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Abstract

PURPOSE—To characterize the in vivo epithelial thickness profile in a population of normal eyes.

METHODS—An epithelial thickness profile was measured by Artemis 1 (Ultralink LLC) very high-

frequency (VHF) digital ultrasound scanning across the central 10-mm diameter of the cornea of 110

eyes of 56 patients who presented for refractive surgery assessment. The average, standard deviation,

minimum, maximum, and range of epithelial thickness were calculated for each point in the 10×10-

mm Cartesian matrix and plotted. Differences between the epithelial thickness at the corneal vertex

and peripheral locations at the 3-mm radius were calculated. The location of the thinnest epithelium

was found for each eye and averaged. Correlations of corneal vertex epithelial thickness with age,

spherical equivalent refraction, and average keratometry were calculated.

RESULTS—The mean epithelial thickness at the corneal vertex was 53.4±4.6 μm, with no

statistically significant difference between right and left eyes, and no significant differences in age,

spherical equivalent refraction, or keratometry. The average epithelial thickness map showed that

the corneal epithelium was thicker inferiorly than superiorly (5.9 μm at the 3-mm radius, P<.001)

and thicker nasally than temporally (1.3 μm at the 3-mm radius, P< 001). The location of the thinnest

epithelium was displaced on average 0.33 mm temporally and 0.90 mm superiorly with reference to

the corneal vertex.

CONCLUSIONS—Three-dimensional thickness mapping of the corneal epithelium demonstrated

that the epithelial thickness is not evenly distributed across the cornea; the epithelium was

significantly thicker inferiorly than superiorly and significantly thicker nasally than temporally with

a larger inferosuperior difference than nasotemporal difference.

The human corneal epithelium has five to seven cell layers and an accepted central thickness

of approximately 50 to 52 μm.1 Bowman’s layer, a dense collagenous layer approximately 8

to 10 μm thickness lies between the epithelium and stroma. The anterior margin of Bowman’s
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layer presents a sharp interface with the lamina densa of the basement membrane of the

overlying epithelium.2 The corneal epithelium is a highly active, self-renewing layer; a

complete turnover occurs in aproximately 5 to 7 days.3 Despite this high turnover rate, the

epithelium must maintain the same thickness profile over time to maintain corneal power and,

hence, ocular refraction. The epithelial thickness profile can affect the total corneal power

because it determines the shape of the air-tear film interface, but also because of the difference

in refractive index between epithelium and stroma (1.401 versus 1.377).4 It has been calculated

that the epithelium accounts for an average of 1.03 diopters of corneal power at the central 2-

mm diameter zone.5 We previously demonstrated how the epithelial thickness profile varies

enough to be a significant factor in the accuracy of corneal refractive surgery.6 Knowledge of

the epithelial thickness profile and how it may change after corneal surgery could positively

contribute to the accuracy of refractive corneal and intraocular lens surgery.

Different methods have been used to measure corneal epithelial thickness: optical coherence

tomography (OCT),7,8 confocal microscopy,9,10 optical pachymetry,11 and through focusing

confocal microscopy.12 All of these studies measured average central epithelial thickness.

Some studies also provided epithelial thickness measurements in the peripheral cornea, but the

number of points measured in the periphery was limited.11-13

High-frequency ultrasound provides sufficient resolution to resolve the cornea and its

constituent layers, including the epithelium. The sharp anatomic discontinuity and density

change between the epithelium and Bowman’s layer results in a high-amplitude reflection at

the epithelial–Bowman’s layer junction. Although the cornea has evolved to minimize abrupt

optical refractive changes between layers to prevent internal reflections, this is not the case for

ultrasound. We previously described the use of very high-frequency (VHF) digital ultrasound

to measure corneal epithelium,6 with the first confirmed measurement of the epithelium of the

cornea in vivo using a prototype rectilinear VHF digital ultrasound scanning system in

1993.14 We demonstrated that acoustic interfaces detected were indeed located spatially at the

epithelial surface and the interface between epithelial cells and the surface of Bowman’s layer.
15 We also reported the first high-precision VHF three-dimensional epithelial thickness

mapping system16; VHF digital ultrasound is, to date, the only published method measuring

the corneal epithelial thickness profile continuously over a large area. Very high-frequency

digital ultrasound technology has gradually improved both in precision and area of acquisition.

The repeatability of epithelial thickness measurements in 10 consecutive examinations of 1

eye using the Artemis 1 VHF digital ultrasound arc-scanner (Ultralink LLC, St Petersburg,

Fla) has been shown to be <1.30 μm within an 8-mm diameter, with a central repeatability of

0.50 μm.6 The Artemis 1 is a commercial prototype, and further development is currently being

undertaken by ArcScan Inc, Evergreen, Colo.

The purpose of this study was to characterize the thickness profile of the corneal epithelium

in a population of normal eyes with no ocular pathology other than refractive error.

PATIENTS AND METHODS

This retrospective, non-comparative case series is from a population of patients seeking

refractive surgery at the London Vision Clinic between January 2003 and December 2005. A

complete ocular examination was performed to screen for corneal abnormalities and determine

patient candidacy for refractive surgery. Patients with ocular pathologies such as keratoconus,

corneal scars, corneal dystrophies, and previous ocular surgery were excluded. The

preoperative assessment of all patients included manifest refraction, logMAR best spectacle-

corrected visual acuity (CSV-1000; Vector Vision Inc, Greenville, Ohio), and cyclopegic

refraction using one drop of Tropicamide 1% (Alcon Laboratories UK Ltd, Herts, England).

Topography and keratometry were assessed using the Orbscan II (Bausch & Lomb, Salt Lake
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City, Utah). Dynamic pupillometry was carried out using the Procyon P2000 pupillometer

(Procyon Instruments, London, England). Wavefront assessment was performed using the

WASCA aberrometer (Carl Zeiss Meditec AG, Jena, Germany). Single-point, hand-held

corneal thickness was measured with the Corneo-Gage Plus (50 MHz) ultrasound pachymeter

(Sonogage, Cleveland, Ohio) by determining the minimum of 10 consecutive central corneal

measurements. Three-dimensional epithelial thickness for the central 8- to 10-mm corneal

diameter was obtained using the Artemis 1 technology.

Patients included in this study met the following inclusion criteria: patients whose corneal

thickness might not be sufficient to perform LASIK based on manual corneal thickness

measurements (ie, the residual stromal thickness predicted was <260 μm), high myopic

patients, patients with a higher chance of requiring retreatment regardless of corneal thickness

(high myopia or high cylinder), and patients selected at random from our refractive surgical

candidates to broaden the distribution of refraction.

A written informed consent was obtained from all patients. The study adhered to the tenets of

the Declaration of Helsinki and was performed in accordance with an Institutional Review

Board approved protocol.

Artemis VHF Digital Ultrasound Arc-scanning

Artemis VHF digital ultrasound was carried out using an ultrasonic standoff medium, and so

provides the advantages of immersion scanning (eg, the tear-film is not incorporated in the

corneal or epithelial thickness measurement, and has no physical contact of the transducer with

the cornea). When seated, the patient positioned his/her chin and forehead into a headrest while

placing the eye in a soft rimmed eye cup. Warm sterile normal saline (33°C) was filled into

the darkened scanning chamber. The patient fixates on a narrowly focused aiming beam, which

is coaxial with the infrared camera, the corneal vertex, and the center of rotation of the scanning

system. The technician adjusts the center of rotation of the system until it is coaxial with the

corneal vertex. In this manner, the position of each scan plane is maintained about a single

point on the cornea and corneal mapping is, therefore, centered on the corneal vertex. A

speculum is not required as patients find it comfortable to open the eye without blinking in the

warm saline bath, and voluntary elevation of the upper lid produces exposure of the central 10

mm of cornea in virtually all patients. Performing a three-dimensional scan set with the Artemis

1 takes approximately 2 to 3 minutes per eye.

A broadband 50 MHz VHF ultrasound transducer (bandwidth approximately 10 to 60 MHz)

is swept by a reverse arc high-precision mechanism to acquire B-scans as arcs that follow the

surface contour of anterior or posterior segment structures of interest. The Artemis possesses

a unique scan–arc adjustment mechanism to enable maximum perpendicularity (and signal-to-

noise ratio) to be obtained for scanning any of the different curvatures within the globe (ie,

cornea, iris plane, and retina). The resolution of the system is 21 μm whereas the precision of

measurement varies according to position within the cornea, with 0.5 μm at the center and <1.3

μm peripherally.6 This means that if the epithelium being measured is at least 21 μm thick, the

front and back surfaces will produce distinct echo peaks on the I-scan, allowing that layer to

be measured with ~1 μm precision.

Three-dimensional Epithelial Pachymetric Topography

For three-dimensional scan sets, the scan sequence consisted of four meridional B-scans at 45°

intervals. Each scan sweep took about 0.25 seconds and consisted of 128 scan lines or pulse

echo vectors. During the acquisition of each scan, data were converted (in near real-time) to a

B-scan displayed on the computer screen. Each B-scan reveals information regarding

centration, ranging, and eye movements that may have occurred during the scan sweep. The
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examiner either accepted or chose to repeat a particular meridional sweep before proceeding

to the next. Ultrasound data were digitized and stored. The digitized ultrasound data were then

transformed using patented Cornell University (Ithaca, NY) digital signal processing

technology, which includes autocorrelation of back surface curvatures to center and align the

meridional scans. A speed of sound constant of 1640 m/s was used.

Thickness profiles were calculated based on data from four meridional B-scans, comprised of

eight semi-meridians. A linear polar/radial interpolation function was used to interpolate

among scan meridians to produce a Cartesian matrix over a 10-mm diameter in 0.1-mm steps.

This is our standard scanning protocol as it provides sufficiently high density of information

in the central cornea with lower density of information in the periphery where it is less needed.

Thickness maps of the epithelium were produced for each eye and plotted for the 10-mm

diameter measured using DeltaGraph v5.0 (SPSS Inc, Richmond, Calif). Surface fill plots X,

Y, and Z were employed to display epithelial thickness data on a color scale. A Cartesian 1-

mm grid was superimposed with the origin centered at the corneal vertex, which closely

approximates the visual axis.

Statistical Analysis

Descriptive statistics (average, minimum, maximum, standard deviation, and range) were

calculated for each point in the 10×10-mm Cartesian matrix across eyes. These statistics were

calculated for right eyes only, for left eyes only, and for all eyes using vertical mirrored

symmetry superimposition; epithelial thickness values for left eyes were reflected in the

vertical axis and superimposed onto the right eye values so that nasal/temporal characteristics

could be combined. The resultant matrices were plotted as surface fill plots X, Y, and Z to

represent the point-by-point average, standard deviation, minimum, maximum, and range of

the population. Qualitative assessment of individual variability within corneas and across the

population was performed. The Kolmogorov-Smirnov test was performed to test for non-

normality of the epithelial thickness data at the corneal vertex. Student paired t test was

performed to compare the epithelial thickness at the corneal vertex between right and left eyes.

Quantitative assessment of the difference in epithelial thickness between the center and

periphery of the cornea was performed (using mirrored left eyes) by isolating the descriptive

statistics at the corneal vertex and points at a 3-mm radius inferiorly, superiorly, nasally, and

temporally. The differences between the 3-mm superior, 3-mm inferior, and corneal vertex

epithelial thickness, and between 3-mm nasal, 3-mm temporal, and corneal vertex epithelial

thickness were calculated. Student paired t tests were carried out to identify any statistically

significant differences in epithelial thickness between the 3-mm superior, 3-mm inferior, and

corneal vertex epithelial thickness, and between 3-mm nasal, 3 mm-temporal, and corneal

vertex epithelial thickness. The point location of the thinnest epithelium was determined for

each eye (using mirrored left eyes), and the average and standard deviation of the X and Y

coordinates of the thinnest point were calculated. The standard deviation of epithelial thickness

within the central 3-, 5-, and 7-mm diameter zones was determined for each eye to represent

the within-eye variation of epithelial thickness. The average and standard deviation of the

within-eye variation were found, and the distribution of the within-eye variation was plotted.

Linear regression analysis was performed to seek possible correlations between corneal vertex

epithelial thickness and age, spherical equivalent refraction, and average keratometry.

Descriptive statistics, comparative statistics, and linear regression were performed in Microsoft

Excel 2003 (Microsoft Corp, Redmond, Wash). The Kolmogorov-Smirnov test for non-

normality was performed using the online form at

http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html. A P value of <.05 was

considered to be statistically significant.
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RESULTS

During the study period, 110 eyes of 56 patients (55 right and 55 left eyes) were recruited. The

other eyes of 2 patients were excluded from the study due to corneal scar. Study population

included 74% Caucasian, 17% East Indian, 5% East Asian, and 4% Black patients. Population

mean age was 38.4±12.0 years (median: 36.1 years, range: 20.5 to 73.5 years). Mean refraction

was −6.04±3.58 diopters (D) sphere (range: −12.00 to +6.00 D), and −1.51±1.30 D (range:

0.00 to −5.00 D) cylinder. Although the refraction was biased toward high myopes, the

population was considered normal as all patients were free of ocular pathology other than

refractive error.

Mean (±standard deviation) corneal vertex epithelial thickness for all eyes was 53.4±4.6 μm

(95% confidence interval: 52.5% to 54.3%) (Table 1). Corneal vertex epithelial thickness

ranged from 43.5 to 63.6 μm for all eyes. Mean (±standard deviation) corneal vertex epithelial

thickness was 53.1±4.5 μm for right eyes and 53.7±4.7 μm for left eyes. No statistically

significant difference between the mean corneal vertex epithelial thickness of right and left

eyes was noted (P=.497). No statistical evidence of non-normality of the corneal vertex

epithelial thickness within the population using the Kolmogorov-Smirnov test for non-

normality was noted (P=.48).

The average epithelial thickness maps (Fig 1, column 1) showed the corneal epithelium was

thinner in the superior cornea and thicker in the inferior cornea. The mean (±standard deviation)

of the epithelial thickness at locations 3-mm superior, inferior, nasal, and temporal of the

corneal vertex are summarized in Figure 2. The 3-mm superior epithelium was 5.7-μm thinner

than the 3-mm inferior epithelium (P<.001). The corneal vertex epithelium was 5.4-μm thinner

than the 3-mm inferior epithelial thickness (P<.001). Although the corneal vertex epithelium

was 0.3-μm thicker than the 3-mm superior epithelium, this difference was not statistically

significant (P=.570).

The mirrored average epithelial thickness map (see Fig 1, row 1, column 1) showed that the

corneal epithelium was thicker nasally than temporally. The 3-mm temporal epithelium was

1.2-μm thinner than the 3-mm nasal epithelium (P<.001). The corneal vertex epithelium was

1.6-μm thinner than the 3-mm nasal epithelial thickness (P<.001). Although the corneal vertex

epithelium was 0.4-μm thinner than the 3-mm temporal epithelium, this difference was not

statistically significant (P=.325).

Figure 3 shows the epithelial thickness profile plotted for 15 eyes of the population selected at

random using Microsoft Excel’s random number function. Although most eyes exhibited a

pattern of thinner superior than inferior epithelium and thinner temporal than nasal epithelium

(see Fig 3, patients 2, 5, and 15), there was variation in the corneal epithelial thickness between

individual eyes; some eyes showed a thinner central epithelium and a thicker peripheral

epithelium (see Fig 3, patient 12), and some eyes demonstrated a thicker central epithelium

and thinner peripheral epithelium (see Fig 3, patient 4).

Maps of epithelial thickness standard deviation (see Fig 1, column 2) showed more variation

in epithelial thickness in the inferior region. The superonasal region demonstrated the least

variation. Maps of the minimum epithelial thickness (see Fig 1, column 3) demonstrated the

thinnest epithelium within the study population to be in the superotemporal region. The thinnest

superior epithelium within the study population was 36 μm, whereas the thinnest inferior

epithelium in the study population was 47 μm, highlighting the difference between the superior

and inferior epithelial thickness. Maps of the maximum epithelial thickness (see Fig 1, column

4) demonstrated that the thickest epithelium within the study population was found in the

inferior region. The thickest superior epithelium in the study population was 60 μm, whereas

the thickest inferior epithelium within the study population was 68 μm, again highlighting the
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difference between the superior and inferior epithelial thickness. Maps of the range of epithelial

thickness (see Fig 1, column 5) demonstrated the largest range in epithelial thickness to be in

the superotemporal region and the smallest range in the inferonasal region.

Analysis of the thinnest epithelial point within the central 5 mm of the cornea found that the

mean (±standard deviation) thinnest epithelial point was displaced 0.33 mm (±1.08) temporally

and 0.90 mm (±0.96) superiorly with reference to the corneal vertex (Fig 4).

The within-eye variation of epithelial thickness for the central 3-, 5-, and 7-mm diameter zones

is described in Table 2. The average within-eye variation of epithelial thickness increased as

the analysis zone diameter increased (Fig 5). The mean (±standard deviation) within-eye

variation of epithelial thickness was 1.50±0.68 μm for the central 3-mm zone, 2.19±0.91 μm

for the central 5-mm zone, and 2.84±1.02 μm for the central 7-mm zone.

No statistically significant correlation between corneal vertex epithelial thickness and spherical

equivalent refraction (P=.81, r2<0.001) was noted, nor between corneal vertex epithelial

thickness and central keratometry (P=.86, r2=0.0003). No correlation between corneal vertex

epithelial thickness and age was noted (P=.44, r2=0.006), nor 3-mm inferior epithelial thickness

and age (P=.29, r2=0.01), nor 3-mm superior epithelial thickness and age (P=.47, r2=0.01). A

statistically significant trend for the 3-mm superior epithelium to become thinner with

increasing age >45 years (P=.02, r2=0.17) was seen; however, this was largely due to the

superior epithelial thickness of one patient in the study. The correlation between 3-mm superior

epithelium and age was not statistically significant if the two eyes of this patient were excluded

from the analysis. No statistically significant difference in corneal vertex epithelial thickness

between the over and under 45-year-old patients was noted (P=.100).

DISCUSSION

In this study, we characterized the corneal epithelial thickness profile over a 10-mm diameter

area in a population of normal eyes. We found an average corneal vertex epithelial thickness

of 53.4±4.6 μm. The epithelial thickness was found to follow a non-uniform pattern, with the

3-mm inferior epithelium 5.7 μm thicker than the 3-mm superior epithelium and the 3-mm

nasal epithelium 1.2 μm thicker than the 3-mm temporal epithelium.

We previously described the signal processing strategies for measurement of epithelial

thickness.15 Two potential sources of uncertainty in ultrasound measurement of the thickness

of the corneal epithelium are the epithelial speed of sound constant and the anatomic source

of the echo we associate with the interface between the epithelium and Bowman’s layer.

Although the acoustic transmission properties of the whole cornea at 50 to 100 MHz have been

investigated by Ye et al,17 no data exist for speed of sound in the corneal epithelium alone. It

is reasonable to assume that the epithelial speed of sound lies somewhere between 1640 m/s

(the accepted value for the speed of sound of the cornea), and the lowermost limit of 1525 m/

s (the speed of sound in normal saline at 33°C). This implausible worst-case value would lead

to a 7% overestimate in epithelial thickness measurements made using 1640 m/s, leading to a

systematic overestimate of about 3.5 μm. One other ultrasonic phenomenon that could

theoretically affect accuracy is dispersion. In dispersion, the speed of sound increases with

increasing frequency within the same medium; however, dispersion at frequencies between 30

and 60 MHz is negligible. Therefore, speed of sound constant errors in epithelial thickness

measurements are justifiably negligible. In addition, any such error would affect all

measurements and would, therefore, have no effect on our findings regarding epithelial

thickness distributions across the cornea.

Bowman’s layer is approximately 8-μm thick. As such, Bowman’s layer would produce

acoustic reflections from both its anterior interface with the epithelium and its posterior
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interface with the stroma. The resolution of the system described in this study is 21 μm;

therefore, individual echo signals from the front and back surface of Bowman’s layer are not

resolved and appear as a single reflection. We demonstrated that the acoustic impedance change

at the front of Bowman’s layer is six times greater than at the back of Bowman’s layer;

therefore, the energy maximum of the echo complex emitted by Bowman’s layer will be, for

all intents and purposes, located at the front surface interface of Bowman’s layer with the

epithelium.15 Not only is the Bowman’s echo uncertainty negligible, it is also systematic and

consequently would not affect conclusions regarding the epithelial thickness distribution across

the cornea. Ye et al17 also report a frequency-dependent attenuation coefficient of 1.3 dB/mm

at 50 MHz. This would translate to <1 dB attenuation over the full thickness of the cornea and

a small fraction of a decibel over the epithelium. Thus, attenuation is of no practical significance

in ultrasound biometry of the cornea at 50 MHz.

The patients recruited in our study represented a population of normal eyes, with a refraction

biased toward high myopes. However, there was no statistically significant correlation between

central epithelial thickness and spherical equivalent refraction (P=.81, r2=0.0006). As a

consequence, the point thickness data as well as the epithelial thickness profiles are likely to

be representative of a true normal population.

Central corneal epithelial thickness has been previously measured with the reported values

varying between 48±5 μm11 and 59.9±5.9 μm18-21 (Table 3). Using a rectilinear VHF digital

ultrasound prototype, we found the central epithelial thickness in 20 normal eyes averaged

within the central 3-mm diameter to be 50.7±3.7 μm.22 The mean and standard deviation of

corneal vertex epithelial thickness found in this study are consistent with previously reported

values obtained by a variety of measurement techniques. Of the studies that investigated non-

central epithelial thickness, all reported no differences between central and peripheral

locations.11,23 Pérez et al11 measured epithelial thickness at four mid-peripheral and four

peripheral locations in the vertical and horizontal meridians using a modified optical

pachymeter and found that the epithelium was roughly uniform in thickness in the central 8

mm of the cornea. Using OCT (Humphrey systems; Zeiss-Humphrey, Dublin, Calif), Wang et

al23 measured epithelial thickness at intervals of 10° across a 10-mm zone of the horizontal

meridian of the cornea and concluded that the epithelial thickness was constant along the

horizontal. Patel et al,13 using a tandem scanning confocal microscope (Tandem Scanning,

Reston, Va), found no significant difference between central epithelial thickness and temporal

epithelial thickness measured 2.5-mm nasal to the limbus. It is interesting to note that OCT

and confocal microscopy have not found differences in epithelial thickness between central

and peripheral corneal locations as were described in the present study. It would be interesting

to perform a comparative study of the epithelial thickness profile across the central 10-mm

diameter of the cornea using Artemis ultrasound, OCT, and confocal microscopy.

Simon et al5 suggested that the epithelium does not form a layer of uniform thickness, which

is in agreement with the findings in the present study. In that previous study, the power of the

epithelium was calculated using corneal keratometry measurements with and without the

epithelium; the measurements were performed for the central 2- and 3.6-mm diameter zones

in 10 human eye bank eyes. The authors reported changes in corneal refractive power and, in

particular, changes in both the power and axis of astigmatism. They suggested the change in

astigmatism could be due to changes in epithelial thickness.

Further study may elicit the mechanisms underlying the non-uniform epithelial thickness

profile found in our study population; in particular, why the epithelium was thinner superiorly

than inferiorly. We originally suggested in 1994 that blinking and friction onto the cornea may

regulate the corneal epithelial thickness profile.16 During blinking, which occurs on average

between 300 to 1500 times per hour,24 the vertical traverse of the upper lid is much greater
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than that of the lower lid. Doane25 studied the dynamics of eyelid anatomy during blinking,

and found that during a blink the descent of the upper eyelid reaches its maximum speed at

about the time it crosses the visual axis. As a consequence, the eyelid might effectively be

chafing the surface epithelium during blinking, with greater forces applied on the superior

cornea than on the inferior cornea. This could explain why the epithelium was found to be

thinner superiorly.

We also found that the temporal epithelium was thinner than the nasal epithelium. Further study

is necessary to explain the reason behind this finding. We postulate that the friction on the

cornea during lid closure is greater on the temporal cornea than on the nasal cornea as the outer

canthus is higher than the inner canthus (mean intercanthal angle=3°), and the temporal portion

of the lid higher than the nasal lid (mean upper lid angle=2.7°).26

The within-eye variation of epithelial thickness was found to increase centrifugally. Thus, the

regularity of the epithelial thickness profile diminishes with increasing pupil size or corneal

optical zone. Given the refractive contribution of the epithelium, this could play a role in the

observed decrease in optical quality of vision with increasing pupil size. How the epithelial

thickness profile changes induced by corneal refractive surgery influence the induction of

higher order aberrations is the subject of further study.

The ability to characterize the epithelial thickness profile may help in various areas of

ophthalmology; it may help further increase the accuracy of corneal refractive surgery as

epithelial changes are known to play a role in refractive regression.27-34 Modulation of the

epithelial thickness within the cornea may contribute to changes in the overall refraction of the

eye; use of topical corticosteroids after photorefractive keratectomy has been shown to produce

hyperopic shifts in refraction, which are reversed once the corticosteroids are stopped.35 If

epithelial dynamics were found to follow a predictable pattern after refractive surgery, this

knowledge could be used to improve the accuracy of outcomes.

Epithelial thickness profiles may also prove to be a useful diagnostic tool in screening for

keratoconus as it is known that the epithelium thins over the region of the cone in keratoconus,

sometimes leading to epithelial breakdown. We are currently investigating the epithelial

thickness profiles of eyes with frank keratoconus and forme fruste keratoconus to attempt to

subdivide forme fruste keratoconic eyes into ‘true’ and ‘pseudo’ keratoconic groups.

Knowledge of the corneal epithelial profile may also be of interest in the contact lens field. In

orthokeratology, it is not yet fully understood whether the modification of corneal power is the

result of epithelial thickness profile warpage or stromal surface warpage or both. Recent studies

have demonstrated a change in corneal epithelial thickness following the wear of overnight

refractive therapy rigid contact lenses, with a thinning of the epithelium centrally and a

thickening of the epithelium in the periphery.7,20

Finally, an analysis of the shift in corneal power from before-to-after corneal refractive surgery

may aid clinicians in determining the cause of regression in the refractive effect. Distinguishing

epithelial from biomechanical causes of regression may be important in preventing

destabilization of the corneal architecture (keratectasia) by retreatment surgery.

To our knowledge, this is the first study to describe the full corneal characteristics of epithelial

pachymetric topography in the human cornea. Three-dimensional thickness mapping of the

corneal epithelium demonstrated that epithelial thickness is not evenly distributed across the

cornea. Knowledge of the epithelial thickness profile in the normal cornea should help in

understanding corneal refractive surgical accuracy, as well as improving the diagnosis in

corneal diseases.
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Figure 1.

Topographical map of descriptive statistics of epithelial thickness for the population. The color

scale represents epithelial thickness (μm). A Cartesian 1-mm grid is superimposed with the

origin at the visual axis. Row 1 includes all eyes with left eyes mirrored (positive X-values

represent the nasal epithelium and negative values represent the temporal epithelium). Row 2

includes only right eyes, and Row 3 includes only left eyes. Point-by-point average maps are

shown in column 1, point-by-point standard deviation maps are shown in column 2, point-by-

point minimum maps are shown in column 3, point-by-point maximum maps are shown in

column 4, and point-by-point range maps are shown in column 5.
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Figure 2.

Mean (±standard deviation) central, nasal, temporal, superior, and inferior epithelial thickness

at the 3-mm radius for all eyes. Student t test P values are displayed between central and

peripheral locations to indicate the statistically significant differences.
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Figure 3.

A) Normalized epithelial thickness maps for 15 individual eyes. Epithelial thickness maps of

15 randomly selected eyes plotted with an identical color scale representing the epithelial

thickness (μm). A Cartesian 1-mm grid is superimposed with the origin at the corneal vertex.

B) Absolute epithelial thickness maps for 15 individual eyes. Epithelial thickness maps of 15

randomly selected eyes each plotted with an individual color scale representing the epithelial

thickness (μm). A Cartesian 1-mm grid is superimposed with the origin at the corneal vertex.
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Figure 4.

Average location of the thinnest epithelium within the central 5 mm of the cornea. The diamond

represents the average location of the thinnest epithelium for all eyes tested, and the error bars

represent one standard deviation in the X and Y directions.
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Figure 5.

Histogram of within-eye variation of epithelial thickness for the central 3-, 5-, and 7-mm zones.

The X axis represents the within-eye variation of epithelial thickness for the central 3-mm

(black bars), 5-mm (gray bars), and 7-mm (light gray bars) diameter zones with intervals of

0.25 μm. Each bar represents the percentage of eyes with the within-eye variation of epithelial

thickness for that 0.25-μm interval.
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TABLE 1

Corneal Vertex Epithelial Thickness Measured With Artemis VHF Digital Ultrasound
Corneal Vertex Epithelial Thickness (μm)

All Eyes (N=110) Right Eyes (n=55) Left Eyes (n=55)
Mean±SD 53.4±4.6 53.1±4.5 53.7±4.7
Minimum 43.5 43.5 44.0
Maximum 63.6 63.6 63.2
Range 20.1 20.1 19.2
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TABLE 2

Epithelial Thickness Within the Central Diameter Zones (Within-eye Variation)
Within-eye Variation of Epithelial Thickness (μm)

Diameter Zone

3 mm 5 mm 7 mm
Mean (±SD) 1.50±0.68 2.16±0.86 2.77±0.86
Minimum 0.36 0.63 0.77
Maximum 3.78 4.60 5.43
Range 3.42 3.97 4.66
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TABLE 3

Central Epithelial Thickness Measurement Reported in the Literature
Investigator No. of Eyes Epithelial Thickness (Mean±SD) (μm) Method of Measurement

Feng & Simpson8 20 58.4±2.5 (RE)
58.5±2.5 (LE)

Optical coherence tomography

Pérez et al11 36 48.0±5.0 Optical pachymeter

Li et al12 14 50.6±3.9 Confocal microscopy through focusing

Patel et al13 19 49.0±5.5 Confocal microscopy

Reinstein et al14 20 50.7±3.7 (RE)
50.3±3.4 (LE)

Rectilinear scanning VHF digital ultrasound

Wang et al18 28 59.9±5.9 Optical coherence tomography

Wirbelauer et al19 25 57.7±.7 Optical coherence tomography

Haque et al20 66 52.0±2.6 (RE)
52.0±3.1 (LE

Optical coherence tomography

Møller-Pederson et al21 34 51.0±4.0 Confocal microscopy through focusing

Current study 110 53.1±4.5 (RE)
53.7±4.7 (LE)

Arc scanning VHF digital ultrasound

RE = right eye, LE = left eye, VHF = very high-frequency
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