggests the occurrence of partial EMT. Ad-
ditionally, an increased tumor-initiating ability of DTCs, 
recognized as the stem cell phenotype (CD44 + CD24 – ), 
was detected in both the DTC-derived cell lines  [156]  and 
the CK19-positive DTCs isolated from the bone marrow 
of early-stage breast cancer patients  [157] .

  To sum up, the expression of stemness markers and 
EMT markers in CTCs might provide them with strong 
metastasis-initiating properties, and render them resis-
tant to conventional anticancer therapies. The described 
findings also demonstrate that current CTC detection 
methods may lead to underestimation of the significance 
of the most important, EMT-positive, subpopulation of 
CTCs involved in cancer dissemination. This could also 
explain why CTCs are currently being undetected in 
about 30% of metastatic breast cancer patients  [141] . 
Thus, the fact that CTCs show stemness and EMT fea-
tures is of fundamental importance for their reliable de-
tection, which in turn can be used as a tool for tailoring 
effective cancer treatment.

  Seed and Soil Hypothesis 

 Metastasis is a complex process requiring interplay be-
tween the seeded tumor cells and the microenvironment 
at the secondary site. Although the ability of tumor cells 
to migrate, either intrinsically or conferred through 
EMT, is of key importance for tumor progression, it is not 
sufficient to set up secondary tumor lesions in different 
anatomical compartments. A growing body of evidence 
indicates that the interaction between tumor cells and the 
local microenvironment at the secondary site leads to the 
development of premetastatic niches – compartment(s) of 
the body with a microenvironment which allows the ma-
lignant cells to develop metastases. Common sites of me-
tastases in breast cancer include organs such as bone, the 
liver, lung and brain  [158–160] . More than a hundred 
years ago, Stephen Paget noticed that the pattern of me-
tastases produced by different neoplasms is not random. 
In his ‘seed and soil’ hypothesis, Paget claimed that cer-
tain tumor cells (‘seed’) have an affinity for the microen-
vironment of specific organs (‘soil’), and only when the 
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‘seed’ and the ‘soil’ are compatible can metastases occur 
 [107] . He claimed that the ‘soil’ properties may be of great 
value in understanding cancer metastasis, revealing that 
certain populations of cells (‘seed’) may be expected to 
play a central role in the formation of secondary tumors. 
Those cells may be predestinated to establish metastases 
in specific organs already at the initial stages of tumor 
development  [161, 162] . Moreover, it is now known that 
tumor cells can produce factors that lead to the establish-
ment of premetastatic niches  [163, 164] . However, the 
mechanism allowing tumor cells to influence the behav-
ior of microenvironment cells is poorly understood. Mül-
ler et al.  [165]  explain metastasis formation through an 
analogy with chemokines attracting immune cells to in-
flammation sites. A distinct pattern of chemokine recep-
tor expression on tumor cells and their ligands in com-
mon sites of metastatic spread is critical for tumor pro-
gression  [166] . For example, the receptor-ligand complex 
CXCR4-CXCL12 is well described in the context of breast 
cancer progression. CXCR4 is expressed on the surface of 
breast cancer cells  [165] , whereas CXCL12 is released by 
stromal cells in the target organs of breast cancer metas-
tasis (bone, lung, brain, liver, lymph node) which indi-
cates its role in targeted metastasis  [165] . A high level of 
CXCR4 on tumor cells is correlated with poor prognosis 
in breast cancer patients because of its association with 
lymph node metastasis  [167] . Moreover, it was observed 
that HER2, which positively correlates with metastasis 
and poor survival, enhanced the expression and function 
of CXCR4 by inhibiting its degradation  [168] . The CXCR4 
receptor is also considered a marker for stem cells and the 
subpopulation of cells expressing CXCR4 increases dra-
matically in secondary tumors  [169] . Hence, CXCR4 ex-
pressed on stem cells allows them to follow the gradient 
of CXCL12 and ‘seed’ tumors in remote organs  [170] . A 
recent work by Labelle et al.  [171]  shed a new light on the 
subject of the metastatic process. They demonstrated that 
the interactions of tumor cells with their microenviron-
ment at the primary tumor site may also be sufficient to 
direct the tumor cells into the specific site of future me-
tastasis. Platelet-derived signals (TGF- � ) and direct cell-
cell contact were shown to be sufficient for effective me-
tastasis of cancer cells.

  Summary 

 Metastasis formation is a highly inefficient process as 
it requires gaining several unique features simultaneous-
ly. The tumor cells not only need to acquire increased 

motility and invasiveness, but also have to evade the ad-
verse conditions they encounter. At first, the tumor cells 
that reached the circulatory system, CTCs, are in danger 
of death by anoikis  [172, 173] , destruction by immune 
system cells either in the bloodstream or after extravasa-
tion  [174] . Moreover, not all the disseminated cells are 
able to initiate and sustain proliferation that can be later 
seen as a macrometastasis  [112] . According to the cancer 
stem cell hypothesis, only a fraction of continuously pro-
liferating cells can do so. The exact mechanisms that al-
low cancer cells to overcome those limitations and form 
a metastatic lesion are not fully understood. However, it 
seems that one way is through cancerous EMT which al-
lows cells to: (1) become invasive and motile, (2) become 
resistant to anoikis, thus enabling separate cells to exist 
in the form of CTCs, and (3) gain stem cell properties 
needed to initiate metastatic growth at a distant site. All 
of the mentioned features can be found in both CTCs and 
CSCs, which suggests that stem cell-like cells can be gen-
erated by EMT occurring in a primary tumor  [174] . Al-
though the discussion on the definition of cancer stem 
cells is still ongoing, as it is not clear what a cancer stem 
cell really is, there are markers that define the population 
of cells showing increased tumorigenicity. As discussed 
before, CD44 + /CD24 –/low  populations from breast cancer 
tumors can be referred to as possessing stem cell proper-
ties. Despite reproducible results indicating the presence 
of CD44 on stem cells, the protein seems to be one of 
many stemness markers. 

  Cancer stem cells may arise in different ways and dur-
ing cancer development they can undergo genetic and 
epigenetic changes. This may result in the formation of 
different populations of CSCs which vary in their malig-
nancy  [175, 176] . To test this hypothesis many more mark-
ers need to be studied, which will allow more precise 
characterization of the tumor-initiating ability of CSCs.

  Interestingly, it has been shown that in breast cancer 
cells the expression of markers of a tumorigenic subpop-
ulation can change, thus changing the tumorigenic cell 
into a nontumorigenic cell and vice versa. Nevertheless, 
the proportion of CSCs to non-stem cancer cells, which 
is typical for the cell line, is maintained  [177] . In the case 
of CTCs, the presence of other markers (like ALDH1, 
OCT-4, NANOG, CD133, CXCR4, TWIST1, or vimentin) 
can allow further definition of a group with a higher de-
gree of stemness or aggressiveness. 

  Understanding the process of metastasis formation re-
quires broadening the knowledge of the individual steps 
of metastatic cascade. Even though the mechanism of cell 
migration – cohort migration, observed in tumors – 
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seems to be reminiscent of a morphological program, sin-
gle cells can also be detected in the circulation  [30, 52] . 
These solitary cells can be generated as a result of loss of 
E-cadherin, which is responsible for the shift into the in-
dividual (single cell) migration strategy  [51] . It is yet to be 
determined to what extent the EMT process is necessary 
for metastasis formation, as non-EMT cells have been 
shown to cooperate with EMT cells in this process  [55] . 
Moreover, a number of studies [reviewed in  30 ] have 
demonstrated that a full EMT is not necessary for suc-
cessful invasion and metastasis. 

  The amount of data generated on cancer progression, 
including in vitro studies, animal models and cancer pa-

tients, has shed new light on the complex process of me-
tastasis formation. Better characterization of CTCs and 
CSCs seems necessary in order to develop new, more ef-
fective strategies of cancer eradication. 
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