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� �����		

Epithelial Mesenchymal Transition (EMT) plays key roles during lung development and 

many lung diseases such as Chronic Obstructive Pulmonary Disease (COPD), lung cancer 

and pulmonary fibrosis. Here, integrating morphological observations with underlying 

molecular mechanisms, we highlight the functional role of EMT in lung development and 

injury repair, and discuss how it can contribute to pathogenesis of chronic lung disease. We 

discuss the evidence of manifestation of EMT and its potential driving role in COPD, 

idiopathic pulmonary fibrosis (IPF), bronchiolitis obliterans syndrome (BOS), and lung 

cancer, while noting that all cells need not display a full EMT in any of these contexts, i.e. 

often cells co7express epithelial and mesenchymal markers but do not fully convert to 

extracellular matrix7producing fibroblasts. Finally, we discuss recent therapeutic attempts to 

restrict EMT in chronic lung disease. 

 

	

!���	��	����������	��	
������
��	����������	�����"		

EMT is a biological process in which epithelial cells lose their traits of cell7cell adhesion and 

apico7basal polarity, and gain some mesenchymal traits of migration, invasion, and producing 

extracellular matrix (ECM) components (Kalluri and Weinberg, 2009). These traits often lead 

to degradation of underlying basement membrane; thus, the fragmented anatomical changes 

in basement membrane has been observed to be associated with EMT and now considered as 

a key hallmark of the process (Kalluri and Weinberg, 2009). An often noted hallmark of 

EMT is the loss of epithelial cell7cell adhesion molecule CDH1 (E7cadherin), and/or a 

concomitant gain of mesenchymal markers such as CDH2 (N7cadherin), VIM (Vimentin), 

and/or αSMA (alpha7smooth muscle actin) (Nieto et al., 2016).  

 

EMT was initially described in 1982 as an ‘epithelial mesenchymal transformation’. But, 

with a better molecular and functional characterization, the term ‘transformation’ has been  

replaced with ‘transition’ to reflect its reversible nature as observed during embryogenesis 

(type I EMT), wound healing and fibrosis (type II EMT) and cancer metastasis (type III 

EMT) (Jolly et al., 2015). Recent investigations in all these contexts have underscored that 

EMT and its reverse process MET (Mesenchymal to Epithelial Transition) are not binary, i.e. 

‘all7or7none’ processes (Nieto et al., 2016). Instead, cells can display a spectrum of hybrid 
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states ranging from being fully epithelial to fully mesenchymal (Jolly et al., 2015), and a 

hybrid epithelial/ mesenchymal (E/M) state may be stable phenotype that cells can display, 

unless forced out from that state due to external factors (Figure 1). Such hybrid state(s) may 

enable amalgamated epithelial and mesenchymal traits such as adhesion and migration 

leading to collective cell migration. Cells leading this form of collective migration tend to 

display mesenchymal features transiently, while still exhibiting cell7cell contact with follower 

cells, as noted during wound healing, carcinoma dissemination, branching morphogenesis etc. 

(Revenu and Gilmour, 2009; Nieto et al., 2016). Given the pathological and physiological 

significance of hybrid E/M phenotype, its functional implications in all these contexts 

necessitate a detailed investigation.  

 

EMT is known to drive key steps in multiple stages of embryonic development, 7 

gastrulation, neural crest migration, and heart development. Genetic studies have identified 

many signaling pathways that can induce EMT 7 such as transforming growth factor7beta 

(TGF7β), fibroblast growth factor (FGF), epidermal growth factor (EGF), and nuclear factor7

kB (NF7kB), and Wnt (Nieto et al., 2016). These pathways can activate one or more EMT7

driving transcription factors (EMT7TFs) such as SNAIL1, SNAIL2 (SLUG), TWIST1, ZEB1, 

ZEB2 (SIP1), PRRX1 and Goosecoid – each of which can directly or indirectly repress the 

cell7cell adhesion molecule E7cadherin (CDH1) – the hallmark of an epithelial phenotype (De 

Craene and Berx, 2013). On the other hand, signaling pathways such as retinoic acid (RA) 

(Biddle et al., 2016) that oppose TGF7β during lung development (Chen et al., 2007) can 

inhibit EMT.  

 

The well7established role of EMT in embryonic development and wound healing has driven 

investigations into its functional implications in carcinoma initiation and dissemination, and 

tissue fibrosis (Kalluri and Weinberg, 2009). Besides, EMT can contribute significantly to 

chemoresistance (Fischer et al., 2015; Zheng et al., 2015). We recently reported that hybrid 

E/M states, or equivalently, a partial EMT could be potentially more aggressive than a full 

EMT, and  (Jolly et al., 2015). EMT and MET are considered to be reversible, however, 

reversibility may depend on accompanying epigenetic modifications (Somarelli et al., 2016). 

 

In this review, we discuss the role of EMT in both lung development and lung diseases, 

highlight that EMT need not be a binary process in multiple contexts, and comment on EMT 

as a potential therapeutic target.  

Page 3 of 31

John Wiley & Sons, Inc.

Developmental Dynamics
D

ev
el

o
p

m
en

ta
l 

D
y
n

a
m

ic
s



 

 

�

#���	���������	���	�����
�	

The respiratory system supplies oxygen to cells all over the human body and disposes them 

of carbon7dioxide, a respiratory waste product. Functionally a single unit, it connects the 

external environment with the internal extensively laid7out thin alveolar surface where gas 

exchange occurs. Thus, it coordinates breathing, transport of gases, gas exchange in alveoli, 

and also internal cellular respiration. This system is comprised of conducting airways that 

begins from the nose and ends at lung alveoli, following the path from nose to pharynx and 

larynx to  trachea, bronchi, and bronchioles, and finally the alveoli (Scanlon and Sanders, 

2007). 

The respiratory system constitutes upper respiratory tract (nasal air passages, nasal cavities, 

pharynx, larynx, and  trachea ) and lower respiratory tracts (trachea, branched lung bronchial 

tree (large airways), highly branched bronchioles (<2 mm in diameter, i.e. small airways), 

and finally the clusters of alveoli) (Kerr, 2010).  The mucosa of the upper respiratory tract 

consists of an outer ciliated epithelium lining, dense connective tissue lamina, a large smooth 

muscle bundle area, a continuous basement membrane, supporting cartilage structure, and 

intertwined goblet cells (mucus secretory cells). The cartilage, goblet cells, smooth muscles 

and the connective tissue gradually diminish as the respiratory system approach the tiny 

bronchioles, and are completely absent in the alveolus (Figure 2). Ciliated epithelial cells 

persist in the bronchioles, while goblet cells are replaced by non7ciliated dome shaped clara 

cells, present intermittently along the bronchiole epithelial lining. The clara cells carry out the 

important function of secreting surfactant proteins (Kerr, 2010). 

The connective tissue across the airway wall mucosal lamina have many resident interstitial 

cells, mainly comprised of fibroblasts. Fibroblasts produces extracellular matrix protein 

(ECM) such as fibers, collagen fibrils and varieties of proteoglycans, which are vital to 

maintain lung elasticity and their mechanical function (Burgess et al., 2016). Thus, there lies 

a distinct variability in structural and cellular composition across the lung that may have 

implications in various lung pathologies. For instance, thickening of reticular basement 

membrane – one of the two structural layers of the bronchial epithelial basement membrane – 

is usually observed in multiple pathological conditions such as chronic obstructive pulmonary 
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disease (COPD) and asthma (Figure 2), as discussed in detail later in this review. Also, in 

COPD, the basement membrane becomes fragmented as a result of EMT.  

���	��	����	�������
���		

The first instance of EMT during embryonic development occurs during gastrulation when 

initially the mesenchyme is formed. Thereafter, multiple rounds of EMT and MET are often 

invoked in formation of various organs (Nieto et al., 2016). Particularly, during branching 

morphogenesis – a hallmark of organ development  such as lung, kidney and mammary 

gland, where a tubular epithelial structure splits repeatedly to generate a ductal tree, and the 

tip cells located at the front – also referred to as terminal end buds (TEBs) – display a partial 

EMT phenotype (Revenu and Gilmour, 2009). This process requires bidirectional 

communication between the epithelium and mesenchyme, mediated by multiple signaling 

pathways such as TGF7β /bone morphogenetic protein (BMP), Sonic hedhehog (Shh), 

retinoic acid (RA), FGF or Wnt (Bartis et al., 2014). During branching morphogenesis, TEB 

cells maintain cell7cell adhesion with their neighbours, and transiently acquire mesenchymal 

traits such as altered cell polarity and enhanced migration in response to extracellular signals. 

Consequently, these TEB cells state migrate collectively forming finger7like projections and 

are prevented from undergoing a full EMT by the action of ‘molecular brakes on EMT’ such 

as the transcription factors GRHL2 and its downstream target OVOL2 (Watanabe et al., 

2014; Aue et al., 2015; Walentin et al., 2015).  

 

GRHL2 is a transcription factor that exclusively mediates the development of both the 

airways and alveolar epithelium at all stages, but is absent in lung mesenchyme (Varma et al., 

2012). GRHL27knockout phenotype is lethal at the beginning of lung development, 

underlining its key role in lung epithelium morphogenesis (Rifat et al., 2010). In lung 

epithelium, GRHL2 activates the transcription of a key lung transcription factor ������, and 

that of E7cadherin (�	
�) (Varma et al., 2012). Nkx271 can also reciprocally activate 

GRHL2, and both these transcription factors are among the top 25 activators of E7cadherin 

(Shimamura et al., 2011). Thus, this GRHL2/NKX271 feedback loop forms a central axis that 

contributes to preserving an epithelial phenotype (Varma et al., 2012). Besides, GRHL2 and 

its transcriptional target OVOL2 can regulate epithelium lumen formation via activating 

����, ��	�� (claudin 4) and ��	�� (claudin 3) (Senga et al., 2012). Similar roles for 

GRHL2 have been mentioned in renal epithelium development (Aue ������, 2015). Such feed7

forward loop formed by GRHL2, OVOL2, and their targets typically stabilize the target gene 
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expression, thus emphasizing the role of GRHL2 in inducing and maintaining an epithelial 

identity (Mangan and Alon, 2003). Furthermore, GRHL2 is required for establishing human 

mucociliary airway epithelium (Gao et al., 2013). GRHL2 point mutations lead to many 

developmental defects such as reduction of lung size, and hindered lung inflation at birth, 

potentially due to reduced and/or mislocalized E7cadherin (Pyrgaki et al., 2011). In a nutshell, 

GRHL2 regulates a large repertoire of genes driving epithelial morphogenesis, intercellular 

adhesion, and cell motility in lung development, and may play similar roles in development 

of many other epithelial tissues (Werth et al., 2010). 

 

Besides its central role in orchestrating lung epithelium development, GRHL2 also regulates 

the expression of hTERT (human Telomerase Reverse Transcriptase) (Chen et al., 2010). 

Given that genetic mutations in hTERT may predispose for idiopathic pulmonary fibrosis 

(IPF) (Tsakiri et al., 2007; Alder et al., 2008), GRHL2 may be dysregulated in IPF 

progression. Consistent with its role in lung development, GRHL2 can (a) inhibit EMT7

inducing transcription factor ZEB1 directly, and is inhibited during TGFβ7mediated EMT 

(Cieply et al., 2012; Cieply et al., 2013; Xiang et al., 2017), (b) induce epithelial gene 

expression signature during cancer progression (Xiang et al., 2012), and (c) maintain 

collective migration in non7small7cell lung cancer (NSCLC) H1975 cells that display a stable 

hybrid E/M phenotype (Jolly et al., 2016). 

 

���	��	����	��$���	������	

Lung homeostasis after injury depends on efficient recovery of an intact lung epithelium. In 

the airways, acute injury response on a timescale of 12724 hours is cell spreading and 

migration, while proliferation of progenitor cells picks up later and may continue for weeks 

(Crosby and Waters, 2010). TGF7β, a potent EMT inducer, has been suggested to stimulate 

airway epithelial repair by inducing cell migration (Yu et al., 2008). These migratory cells 

that spread over large surfaces to provide an intact lining transiently gain mesenchymal 

features atleast partially (Vaughan and Chapman, 2013). Consistently, in a recent study of 

repair after napthalene7induced airway epithelium injury, SNAIL1 expression was induced, 

leading to a transient increase in Vimentin and αSΜΑ (alpha7smooth muscle actin) that 

contributes to regeneration of intact epithelial barriers (Volckaert et al., 2011). 

 

���	��	�����	����	�������	

Page 6 of 31

John Wiley & Sons, Inc.

Developmental Dynamics
D

ev
el

o
p

m
en

ta
l 

D
y
n

a
m

ic
s



EMT is well described in lung embryogenesis (Lee et al., 2006), metastatic malignant disease 

(Bjornland et al., 1999), but it has only recently been recognised in the chronic human lung 

and airway diseases (Ward et al., 2005a; Willis et al., 2006; Hodge et al., 2009; Sohal et al., 

2010a; Sohal et al., 2011; Sohal and Walters, 2013b; Sohal and Walters, 2013a; Ojo et al., 

2014; Jonsdottir et al., 2015; Mahmood et al., 2015; Mahmood et al., 2017a). In the sections 

below, we will review the current literature on EMT in chronic lung disease.  

 

���������	
��������������������
��
����������

COPD is a diseased condition of inflamed lung and airways that leads to shortness of breath; 

this condition is progressive and irreversible, and mainly caused by smoking, (Sohal et al., 

2013b). however, other factors such as biomass fuel consumption has also been reported as 

major cause of COPD in countries like China and India (Kurmi et al., 2012). The prime 

pathology in COPD pertains to small airway fibrosis that leads to disrupted airway function 

(Sohal et al., 2013a). Small airway destruction occurs quite early in the disease and also often 

correlates with impaired lung tissue involved in gaseous exchange (a process called 

emphysema).  The other closely associated pathology with COPD is the development of 

airway epithelial cancer, predominantly in large airways (i.e. squamous cell carcinomas), 

although adenocarcinomas are also seen (Sohal, 2015). One potential mechanism which 

might be central to these pathologies is the process of EMT (Sohal et al., 2014a; Sohal, 

2015).  

 

EMT has been recently reported to be an active process in the airways of smokers and COPD 

patients. Several other groups have since confirmed these findings (Gohy et al., 2015; Milara 

et al., 2013). The reticular basement membrane (Rbm) in both small and large airways is 

often highly fragmented with many clefts (fissures or vertical indentations in the tissue) 

evident, which itself is a structural hallmark of active EMT (Sohal et al., 2010a; Soltani et al., 

2010; Sohal et al., 2011; Sohal and Walters, 2013a; Sohal and Walters, 2013b). Airway 

epithelium and cells within these clefts stained positive for markers of EMT and were found 

to be related to decrease in lung function and the smoking history. Co7expression of an 

epithelial marker cytokeratin and EMT marker S100A4 during COPD (Sohal et al., 2011) 

was indicative of cells undergoing partial EMT. A recent study furthered this notion and 

showed an increase in EMT7TFs and mesenchymal markers in human bronchial epithelial 

cells (HBEs) derived from COPD patients. Cultured media from  human COPD lung 

fibroblasts induced a partial EMT in HBEs, suggesting that interactions between resident 
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fibroblasts and epithelial cells may be critical in driving EMT in COPD (Nishioka et al., 

2015). 

 

To further contextualize EMT in smokers and COPD patients, we stained endobronchial 

biopsies and resected small airway tissue for vessel markers. We found large airway Rbm to 

be hyper7vascular whereas small airway to be hypo7vascular (Sohal and Walters, 2013d; 

Sohal and Walters, 2013c; Sohal et al., 2014a; Mahmood et al., 2015). Further, vessels were 

also observed penetrating into the epithelium in large airways. Active EMT associated with 

increased angiogenesis has been regarded as a hallmark of early growth of primary epithelial 

cancers (Kalluri and Weinberg, 2009). These observations fit well with the underlying 

pathology of COPD, i.e. cancer formation, especially squamous cell carcinoma, which is 

common in large airways (Sohal et al., 2014a; Sohal, 2015; Eapen et al., 2016).  

 

As mentioned earlier, we have also found active EMT in adenocarcinomas in smokers but the 

orgin of adenocarcinomas is debatable. Since small airway Rbm is devoid of active 

angeiogensis it is quite possible that adenocarcimomas might be orginating from type7II 

pneumocyte, but this warrants further work. We also recently reported transcriptional control 

of EMT in COPD, describing active Smad signalling in the airway. However, no significant 

correlation was observed for TGF7β1 expression and pSmad or EMT markers such as 

S100A4, suggesting that factors other than or in addition to TGF7β1 are also involved in 

modulating EMT during COPD (Mahmood et al., 2017a).   

 

Lung cancer and COPD share a common etiology i.e. tobacco smoking. Further, presence of 

COPD can increase the risk of developing of lung cancer by 475 folds, even when the 

smoking history is controlled for (Parimon et al., 2007a), implying that mechanisms specific 

to COPD may be involved in development of lung cancer (Petty, 2005; Kiri et al., 2009; Kiri, 

2010). Pathologically, COPD and lung cancer share many biological mechanisms, including 

chronic inflammation, ECM disruption, cell proliferation, abnormal wound repair and 

angiogenesis, and EMT (Yang et al., 2011; Sohal, 2017). EMT can play crucial roles in the 

pathogenesis of epithelial cancers (Tarin et al., 2005; Thompson et al., 2005); several key 

pathways driving EMT during embryogenesis get aberrantly activated in cancer. Very 

recently, we reported active EMT in the leading edge of invasive non7small cell lung cancer 

(NSCLC), both squamous cell and adenocarcinoma cell subtypes; the extent of EMT was 

strongly correlated with the aggressive behaviour of the tumor (Mahmood et al., 2017b). 
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Furthermore, EMT activity within the tumours closely correlated with EMT activity in non7

tumour–affected airway wall epithelium, suggesting that the level of EMT activity in the 

airway wall, even in large airways that are amenable to bronchoscopic biopsy, can potentially 

be used as a marker for smokers most likely to develop both COPD and lung cancer. These 

observations are clearly suggestive of EMT as a potential link between COPD and lung 

cancer (Sohal, 2015; Mahmood et al., 2017b; Sohal, 2017).   

The other prime pathology associated with COPD is small airway fibrosis and obliteration, 

and this could potentially be related to active Type7II EMT, as it does not involve 

angiogenesis usually (Mahmood et al., 2015). It is of interest and relevance in this context 

that over 90% of human cancer arises in epithelia, and the involvement of EMT in all of these 

may be central, specially in Type7III EMT that typically associates with angiogenesis 

(Garber, 2008; Barnes and Adcock, 2011; de Torres et al., 2011). COPD7related cancer may 

well be just another example of this core principle of unstable epithelium in the context of 

tissue inflammation and/or chronic stimulation (Nowrin et al., 2014; Eapen et al., 2016). Due 

to increased vascularity of the Rbm, it is also possible that the process of endothelial to 

mesenchymal transition (EndMT) – an analogous process to EMT – is also active in smokers 

and COPD (Sohal, 2016). EndMT has been reported to be crucial during fibrosis (Zeisberg et 

al., 2008), and similar to EMT (Jia et al., 2015; Jolly et al., 2015; Grigore et al., 2016; Nieto 

et al., 2016), EndMT need not be a binary process (Welch7Reardon et al., 2015), therefore 

fibrosis progression might involve multiple stages of EMT and EndMT.  

�

�������������

In cancer, induction of a partial or full EMT has been associated with enhanced tumor7

initiation potential (Mani et al., 2008; Morel et al., 2008; Jolly et al., 2014), resistance against 

multiple therapies (Singh and Settleman, 2010), immune7evasion (Tripathi et al., 2016), 

altered metabolism (Dong et al., 2013), and genomic instability (Comaills et al., 2016), thus 

suggesting implications of EMT in multiple hallmarks of cancer. EMT leading to single7cell 

dissemination has been long considered to be a key driver of the metastasis7invasion cascade. 

However, recent studies have questioned the indispensability of EMT in metastasis, but 

strengthened its proposed role of EMT in chemoresistance (Fischer et al., 2015; Zheng et al., 

2015). 

 

Particularly in NSCLC, EMT phenotype correlates with drug resistance, mutations of EGFR 

(epidermal growth factor receptor), and formation of Cancer Stem Cells (CSCs) characterized 
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by an enriched stem cell signature and a heightened tumorigenic potential (Bartis et al., 

2014). EMT can drive resistance to multi7targeted anti7folate (MTA) chemotherapy (Liang et 

al., 2015) as well as to EGFR inhibition (Thomson et al., 2005); NSCLC lines in a 

mesenchymal state were insensitive to growth arrest effect of EGFR inhibition both �������� 

and in xenografts (Thomson et al., 2005). Further, the gefitinib7resistant subline of A549 – 

A549/GR – exhibited a spindle7shape morphology and higher levels of mesenchymal marker 

vimentin with concomitant decrease in CDH1, suggesting an EMT (Rho et al., 2009). Also, 

activation of TGF7β signaling in NSCLC cells can induce EMT and render cells insensitive to 

erlonitib; and erlotinib7resistant ‘mesenchymal7like’ cells are already present in cell lines and 

tumors prior to erlotinib treatment, indicating intratumoral heterogeneity (Yao et al., 2010). 

Finally, EMT can drive evasion against T7cell mediated immunotherapy; mesenchymal 

NSCLC cells display low levels of immunoproteasome and inhibit the production of relevant 

antigens for CD8+ T7cell presentation (Tripathi et al., 2016). Not surprisingly, 

immunoproteasome deficiency is associated with poor prognosis in NSCLC (Tripathi et al., 

2016). Thus, EMT lies at the nexus of resistance against multiple therapies. 

 

Also, induction of EMT via Dickkopf71 (DKK71) in NSCLC – a proposed biomarker for lung 

cancer (Yamabuki et al., 2007) – can drive vasculogenic mimicry (Yao et al., 2016) that may 

accelerate tumor aggressiveness by enabling direct access of blood vessels to cancer cells. 

Consistently, miR7206 that can inhibit HGF7induced EMT in NSCLC cells and reduce the 

migration and tube formation of human endothelial vascular cells (HUVECs) compromised 

metastasis and angiogenesis of lung cancer ������� (Chen et al., 2016). Furthermore, TGF7β 

induced EMT in A549 cells can shift the metabolism towards more oxidative phosphorylation 

that can generate sufficient ATP needed for metastasis (Jiang et al., 2015). Therefore, EMT 

activation can modulate aggressiveness of NSCLC cells via multiple routes. 

 

Proteomic and morphological analysis of a panel of NSCLC cell lines reveal that similar to 

developmental EMT, EMT in lung cancer need not be an ‘all7or7none’ response; instead, 

many cells lines can display a hybrid E/M status (Schliekelman et al., 2015). These hybrid 

cell lines can contain both individual cells co7expressing epithelial and mesenchymal markers 

(H1975), and sub7populations of epithelial and mesenchymal cells (H2291) (Jolly et al., 

2016). Similarly, co7existence of subpopulations displaying epithelial, mesenchymal and 

hybrid E/M phenotypes was observed in multiple cell lines (i.e. isogenic populations) – 

A549, LT473, and H460 – in different ratios (Andriani et al., 2016), thereby indicating a role 
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of non7genetic heterogeneity in EMT decision7making (Lu et al., 2013; Mooney et al., 2016). 

Furthermore, in a cohort of 60 NSCLC patients, those displaying a balanced co7expression of 

CDH1 and SLUG (an EMT7TF) showed a significantly reduced survival, but neither of these 

markers alone was predictive of outcome (Andriani et al., 2016). These results strongly 

suggest the enhanced aggressive nature of a hybrid E/M phenotype as compared to the cells 

locked in a fully mesenchymal state. Consistently, the expression of GRHL2 – a ‘phenotypic 

stability factor’ that can maintain cells in a hybrid E/M phenotype – correlates with poor 

survival, independent of the breast cancer subtype (Mooney et al., 2017).  

 

A detailed comparison of multiple traits of hybrid E/M cells vs. fully mesenchymal cells still 

remains to be accomplished, but initial evidence in breast cancer indicates that cells co7

expressing an epithelial marker (CD24) and a mesenchymal marker (CD44), instead of those 

expressing a mesenchymal marker only, may manifest an adaptive drug7tolerant phenotype 

(Goldman et al., 2015; Boareto et al., 2016). These cells can possess enhanced tumor7

initiation potential both ��� ����� and ��� �����as compared to canonically regarded CSCs in 

breast cancer – CD44+/CD247� (Goldman et al., 2015; Grosse7Wilde et al., 2015). Thus, 

further analysis of EMT in lung cancer both in the context of metastasis and drug resistance 

needs a careful and more nuanced classification regarding EMT status.  

 

�
������

Airway remodeling and thickening of basement membrane via collagen deposition has been 

consistently reported in asthma (Bergeron et al., 2010), but the exact source of this extra 

collagen deposition remains unclear. EMT has been proposed to be the source of fibroblasts 

that can deposit collagen and thus contribute to airway remodeling in asthma (Hackett, 2012).  

However, other major criteria for recognising EMT ��� ���� – Rbm fragmentation, 

accompanied by cell migration and expression of mesenchymal markers (Zeisberg and 

Neilson, 2009) – are typically not observed in asthma (Sohal et al., 2010b; Soltani et al., 

2012). In asthma, Rbm is thickened, but shows no sign of fragmentation, hypercellularity or 

hypervascularity% Hence, unlike in COPD, lung airways in adult asthma give no suggestion of 

an active EMT. However, published histopathology micrographs from asthmatic children are  

suggestive of  active EMT (Jenkins et al., 2003), and these neglected observations  deserve 

follow up.  
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Biochemical changes typically accompanying EMT can be induced in epithelial cell cultures, 

but such changes can be ‘metastable’, i.e. present only for a short period of time. Those 

changes do not necessarily reflect EMT rather a process called “reversible scatter”, where 

cells assume a spindle7like shape following cytokine stimulation, but the transcriptional 

changes are not sustainable; thus, upon withdrawal of the inducer, the epithelium returns to 

its original state (Kalluri and Neilson, 2003). Such response has been observed for alveolar 

epithelial cells (AECs) in culture upon TGF7β stimulation, but the asthmatic epithelium ���

���� showed no empirical sign of EMT (Hackett et al., 2009). We believe that the current 

suggestions about EMT in the context of asthma are controversial and mainly based on 

molecular and cell culture techniques findings (Bartis et al., 2014), and the asthmatic tissue 

does not show the core structural hallmarks of EMT (Sohal et al., 2010b). 

 

�����������������������	��
�
��������

IPF is a devastating disease in which lung tissue becomes scarred (the condition of fibrosis) 

over time, thus obstructing the flow of oxygen from lungs into the bloodstream for 

distribution to other organs, and difficulty in breathing. With very limited treatment options 

and poorly understood underlying causes, IPF has a median survival of 3 years after 

diagnosis (Rudd et al., 2007). It is histopathologically characterized by heterogeneously 

distributed areas with progressive scarring in basal and lateral parts of the lung (King et al., 

2011). A hallmark for these scarred areas is the presence of distinct structures called 

fibroblast foci (FF) – collections of fibroblasts/myofibroblasts that produce ECM actively 

(King et al., 2011). Present at the boundary of normal and fibrotic tissue, these FFs denote the 

leading edge for the propagation of the tissue remodelling or scarring (Bagnato and Harari, 

2015). 

 

The source of myofibroblasts in FFs has been debated over the years, and they have been 

proposed to from resident tissue fibroblasts, bone marrow7derived progenitor cells (so7called 

fibrocytes), or from AECs that have undergone EMT (King et al., 2011). The proposition that 

AEC may be a source for fibroblasts/myofibroblasts in FFs has been supported by studies 

showing that AECs that circumscribe FFs express both mesenchymal and epithelial markers 

(Willis et al., 2005; Yamaguchi et al., 2016). Consistent with this notion, AECs isolated by 

laser microdissection from IPF patients expressed mesenchymal markers, such as collagen71 

(Marmai et al., 2011). Furthermore, ��������lineage tracing experiments in mouse models of 

pulmonary fibrosis have demonstrated that cells expressing mesenchymal markers had 
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epithelial origin, including AECs (Kim et al., 2006; Kim et al., 2009; Rock et al., 2011; 

DeMaio et al., 2012).  

 

However, the presence of these cells co7expressing epithelial and mesenchymal markers 

denotes an incomplete transition, and not necessarily a complete transition of an epithelial 

cell into a ECM7producing myofibroblast. Similar to these reports of incomplete transition, 

cells in alveolar epithelium of IPF lungs co7expressed epithelial marker GRHL2 with EMT 

markers VIM or ZEB1 (Varma et al., 2014), indicating a hybrid E/M phenotype. Similarly, 

bronchiolar basal metaplastic cells in IPF patients lose E7cadherin expression only partially 

(Morbini et al., 2011). Therefore, in most IPF studies, an EMT process was not observed to 

be fully completed. These observations concur with partial EMT observed in fibrosis of 

tubular epithelial cells of the mice. These cells do not completely convert to interstitial 

fibroblasts, but stay within the tubule and contribute to interstitial fibrosis, inflammation, and 

recruitment of immune cells (Lovisa et al., 2016). 

 

Several potential triggers can activate EMT in IPF. In 1980s, epithelial injury alone was 

shown to be able to trigger fibrogenic processes (Adamson et al., 1988). Many subsequent 

studies that have identified markers for epithelial injury and remodelling in IPF (Kuwano et 

al., 1996; Uhal et al., 1998) have commonly observed increased number of apoptotic/necrotic 

cells in alveolar epithelium, and stress markers – such as those for ER stress and for unfolded 

protein response (UPR) – in the surviving cells (Tanjore et al., 2012). AECs from a subset of 

individuals with familial pulmonary fibrosis (a scenario in which IPF occurs in many 

members of the same family) that are predisposed to develop the disease have been reported 

to be positive for ER stress and UPR markers (Mulugeta et al., 2005). These individuals also 

carry mutation in proteins that are exclusively expressed by alveolar type cells, such as 

surfactant protein C, surfactant protein A2 (Nogee et al., 2001; Wang et al., 2009), suggesting 

that ER stress caused by the mutations might contribute to disease development, by 

potentially inducing EMT in AECs, as shown ��� ����� (Tanjore et al., 2011; Zhong et al., 

2011).  

 

Besides ER stress, TGF7β1 is an important player in progression of fibrosis in many organs 

including the lung. TGF7β1 can induce both EMT with concomitant increase in α7SMA 

expression  and collagen71 production in isolated AECs (Kalluri and Neilson, 2003), and has 
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the ability to differentiate fibroblasts into α7SMA7positive myofibroblasts that produce ECM 

in an exaggerated manner (Hu et al., 2003). Thus, overexpression of TGF7β1 may induce a 

prominent fibrotic response. Consistently, TGF7β1 blocking antibodies attenuate the fibrotic 

response in bleomycin7treated mice (Sime et al., 1997; Bonniaud et al., 2005). Increased 

staining of TGF7β1 has been reported in the alveolar epithelium in patients with IPF. Alveolar 

epithelium may both produced and activate TGF7β1 due to increased levels of integrin αvβ6 

(Munger et al., 1999) that can release and activate sequestered TGF7β1 in the ECM (Annes et 

al., 2003). Increased active TGF7β1 in the alveolar epithelium may stimulate repair responses 

such as EMT or differentiation of sub7epithelial fibroblasts. 

 

In summary, evidence for active EMT in IPF suggests it may play a role in the pathogenesis. 

To further understand the impact of EMT in IPF, it remains to be elucidated if EMT7derived 

cells can undergo a full transition into ECM7producing fibroblasts/ myofibroblasts �������.   	

 �����������
��	�������
�
��������� �!��

Lung transplantation is an effective therapeutic option for carefully selected patients with 

advanced lung disease. Long7term survival after transplantation is, however, limited by 

chronic lung allograft dysfunction (CLAD) that prevents transplanted lung from functioning 

properly. CLAD most commonly manifests itself as Bronchiolotis Obliterans Syndrome 

(BOS) 7 defined by a sustained reduction in the forced expiratory volume in first second of 

expiration (FEV1). BOS may be observed in 50% of recipients within five years post7

transplant, and is associated with morbidity and mortality (Royer et al., 2016). Early 

identification of BOS, thus, represents a key goal for all transplant centres and new therapies 

are required.   

 

The pathophysiology of BOS involves inflammation, fibroblast proliferation and ECM 

deposition in the small airways. We have previously shown that BOS is accompanied by 

airway neutrophilia (an increase in neutrophilic lymphocytes) in both airway biopsies and via  

bronchoalveolar lavage (BAL) – a medical technique by which cells and fluid from the 

broncho7alveolar airspace  are isolated for disease diagnosis (Snell et al., 1997; Ward et al., 

1997; Zheng et al., 1997; Ward et al., 1998; Zheng et al., 2000; Whitford et al., 2001). 

Airway neutrophilia has been consistently reported in BOS by other transplant groups, 

despite the variation in patient management and sampling from the different centres (Royer et 

al., 2016). Neutrophils are a key producer of MMP79, a type IV collagenase associated with 
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cell invasion and basement membrane damage. Thus, EMT may be exhibited in human 

airways in BOS (Ward et al., 2005b), as recently substantiated by an observed increase in 

three EMT markers 7 αSMA, S100A4, and EDA7FN (a splice variant of fibronectin) 7 by flow 

cytometry of brochial epithelial cells in BOS patients (Hodge et al., 2009). Intriguingly, these 

epithelial cells did not lose entirely the expression of epithelial cell antigen, thereby 

indicating a possibility of a hybrid E/M phenotype in BOS (Hodge et al., 2009). These 

observations are reminiscent of the first description of EMT in the human airway in a study 

of lung allograft patients that suggested EMT as an important process in BOS and 

pathophysiology of other common airway diseases (Ward et al., 2005a) , where 15% of cells 

in the airway epithelium in these biopsy samples co7stained for S100A4. 

 

Signalling pathways usually associated with EMT have also been observed to be active in 

BOS. We have shown that epithelial released alarmins (molecules released from damaged 

tissue to induce an immune response), TGF7β and SMAD signalling and infection can drive 

EMT in the lung allograft airway (Parker et al., 2008; Borthwick et al., 2009; Borthwick et 

al., 2010; Borthwick et al., 2011; Gardner et al., 2012; Suwara et al., 2014). Furthermore, we 

observed that members of miRNA200 family – a crucial brake on EMT (Park et al., 2008; 

Schliekelman et al., 2011; Lu et al., 2014; Huang et al., 2015; Sundararajan et al., 2015; 

Somarelli et al., 2016) – are  involved in a TGF7β driven EMT in BEAS27B cells (normal 

primary epithelial cells) and primary airway cultures established from allograft brushings 

(Ladak et al., 2014; Ladak et al., 2016a; Ladak et al., 2016b). Consistent observations have 

been made by other groups. For instance, miR721, a potential activator of EMT and CSC7like 

state (Han et al., 2012), was found to be overexpressed specifically in fibroblasts and in 

activated epithelial cells in all human BOS cases and in rat grafts, whereas it was absent in 

normal human and rat lungs (Di Carlo et al., 2016). Similarly, (a) miR7323a73p that can 

attenuate TGF7β signaling by directly targeting SMAD2, was downregulated in epithelium of 

lungs with BOS after lung transplant (Ge et al., 2016); and (b) miR7144, a potential amplifier 

of TGF7β signaling, was overexpressed in lungs with BOS (Xu et al., 2015). With clinical 

trials showing promising results for miRNA leading to successful treatment of hepatitis, the 

abovementioned findings indicate that a greater understanding of the molecular 

pathophysiology of EMT may have therapeutic potential for both CLAD and BOS, and 

potentially other airway and lung diseases too.   

	

���	��	�	����������	������	
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The current pharmaceuticals available to treat COPD does not really alter disease 

progression, at least when given late in the disease’s natural history as per the current 

convention. However, emerging evidence points that some of these drugs may affect the 

underlying process of EMT and therefore they may be more beneficial if given earlier. For 

example, Roflumilast™ (an inhibitor of phosphodiesterase74 (PDE4) that elevates secondary 

signalling molecule cyclic adenosine monophosphate (cAMP)) has been shown to block 

cigarette smoke7induced EMT in bronchial epithelial cells (Milara et al., 2014). Inhaled 

corticosteroids (ICS) have been reported to protect COPD patients against lung cancer 

(Parimon et al., 2007) and we have reported that inhaling the corticosteroid fluticasone 

propionate suppresses EMT in COPD patients on six months treatment (Sohal et al., 2014b). 

This first study reporting anti7EMT effects of ICS in COPD demonstrated marked reduction 

in EGFR, Rbm fragmentation, S100A4 and MMP79 expression in the active arm compared to 

placebo (Sohal et al., 2014b), but Rbm hyper7vascularity remained unchanged (Soltani et al., 

2016). It is quite possible that a longer treatment by ICS may also affect Rbm hyper7

vascularity. This anti7EMT effect of ICS may contribute, at least in part, to the effect that 

patients on ICS are associated with a significant (50%) reduction in the risk of lung cancer 

(Parimon et al., 2007b; Kiri et al., 2009; Kiri, 2010). 

 

Epigenetic inhibition of EMT has also been suggested, for instance, by sorafenib in A549 

lung adenocarcinoma cell line via an increase in histone acetyltransferase (HAT) expression 

and consequent decrease in histone deacetylase (HDAC) (Steiling et al., 2013). Similar 

effects of sorafenib are observed in liver (Chen et al., 2011) and urothelial carcinoma ������� 

(Steinestel et al., 2013)� by targeting STAT3 and urokinase plasminogen activator (uPA). 

Targeted silencing of uPAR (uPA7receptor) using small hairpin RNA (shRNA) inhibited 

EMT in cultured human small airway epithelial cells (Wang et al., 2015). Camara ��� �� 

suggested another potential therapeutic target for EMT 7 TGF7β1/Smad2/3 (Camara and Jarai, 

2010), which we found to be active and associated with EMT in smokers and COPD patients 

(Mahmood et al., 2017a). Yang ������ further demonstrated that crosstalk between muscarinic 

acetylcholine receptor (mAChR) and TGF7β1 can induce EMT in lung epithelial cells (A549) 

suggesting a role of non7neuronal cholinergic system in EMT and a potential novel 

therapeutic target for EMT (Yang et al., 2014). 

 

Similar to COPD, two drugs have recently been introduced in IPF which significantly 

decrease the rate of decline in lung function due to fibrosis (Brusselle and Bracke, 2014; 
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Richeldi et al., 2014). Nintedanib is a tyrosine7kinase inhibitor and pirfenidone mainly 

inhibits TGF7β1 agent. These drugs affect the key pathways implicated in EMT 7 Smad and 

β7catenin (Hostettler et al., 2014; Wollin et al., 2015; Cholankeril et al., 2016; Knuppel et al., 

2017). Nintedanib also inhibits angiogenesis, thus it may have implications for Type III EMT 

(pro7fibrosis and pro7cancer), while Pirfenidone is likely to be more specific to Type II EMT 

due to its anti7fibrotic action. 

 

Another putative anti7EMT agent is azithromycin (Banerjee et al., 2012), but part of its anti7

inflammatory properties can also be attributed to its action on macrophages (Banjanac et al., 

2012). Effects of azithromycin on epithelial cells seems to include modulation of 

transcription factors, ER stress, lysosomal accumulation, and excessive autophagy (Parnham 

et al., 2014). Similarly, other commonly used drugs for cardiovascular risk management that 

are not usually considered as respiratory treatment, but may yield long term fortuitous 

beneficial effects in COPD through mechanisms discussed earlier are statins (Yang et al., 

2013) and angiotensin7converting enzyme (ACE)7inhibitors (Qian et al., 2013). Indeed, 

atorvastatin can partially inhibit TGF7β17driven EMT in small cell lung cancer cells (Fan et 

al., 2016), and ACE has also been implicated in EMT7driven metastasis in lung cancer (Qian 

et al., 2013).  

 

����������		

We reviewed the implications of EMT in lung development, homeostasis, and many chronic 

lung diseases. From ��� ������ and� ��� ����� studies in development, and pathological 

investigations of human samples, two key notions seem to emerge: a) functional role of EMT 

in driving the pathophysiology underlying COPD, BOS and IPF, and b) recognition of EMT 

not being a binary process with only two end7points. Very few studies have reported anti7

EMT effects of drugs. Data are especially sparse from ������� human clinical investigations; 

most of the conclusions are drawn from ��� ����� studies. Thus, therapeutic approaches to 

block this profound epithelial plasticity are still in their infancy. Given the fact that disease7

associated EMT can be of two types – fibrosis and cancer, each with some unique phenotypic 

and signalling manifestations –  it becomes more complicated to tease out what 

proteins/pathways are contributing independently to fibrosis and cancer. Further ��� ���� 

studies and pathological investigations of human samples may have important translational 

insights regarding the progression of both these diseases, suggesting novel treatment 

strategies which are urgently required. 
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(�����	 )�	 ���	 ��	 ����	 �������
���	 ���	 �������%	 EMT and MET can be multi7step 

processes with potential intermediate or hybrid state(s) that can be stable phenotypes, i.e. may 

reflect the end of a transition unless otherwise perturbed (highlighted by STOP signs at a 

hybrid E/M phenotype). Key references implicating a partial or full EMT in lung 

development and other chronic lung diseases such as fibrosis, COPD, and lung cancer. 

(�����	 *�	+�������	 �������������	��	 ���	 ������	 �
����
���	 ���	 �����	 �� ,���������	��	

��
��	 ����% Schematic adapted by permission from Macmillan Publishers Ltd. Nat Rev 

Cancer (Sun et al., ‘Lung cancer in never smokers: a different disease’), copyright (2007) 

shows the central compartment (top left), and structure of large bronchus (top right) and 

respiratory bronchioles (bottom left). Histological representation of thin7walled small airways 

(SA) (A and C) from normal non7smoker, thickened in COPD (B and D) (bottom right). A, B 

at 50X, and C, D. are at 200X magnification.  
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