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Epithelium segmentation 
using deep learning in H&E-
stained prostate specimens 
with immunohistochemistry as 
reference standard
Wouter Bulten  1, Péter Bándi1, Jeffrey Hoven2, Rob van de Loo2, Johannes Lotz  3, 

Nick Weiss3, Jeroen van der Laak  1, Bram van Ginneken4, Christina Hulsbergen-van de Kaa2 

& Geert Litjens 1

Given the importance of gland morphology in grading prostate cancer (PCa), automatically 

differentiating between epithelium and other tissues is an important prerequisite for the development 
of automated methods for detecting PCa. We propose a new deep learning method to segment 

epithelial tissue in digitised hematoxylin and eosin (H&E) stained prostatectomy slides using 

immunohistochemistry (IHC) as reference standard. We used IHC to create a precise and objective 

ground truth compared to manual outlining on H&E slides, especially in areas with high-grade PCa. 102 
tissue sections were stained with H&E and subsequently restained with P63 and CK8/18 IHC markers 
to highlight epithelial structures. Afterwards each pair was co-registered. First, we trained a U-Net 

to segment epithelial structures in IHC using a subset of the IHC slides that were preprocessed with 

color deconvolution. Second, this network was applied to the remaining slides to create the reference 

standard used to train a second U-Net on H&E. Our system accurately segmented both intact glands 

and individual tumour epithelial cells. The generalisation capacity of our system is shown using an 

independent external dataset from a different centre. We envision this segmentation as the first part of 
a fully automated prostate cancer grading pipeline.

With 1.1 million new diagnoses every year, prostate cancer (PCa) is the most common cancer in men in devel-
oped countries1. PCa develops from genetically damaged glandular epithelium, resulting in altered cellular pro-
liferation patterns. In the case of high-grade tumours, the glandular structure is eventually lost and strands of 
(individual) cells can be observed instead2.

�e histological grade in PCa is formally de�ned in the Gleason grading system3, and is a powerful prog-
nostic marker. It is determined by pathologists on hematoxylin and eosin (H&E) stained tissue specimens. �e 
grade is based on the architectural growth patterns of the tumour which are assigned a number between 1 and 
5, with increasing numbers corresponding to a decrease in histological di�erentiation, and, typically, worse 
prognosis4.

�e identi�cation and grading of prostate cancer can be time consuming and tedious for pathologists, as 
all individual cancer foci within a surgical specimen or biopsy have to be analysed. �is is compounded by the 
fact that prostate cancer is generally a multi-focal disease and that surgical specimens can consists of anywhere 
between 8–15 sections. Although nowadays, thanks to the advent of whole-slide scanning systems, pathologists 
can perform their diagnoses on a computer screen instead of using a microscope, this has not directly helped 
them to perform more e�cient or accurate diagnostics. However, computer-aided diagnostic tools based on deep 
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learning and convolutional neural networks have shown promise in improving the accuracy and e�ciency of 
histopathological diagnosis5.

Deep learning methods that try to detect or grade cancer from scanned tissue slides are typically trained using 
a set of annotated regions as the reference standard. As these algorithms learn from training data, the quality of 
the output is directly linked to the quality of the training samples. Ideally, training samples for detecting and grad-
ing PCa consist of individually outlined glands. However, outlining PCa requires extensive expert knowledge due 
to the large di�erences between and within Gleason grades. In addition, annotating individual cells of high grade 
PCa is practically infeasible due to the mixture of glandular, stromal and in�ammatory components. �erefore, 
tumor annotations made by pathologists are o�en coarse and contain large amounts of non-relevant tissue which 
adds noise to the reference standard and, subsequently, limits the potential of deep learning methods.

We propose a method to automatically improve the detail of PCa annotations by pathologists by dividing 
digitised tissue into relevant and non-relevant tissue on a pixel-by-pixel basis, in this case epithelial versus other 
tissues. Such a system can help improve the detail of coarse cancer or grade annotations, but can also be useful by 
itself in highlighting areas containing epithelial cells as regions of interest for pathologists.

To train our system, we employed a novel two-step approach (Fig. 1). First, we trained a convolutional net-
work to segment epithelium in immunohistochemically (IHC) stained tissue sections applying an epithelial 
marker. By applying color deconvolution and subsequent recognition of positively stained pixels, we were able to 
have ample training data while obviating the cumbersome and imprecise process of manually annotating epithe-
lial regions6,7. Registration was used to map the network’s output to the H&E version of the specimens which were 
subsequently used as training input for our �nal model. Our automated segmentation is not only useful as a tool 
for pathologists, we particularly envision this segmentation as being the �rst part of a fully automated prostate 
cancer detection and grading pipeline.

Related Work
Existing research on segmenting epithelial tissue has shown promise in PCa specimens. Gertych et al.8 used a 
support vector machine to distinguish between stroma and epithelial glands and applied this to a dataset of 20 
patients containing specimens of Gleason grade 3 and 4. Hand cra�ed features, based on intensity and spatial 
relationship of pixels, were derived from H&E specimens that had been preprocessed using color deconvolution. 
Naik et al.9 employ Bayesian classi�ers to segment glands, relying on the presence of lumen in the glands. �e 
segmentation was applied to Gleason grade 3 and 4, and benign tissue samples; not on the less common but more 
aggressive pattern 5. Gleason grade 5 can express in the form of single-cell strands or nests, or solid sheets (with 
or without central necrosis) of malignant cells with no or minimal lumen formation; obviously, this could hin-
der a segmentation method that relies on the presence of lumina. Singh et al.10 employed a multi-step approach 
based on logistic regression to segment epithelium, distinguishing between glands, lumen, peri-acinar retraction 
cle�ing and stroma. Both Gertych et al.8 and Naik et al.9 used the segmentation results as a �rst step towards 
automated Gleason grading.

Advances in deep learning have resulted in new methods for performing segmentation. Deep learning meth-
ods generally outperform hand cra�ed features on segmentation tasks in digital pathology, for example on H&E 

Figure 1. Overview of methodology. We �rst train a network (1) on a subset of our IHC training data. �e 
segmentations produced by this �rst network are then transferred to H&E and used to train the �nal network (2).
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and IHC stained breast and colon tissue specimens11. On the dataset from Gertych et al.8, Li et al.12 show a clear 
performance increase when using deep learning models to segment PCa in comparison to classical machine 
learning methods. Deep learning methods also show good performances on segmenting glands, for example in 
colorectal tissue13.

Previously, we performed a pilot study on epithelium segmentation comparing U-Net versus regular fully con-
volutional networks using 30 radical prostatectomy slides and a small, manually annotated, test set14. We achieved 
the best segmentation performance using a 4-layer-deep U-Net, but found that the performance of our network 
capped due to errors in the reference standard. Moreover, a low number of samples, in particular few high grade 
PCa specimens, limits the applicability to daily practice.

Most of the existing studies on epithelium segmentation in prostate su�er from small datasets or focus on a 
subset of the occurring grades. In this paper we did not exclude any Gleason grades or gland morphology.

Materials
We selected a cohort of 102 patients who underwent a radical prostatectomy at the Radboud university medical 
center (Radboudumc) between 2006 and 2011 (IRB number 2016-2275). Patients who received adjuvant therapy 
before surgery were excluded. From each prostatectomy, we selected one formalin �xated para�n embedded tis-
sue block based on the Gleason grades reported in the original pathologist’s report. Based on the reported grades, 
we determined the Gleason grade group15 for each block (Table 1). As a tissue block can contain multiple grades 
we also reported the individual occurrences of each grade. Of all tissue blocks, 24% contained a region with grade 
2, 69% with grade 3, 63% with grade 4 and 33% with grade 5. Due to selective oversampling, the incidence of 
high grade tumours (grades 4 and 5) is relatively higher than in clinical practice. �is oversampling allows us to 
explicitly investigate the performance of deep learning based epithelium segmentation algorithms on high-grade 
PCa, in which such segmentation is most challenging.

From each block a new section was cut, stained with H&E and scanned using a 3DHistech Pannoramic Flash II 
250 scanner. A�er scanning, the tissue was destained, restained using immunohistochemistry, and scanned again. 
All slides were scanned at 20x magni�cation (pixel resolution 0.24 µm).

We used two markers for the immunohistochemistry: CK8/18 (using DAB) to mark all glandular epithelial 
tissue (benign and malignant), and P63 (using NovaRED) for the basal cell layer, which is normally present in 
benign glands but not in malignant glands. �is staining procedure results in a slide where all relevant tissue is 
highlighted, providing us with a clear ground truth (see Fig. 2 for examples). Staining the basal cell layer using 
a di�erent colour makes it easier to spot tumour regions in IHC and can facilitate grading of the tissue on H&E. 
Restaining, instead of making consecutive slides, results in an H&E and IHC whole-slide image (WSI) pair for 
each patient that contains the same tissue. Although the slide pairs were made from the same glass slide, minor 
alignment errors and tissue deformations were still present due to the restaining procedure.

�e 102 scanned slide pairs were split into two sets: a training set (62) and a test set (40). �e slides were 
distributed over the sets at random while stratifying for Gleason grade group (Fig. 3). �e test set was used as a 
hold-out set and not used during training or model optimisation.

Hold-out test set. For each IHC slide in the test set, a trained non-expert divided each WSI in four sections: 
two containing tumor and two containing only benign epithelium. From each of these four regions, we extracted 
an area of 2500 × 2500 pixels randomly at 10x magni�cation. If there was either no tumor or benign region avail-
able, an additional region from the other category was selected. �is method resulted in 160 regions.

�e tumor regions were individually graded by an experienced pathologist (C.H.-v.d.K.) with subspecialty 
uropathology, without using the original patient’s record. We recorded the primary, secondary and tertiary (if 
present) grade for each region (Fig. 4). �e reported grades were not necessarily identical to those from the 
patient records; the selected regions contained a subset of the slide and were extracted from a newly cut section. 
�e Gleason grade group was based on the ISUP scoring system for biopsies (most prevalent plus highest grade).

External test set. Gertych et al.8 made their dataset available to use for external validation. �is set consists 
of 224 1500 × 1500 pixels tiles sampled from 20 digitised WSIs (pixel resolution 0.5 µm) of H&E prostatectomy 
specimens containing Gleason grades 3 and 4. �e tiles were already annotated by two pathologists and each pixel 
labelled as stroma, benign epithelium, Gleason 3 or Gleason 4. Glands were annotated as a whole, including the 
lumen. We combined the annotations of benign epithelium and the two PCa grades into a single epithelium class.

Set # slides

Grade group (Section) Grade (Individual)

1 2 3 4 5 2 3 4 5

Train set 62 24 10 11 3 14 12 44 40 22

Test set 40 15 6 7 3 9 12 26 24 12

Total 102 39 16 18 6 23 24 70 64 34

Table 1. Overview of case grading from original pathologist’s report on section level (using grade group) and 
on individual grade. Note that multiple grades can occur within a single slide.
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Figure 2. Dataset examples (�rst and third row H&E, IHC second and fourth). Our restaining procedure 
(instead of using consecutive slides) results in perfectly matching slides. �e examples in the �rst two rows show 
benign epithelium, the last two rows display various grades of PCa. In the IHC examples, all epithelial tissue 
is marked in brown, the basal cell layer in dark red (only present in the benign examples). Between cases the 
intensity of the stain can di�er substantially.

Figure 3. Distribution of Gleason grade groups for each case in our dataset as reported in the original 
pathologist’s report (N = 102).
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Methods
We took a two-step approach to train a system for segmentation of epithelial tissue on H&E histopathology. First, 
we circumvented the challenge of manually annotating tissue by generating precise training data using immuno-
histochemistry and training a network on IHC. �en we transferred the output of the �rst network to H&E and 
trained the �nal segmentation network. Our networks were built using Keras16 and Tensor�ow17.

Slide preparation. We applied a pre-trained tissue-background segmentation network18 to all slides in order 
to exclude areas not containing tissue from further analysis. Next, color deconvolution was applied to all IHC 
WSIs in our training set6,7. �e resulting P63/CK8-18 channel was then converted to a binary mask by thresh-
olding. Small errors were removed automatically using binary closing and opening. �e resulting masks were 
not perfect due to imperfections and intensity changes in the stain, scanning artefacts and non-speci�c staining; 
e.g. corpora amylacea and debris inside the glands are regularly stained brown and are therefore present in the 
deconvolution mask (Fig. 5a,c).

For the hold-out test set, three trained non-experts reviewed the sampled test regions and manually updated 
the color deconvolution mask, removing any artefacts or updating incorrectly labeled tissue.

Training a CNN on IHC. Due to time-constraints, it was unfeasible to manually correct all individual color 
deconvolution masks to be used for training. Instead, we trained a deep convolutional network to perform the 
mapping from a P63/CK8-18 slide to a binary epithelium mask. We selected 25 slides from our training set to 
train this �rst network (20 for training, 5 for validation). On each slide we outlined a tissue region covering 
roughly 50% of the WSI a�er which three trained non-experts corrected the color deconvolution masks by hand. 
A total of 3493 annotations were made by the annotators on these 25 slides, an average of 140 annotations per 
slide. In terms of surface area, 2.3% of the tissue was given a di�erent label by the annotators. On average, the 
annotators took 45 to 60 minutes to correct a slide.

Figure 4. Gleason grades of tumor regions in the hold-out test set (N = 71). Showing individual occurences 
(le�, 1–3 per region) and grade groups on region level (right).

Figure 5. E�ect of stain artefacts on network predictions. In some cases non-epithelial tissue is stained, e.g. 
structures inside the gland ((a) corresponding H&E version shown in (b)). �ese artefacts are also picked up 
by the color deconvolution algorithm (c). Due to a high frequency of these artefacts, training a network on this 
uncorrected data results in a trained network that has a high occurrence of false positives in its predictions (d). 
Training a network on manually corrected data instead, results in a better segmentation (e). �ese errors transfer 
to the training of the H&E network. A network trained on the raw color deconvolution masks makes more 
mistakes in these artefact regions (f) than a network trained on the output of the corrected IHC network (g).
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We trained a �ve-level-deep U-Net19 on the selected regions to segment epithelial tissue in IHC slides. We fol-
lowed the original U-Net model architecture, but added additional skip connections within each layer block, and 
used up-sampling operations in the expansion path. �e network was trained using randomly sampled patches 
with a size of 512 × 512 (pixel resolution 0.48 µm) and a batch size of 1. Regions with annotated artefacts and 
corpora amylacea were oversampled to lower the number of false positives. Adam optimisation was used with 
β1 and β2 set to 0.99, and a learning rate of 0.0005. �e learning rate was halved a�er every 5 consecutive epochs 
without improvement on the validation set.

During training, we applied data augmentation to prevent over�tting and to improve the model’s generalisa-
tion. �e following augmentations were used: �ipping, rotation, additive Gaussian noise, Gaussian blurring and 
changes in saturation, contrast and brightness. A�er training, the model was applied to all IHC WSIs in our train-
ing set. A binary mask was created from each slide using the argmax of the network output. We focused explicitly 
on colour augmentations to overcome the large stain di�erences between the IHC slides.

For comparison, a second U-Net was trained on the non-corrected colour deconvolution masks directly, with-
out using any of the manual corrections. All hyperparameters and network structure were kept the same as in the 
original experiment to create a fair comparison.

Registration. �e H&E slides were registered to the IHC slides using a nonlinear image registration method 
based on a method described previously20. Since both slide images showed the same object with di�erent stains, 
they were already approximately aligned. However, additional nonlinear deformations are caused by the chemical 
treatment during restaining and/or the slide scanning procedure and needed to be compensated for. Since di�er-
ent stains are used in both images, the colours of spatially corresponding structures do not match (Fig. 2). We use 
the Normalised Gradient Fields (NGF) distance21, that measures the alignment of image gradients, to account for 
the multi-modality of the registration problem.

�e registration pipeline consisted of: conversion of RGB images to gray-scale → parametric (a�ne) registra-
tion → nonparametric registration (NGF distance measure21, curvature regulariser22) → patch-based registration 
(NGF, curvature). �e method to merge the patches has been extended as follows: Instead of averaging the defor-
mation patches, an optimisation problem is solved that balances data-�t and global deformation regularisation 
in the overlap region.

Training a CNN on H&E. �e training masks generated by the IHC network matched the H&E slides as a 
result of the registration step; 50 were used for training and 12 for validation. We found that increasing the depth 
of the U-Net lowered the number of misclassi�ed corpora amylacea on H&E. �erefore, for the H&E segmenta-
tion we trained a six-level-deep U-Net in comparison to the �ve-level-deep IHC network. To limit the parameter 
count caused by the added level we lowered the amount of �lters for each level. �e same extensions as used in the 
U-net for the IHC stained images were applied. �e network was trained using patches with a size of 1024 × 1024 
(pixel resolution 0.48 µm) and a batch size of 1. Adam optimisation was used with β1 and β2 set to 0.99, and a 
learning rate of 0.0005. �e learning rate was halved a�er every 10 consecutive epochs without improvement 
on the validation set. �e following data augmentations were used: random scaling, �ipping, rotation, additive 
Gaussian noise, Gaussian blurring and changes in saturation, contrast, brightness and Haematoxylin-Eosin col-
our space.

Only the binary segmentation masks generated by the IHC network were available for training. We did not 
correct the masks manually. �is meant that the sampling technique used for training the IHC network could 
not be applied to the H&E network. Instead we sampled uniformly over the classes. To force the network to 
learn small areas of epithelium, e.g. in cases of Gleason 5, we weighted the loss of each pixel based on the class 
occurrence within a patch. As a result, even patches with only small individual tumor cells were picked up by the 
network due to a higher loss contribution.

To test the merit of the IHC network as input for our network, we also trained a U-Net on the raw color decon-
volution masks. All hyperparameters and network structure were kept the same in both experiments.

Regions N F1 score mean (min, max) Accuracy Jaccard

IHC network

All regions 160 0.915 ± 0.09 (0.352, 0.980) 0.952 0.854

Benign 89 0.944 ± 0.04 (0.712, 0.980) 0.980 0.897

Cancer 71 0.879 ± 0.11 (0.352, 0.974) 0.917 0.799

H&E network

All regions 160 0.893 ± 0.05 (0.661, 0.959) 0.940 0.811

Benign 89 0.907 ± 0.04 (0.780, 0.957) 0.966 0.832

Cancer 71 0.876 ± 0.05 (0.661, 0.959) 0.907 0.784

Grade group 1 32 0.884 ± 0.03 (0.808, 0.938) 0.921 0.793

Grade group 2 10 0.885 ± 0.03 (0.854, 0.927) 0.894 0.794

Grade group 3 5 0.893 ± 0.03 (0.833, 0.921) 0.912 0.809

Grade group 4 14 0.889 ± 0.06 (0.728, 0.959) 0.907 0.806

Grade group 5 10 0.819 ± 0.07 (0.661, 0.914) 0.874 0.699

Table 2. Segmentation results on the hold-out test set.
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Evaluation. �e trained H&E network was applied to all WSIs of our hold-out set and evaluated within the 
randomly selected regions. No further post-processing was performed.

�e annotations of the external set were coarse and on gland-level (i.e. including the lumina) and did not 
match the output of our network. In accordance with the method used in the original paper, we removed the 
background from the color-normalised images of the external test set8. Lumina (consisting of pixels which are 
classi�ed as background pixels) were not used in computing the scores. We then fed the images to our trained 
H&E network. We did not optimise our network on this external set. As such, the results on the external test set 
can be considered a true estimate of the generalisation capacity of our H&E network.

Figure 6. Zoomed-in examples (1000 × 1000 crop) of the hold-out test set: IHC version (le�), ground truth 
(middle) and segmentation of the IHC network (right). Green pixels show true positive, red false positive and 
blue false negative. �e �rst example (a) shows an almost perfect segmentation. In regions where the stain is 
light or absent the performance degrades (b).

Training data F1 score mean (min, max) Accuracy Jaccard

IHC network

Color deconvolution 0.909 ± 0.10 (0.312, 0.983) 0.951 0.844

Color deconvolution + corrections 0.915 ± 0.09 (0.352, 0.980) 0.952 0.854

H&E network

Color deconvolution 0.878 ± 0.06 (0.650, 0.954) 0.933 0.787

IHC network predictions 0.893 ± 0.05 (0.661, 0.959) 0.940 0.811

Table 3. Comparison of segmentation performance of networks trained on the raw color deconvolution masks 
or using corrected training data.

Figure 7. Zoomed-in example regions (1000 × 1000 crop) from the hold-out test set with H&E (le�), ground 
truth (middle) and network segmentation (right). Green pixels show true positive, red false positive and blue 
false negative. �e top two rows displays two cases (a–d) of PCa where the network segments the epithelial 
tissue almost perfectly. In the bottom row two failure cases are shown: a case of high grade PCa (e) and a benign 
region (f) where debris inside the gland is segmented.
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Results
We evaluated both the IHC and H&E networks on the regions from, respectively, the IHC and the H&E WSIs 
from the hold-out test set. �e network output was compared with the ground truth: color deconvolution masks 
generated from the IHC slides with manual corrections. We report pixel-based accuracy, F1-score and Jaccard 
index using epithelium as the positive label (Table 2).

Segmentation performance on IHC. �e IHC network achieved an overall F1 score of 0.915. Given a 
minimum F1 score of 0.352 and a maximum of 0.980, the range of scores was high. Some regions of our test set 
su�ered from an overall low stain quality or contained areas where the epithelium reacted less to the stain. We 
observed that a lower stain intensity resulted in a lower performance (Fig. 6). As the H&E network was trained 
on the output of the IHC network we considered the IHC performance as an upper bound for the performance 
of the H&E network.

Using the corrected color deconvolution masks as training data resulted in an F1 score increase of 0.909 to 
0.915 on our test set (Table 3). �e network that was trained on the uncorrected data makes more mistakes in 
regions with stained non-epithelial tissue, e.g. corpora amylacea and other concretions inside the glands (Fig. 5d).

Segmentation performance on H&E. �e H&E network achieved an overall F1 score of 0.893. �e score 
on benign tissue (F1 0.907) was slightly higher than on tumorous areas (F1 0.876). A decline in performance was 
observed in regions with higher Gleason grades. Regions with Gleason grade group 5 had an F1 score of 0.819. 
Several regions are displayed in Fig. 7.

�e score of the H&E network was comparable to that of the IHC network, showing that, given this training 
data, the network achieved an almost optimal performance. Even more, the minimal performance of the H&E 
network was higher than the minimum of the IHC network (0.661 versus 0.352). Outliers that were present in the 
results of the IHC network were not present in the results of the H&E network.

Using the IHC network to generate training data, as opposed to the raw color deconvolution masks, resulted 
in an improved F1 score of 0.893 versus 0.878 for the uncorrected network (Table 3). Comparable to the IHC 
network, the uncorrected H&E network makes more mistakes in areas that are incorrectly targeted by the stain 
(Fig. 5f).

Segmentation performance on external dataset. On the external set our network achieved an F1 
score of 0.835 (Table 4, Fig. 8). �is is lower than on our hold-out test set, but within expectations due to the 
di�erences in staining and image resolution. With a Jaccard score of 0.735 we achieved a higher score than the 
original method8, which had a Jaccard score of 0.595, and comparable to other deep learning methods that have 
been trained on this dataset12.

Discussion
We developed a deep learning based system that segments epithelial tissue in H&E-stained whole-slide prostatec-
tomy images. Our system produces cell-level segmentations and is able to segment both intact glands as well as 
individual (tumor) epithelial cells. A common problem when training deep learning models for scanned histol-
ogy sections is the absence of a precise ground truth. We circumvented this problem by restaining our slides with 
an epithelial and basal cell layer marker. Using color deconvolution and a separately trained network we were able 
to exhaustively annotate our complete training set with only a minimal amount of manual labour. �is technique 
works especially well for annotating small instances of epithelium, e.g. cases of Gleason 5 PCa, that would most 

Network Evaluation Accuracy F1 Jaccard

Gertych et al.8 Cross-validation — — 0.595 ± 0.15

Li et al.12 Cross-validation — — 0.737*

Our method Hold-out validation 0.866 ± 0.07 0.835 ± 0.13 0.735 ± 0.16

Table 4. Comparison of results on the external test set. Note that our method has not been trained on this 
external set while the other methods have been trained using cross validation. *Li et al. reported separate scores 
for segmenting benign and cancerous epithelium. �e score displayed here is the average of those two.

Figure 8. H&E network applied to cases from the external test set: original image (le�), ground truth with 
background removed (middle) and segmentation of the H&E network (right). �e �rst example (a) shows an 
example of a good segmentation, the second (b) a case of undersegmentation.
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likely be missed by human annotators. Moreover, use of speci�c markers renders our ground truth less subjective 
compared to manually produced annotations on H&E slides (even in in�amed or poorly di�erentiated areas). 
On an external test set we see a drastic performance improvement compared to the original method, showing 
the generalisation capacity of our network, even on images from an external centre. When comparing to more 
recent deep learning methods on this dataset, we observe that our method performs as good. Of notice is that the 
methods we compare against were trained on the external test dataset (in cross-validation), whereas our network 
has never seen this data before.

In contrast to other previous work, we assess the performance of our algorithm across all Gleason grades, 
including the notoriously di�culty Gleason grade 5. Although we do obtain the lowest score on this pattern 
(F1-score of 0.819), this score is still high especially given the poorly di�erentiated character of high Gleason 
grades, and the �rst benchmark on these grades. To allow others to compare their algorithms against ours we have 
decided to release our test data and H&E WSIs publicly, including both the test and training slides23. �is dataset 
includes the 102 whole-slide H&E images used in this paper, all color deconvolution masks and the manually 
corrected regions.

We trained our IHC network on manually corrected regions which adds additional e�ort to the training 
procedure. �ese manual annotations result in a small increase in performance on our test set (F1 score 0.915) 
in comparison to training on non-corrected data (F1 score 0.909). Using the IHC network output to train the 
H&E network also improved its segmentation performance (F1 score 0.893 versus 0.878). While the numerical 
di�erences are small, using the corrected data is of importance in this particular dataset to lower the number mis-
classi�cations that are caused by an aspeci�c stain (Fig. 5) or in regions where the stain is absent. �ese consistent 
errors lower the applicability of the network in future systems. For other datasets, where stain artefacts are less 
prominent, training a network directly on the color deconvolution mask could be su�cient.

Our work also has some limitations. �e method to establish the training labels is not perfect. �e IHC net-
work is only trained on a limited set of WSIs and is therefore not able to overcome all problems caused by stain 
variability and presence of scan and tissue artefacts. Especially corpora amylacea or other debris inside glands, 
which are o�en stained by the epithelial marker, are a source of errors. Glands are also missed by the network 
when the stain is light or absent. Subsequently, misclassi�ed areas on the IHC slides are transferred to the training 
data of the H&E network. Many of these errors are overcome by the H&E network due to the larger size of the 
H&E training set, which results in a much higher minimum performance with an F1-score of 0.661 vs. 0.352 for 
the IHC network.

�e type of misclassi�cations is also in�uenced by the chosen magni�cation level. A low magni�cation is 
su�cient for segmenting intact glands, and could potentially help with lowering the number of artefacts as the 
network can learn high level shapes of the tissue. However, segmenting individual epithelial cells, especially in the 
case of high grade PCa, requires input patches with enough detail to be able to distinguish those cells from the 
surrounding stroma. We deliberately chose a high magni�cation level to improve the performance on high grade 
PCa. In future work it might be fruitful to investigate multi-scale approaches to tackle this issue.

We observe that the segmentation performance of our H&E network approaches that of the IHC network, 
which is used to generate the training reference for the H&E network. As a result, there is only a limited amount 
of improvement possible without further re�ning the training data. Annotating speci�c regions that are trouble-
some and retraining the IHC network on these regions could further boost the performance of the H&E network. 
However, one needs to consider that for some cells it is simply impossible to assess their class using the H&E stain 
alone, especially in areas with active in�ammation. As such a perfect segmentation does not exist.

We see the development of an accurate epithelium segmentation network as the �rst part of a fully automated 
prostate cancer detection and grading pipeline. More speci�cally, the epithelium segmentation can be used to 
precisely outline potential cancer regions, and in combination with coarse tumor annotations result in highly 
detailed annotations of PCa. We intend to leverage this to develop highly accurate PCa segmentation networks 
in the near future.

Data Availability
�e dataset generated during the current study is available in the Zenodo repository, https://doi.org/10.5281/
zenodo.1485967.
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