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Anti-neutrophil cytoplasmic antibody–associated (ANCA-associated) small vessel necrotizing vasculitis is 
caused by immune-mediated inflammation of the vessel wall and is diagnosed in some cases by the presence 
of myeloperoxidase-specific antibodies (MPO-ANCA). This multicenter study sought to determine whether 
differences in ANCA epitope specificity explain why, in some cases, conventional serologic assays do not corre-
late with disease activity, why naturally occurring anti-MPO autoantibodies can exist in disease-free individu-
als, and why ANCA are undetected in patients with ANCA-negative disease. Autoantibodies from human and 
murine samples were epitope mapped using a highly sensitive epitope excision/mass spectrometry approach. 
Data indicated that MPO autoantibodies from healthy individuals had epitope specificities different from 
those present in ANCA disease. Importantly, this methodology led to the discovery of MPO-ANCA in ANCA-
negative disease that reacted against a sole linear sequence. Autoantibodies against this epitope had patho-
genic properties, as demonstrated by their capacity to activate neutrophils in vitro and to induce nephritis 
in mice. The confounder for serological detection of these autoantibodies was the presence of a fragment of 
ceruloplasmin in serum, which was eliminated in purified IgG, allowing detection. These findings implicate 
immunodominant epitopes in the pathology of ANCA-associated vasculitis and suggest that autoantibody 
diversity may be common to other autoimmune diseases.

Introduction

Myeloperoxidase-specific anti-neutrophil cytoplasmic antibodies 
(MPO-ANCA) and proteinase 3–specific ANCA (PR3-ANCA) are 
serologic markers used in routine clinical assays to diagnose small 
vessel necrotizing vasculitis (e.g., microscopic polyangiitis [MPA] 
and granulomatosis with polyangiitis [GPA]) (1). In vitro and in 
vivo studies provide compelling evidence that ANCA play a critical 
role in the pathogenesis of ANCA-associated vasculitis (AAV) (2, 3). 
However, 3 clinical observations plague the contention that ANCA 
are pathogenic. First, conventional serologic assays fail to detect 
ANCA in some patients with classic clinical and pathologic features 
of AAV (4). These patients are labeled as having ANCA-negative dis-
ease. Second, ANCA titers do not correlate well with disease activity, 
especially in MPO-ANCA disease (5, 6). Third, naturally occurring 
anti-MPO and anti-PR3 antibodies exist in healthy individuals (7, 8).

In this study, we used highly sensitive MALDI-TOF/TOF-MS 
(where MS indicates mass spectrometry) (9) to identify specific 

epitopes on MPO in an effort to explain these inconsistencies. 
The findings implicate a role for immunodominant epitopes, and 
perhaps epitope spreading, in the evolution of AAV and accentu-
ate the diversity of autoantibody specificity that is likely to occur 
in many other autoimmune diseases. One epitope identified here 
appears to be a critical immunodominant epitope in that (a) reac-
tive autoantibodies to it are found solely in patients with active 
disease, (b) surprisingly, it is the immunodominant autoantibody 
in some patients with ANCA-negative AAV, and (c) it is pathogenic 
in that the transfer of antibodies from mice immunized with this 
murine epitope cause glomerulonephritis.

Previously undetected in serum-based assays, the discovery of 
an immunodominant epitope and corresponding autoantibody 
whose detection is masked by a natural inhibitor of MPO raises 
the possibility of a similar phenomenon in other “seronegative” 
autoimmune diseases.

Results

Epitope diversity in patients with MPO-ANCA. MPO-ANCA–positive 
patients (n = 45) from the University of North Carolina cohort 
(UNC) were analyzed in the initial studies. Demographics of 
the cohort (Table 1) indicate a group of predominantly mixed 
European descent. Approximately 40% were diagnosed with 
MPA, 40% with renal-limited disease, and 20% with GPA. To 
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compare epitope specificities related to disease activity, longitu-
dinal samples were analyzed to include active disease (n = 52) and 
remission (n = 35) from the UNC cohort (Supplemental Tables 1  
and 2; supplemental material available online with this article; 
doi:10.1172/JCI65292DS1). Ten healthy subjects were included 
in the analyses. Purified Ig from sera samples was subjected to 
analysis by epitope excision MALDI-TOF/TOF MS (depicted in 
Supplemental Figure 1A) to identify epitope profiles of autoan-
tibodies reactive to MPO. In order to epitope map low-titer anti-
MPO antibodies from healthy subjects and from patients in dis-

ease remission, an approach was designed using the 16O-to-18O 
exchange technique, an adaptation of a proteomics-based quan-
tification method (10). Incorporation of H2

18O on the carboxy-
termini of proteolytic fragments produces a 4-kDa mass shift 
in the MS spectra, decipherable from background noise. MPO 
epitopes unique to Ig from patients with active disease were des-
ignated “exclusive to active disease”; epitopes identified in remis-
sion samples were designated “persistent during remission; and 
those present in samples from healthy subjects were designated 
asymptomatic or “natural.”

Table 1

Patient demographics

 MPO-ANCA  MPO-ANCA  ANCA-negative  ANCA-negative  Healthy  Healthy  

 cohort (CH) cohort (NL) cohort (CH) cohort (NL) volunteers (CH) volunteers (NL)

Median age (range) 59.0 (19–83) 66.0 (41–78) 44.0 (12–72) 60.7 (17–69) 27.5 (20–53) 35.0 (25–59)

Sex

 Male 48.9% (22/45) 50.0% (10/20) 20.0% (2/10) 38.5% (5/13) 40.0% (4/10) 55.6% (5/9)

 Female 51.1% (23/45) 50.0% (10/20) 80.0% (8/10) 61.5% (8/13) 60.0% (6/10) 44.4% (4/9)

Race

 Asian 0.0% (0/45) 0/0% (0/20) 0.0% (0/10) 0.0% (0/13) 0.0% (0/10) 0.0% (0/9)

 African American 13.3% (6/45) 0.0% (0/20) 10.0% (1/10) 0.0% (0/13) 10.0% (1/10) 0.0% (0/9)

 Hispanic 4.4% (2/45) 0.0% (0/20) 0% (0/10) 0.0% (0/13) 0.0% (0/10) 0.0% (0/9)

 Mixed European 80.3% (36/45) 95.0% (19/20) 80.0% (8/10) 100.0% (13/13) 70.0% (7/10) 100% (9/9)

 Other 1.5% (1/45) 5.0% (1/20) 10.0% (1/10) 0.0% (0/13) 20.0% (2/10) 0.0% (0/9)

Diagnosis

 MPA 37.8% (17/45) 45.0% (9/20) 30.0% (3/10) 0.0% (0/13) – –

 Renal limited 31.1% (14/45) 40.0% (8/20) 0.0% (0/10) 38.5% (5/13) – –

 GPA 22.2% (10/45) 15.0% (3/20) 60.0% (6/10) 61.5% (8/13) – –

 Churg-Strauss 6.7% (3/45) 0.0% (0/20) 0.0% (0/10) 0.0% (0/13) – –

 Autoimmune overlap 2.2% (1/45) 0.0% (0/20) 0.0% (0/10) 0.0% (0/13) – –

 Unknown 0.0% (0/45) 0.0% (0/20) 10.0% (1/10) 0.0% (0/13) – –

Disease activity

 Active disease (BVAS>0) 60.0%  50.0%  71.4%  50.0%  – – 

 (52/87 samples) (20/40 samples) (10/14 samples) (11/22 samples)

 Clinical remission  40.0%  50.0%  28.6%  50.0%  – – 

  (BVAS=0) (35/87 samples) (20/40 samples) (4/14 samples) (11/22 samples)

Organ involvement

 Lung 44.4% (20/45) 25.0% (5/20) 20.0% (2/10) 23.1% (3/13) – –

 Upper respiratory 26.7% (12/45) 25.0% (5/20) 50.0% (5/10) 61.5% (8/13) – –

 Joints 46.7% (21/45) 15.0% (3/20) 60.0% (6/10) 38.5% (5/13) – –

 Gastrointestinal 4.4% (2/45) 0.0% (0/20) 0.0% (0/10) 0.0% (0/13) – –

 Muscles 0.0% (0/45) 5.0% (1/20) 0.0% (0/10) 0.0% (0/13) – –

 Nervous system 4.4% (2/45) 15.0% (3/20) 10.0% (1/10) 7.7% (1/13) – –

 Dermal 8.9% (4/45) 15.0% (3/20) 30.0% (3/10) 7.7% (1/13) – –

 Kidney 95.6% (43/45) 85.0% (17/20) 40.0% (4/10) 46.2% (6/13) – –

Outcomes

 Death 6.7% (3/45) 0.0% (0/20) 0.0% (0/10) 0.0% (0/13) – –

 ESRD 15.6% (7/45) 30.0% (6/20) 10.0% (1/10) 7.7% (1/13) – –

Number of relapses

 0 53.3% (24/45) 95.0% (19/20) 30.0% (3/10) 92.3% (12/13) – –

 1 24.4% (11/45) 5.0% (1/20) 20.0% (2/10) 7.7% (1/13) – –

 2 15.5% (7/45) 0.0% (0/20) 30.0% (3/10) 0.0% (0/13) – –

 3 2.2% (1/45) 0.0% (0/20) 10.0% (1/10) 0.0% (0/13) – –

 4 4.4% (2/45) 0.0% (0/20) 0.0% (1/10) 0.0% (0/13) – –

 5 0.0% (0/45) 0.0% (0/20) 10.0% (1/10) 0.0% (0/13) – –

Average number of months 6.0 ± 5.98 3.1 ± 2.2 2.6 ± 4.97 7.3 ± 6.6 – – 

  Cytoxan (IV or PO) 

Average number of months  23.5 ± 31.71 5.7 ± 3.5 28.3 ± 19.64 7.5 ± 6.5 – – 

 consecutive immunosuppressive 

ESRD, end-stage renal disease.
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A total of 25 anti-MPO autoantibody epitopes were identified 
and categorized by disease association (Figure 1A). Twelve epitopes 
were unique and exclusive to MPO-ANCA expressed during active 
disease. Eight epitopes were reactive with Ig from healthy subjects. 
Notably, asymptomatic or natural autoantibodies were present in 
all active disease samples. There was no correlation between num-
ber of epitope-specific autoantibodies and age of the individual at 
the time of the sample (R2 = 0.074) (Supplemental Figure 2).

To examine whether the active disease MPO-ANCA epitope pro-
file was universal to ANCA disease, a replication study was per-
formed on a cohort from Groningen, The Netherlands (NL), of 
patients with active disease (n = 20) (Table 1). The frequencies of 

the 6 most prominent MPO-ANCA epitopes found in both the 
UNC and NL cohorts were consistent in specificity, although they 
differed in distribution (Figure 1, B–D).

Both conformational and linear epitopes are detected by epitope 
excision MALDI-TOF/TOF MALDI-MS. To distinguish conforma-
tional epitopes from linear epitopes, the protocol was modified 
such that Ig was incubated with predigested MPO protein, with 
the assumption that loss of epitope reactivity signified a depen-
dence on conformation. Of the 25 epitopes originally identified, 
20 were conformational. Synthetic peptides corresponding to the 
5 linear peptides were tested by ELISA for validation of MALDI-
MS results. A linear epitope located on the heavy chain of MPO 

Figure 1
Study of autoantibody epitope speci�city within an MPO-ANCA–

positive cohort. (A) Heat map demonstrating high-level positive 

epitope binding (bright red), weakly positive epitope binding (low 

titer) detected only with very sensitive H2
18O labeling (dark red), 

and negative detection (black). The y axis includes samples from 

active disease patients (n = 52), patients in remission (n = 35), 

and healthy subjects (HS) (n = 10). The x axis includes 25 epi-

topes classi�ed as exclusive to active disease, persistent during 

remission if detected in active disease, in remission, and rarely, at 

low level, in healthy subjects. Epitopes were designated asymp-

tomatic or natural if present in healthy subjects (required H2
18O 

labeling for detection). (B) Analysis of epitope speci�city by MS 

was performed on Ig from a UNC cohort (n = 97) and an NL cohort  

(n = 20). (B–D) Distribution of autoantibody epitopes identi�ed. 

UNC–active disease (n = 52), NL–active disease (n = 20), UNC–

clinical remission (n = 35), UNC–healthy subjects (n = 10). Unique 

epitopes strictly associated with ANCA disease were identi�ed in 

all 72 active disease samples (B and C). Extremely low-level anti-

MPO autoantibodies from healthy subjects were negative for reac-

tivity with disease-speci�c epitopes (D).
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(aa 447–459), which was exclusively associated with active disease 
by MS, was confirmed by ELISA with reactivity in 42.9% (21/49) of 
UNC patients’ samples and in 52.2% (12/23) of the NL cohort (Fig-
ure 2A). Reactivity declined in clinical remission for both the UNC 
and NL cohorts (Figure 2A). Of note, all samples with borderline 
or low OD values by ELISA were analyzed MS/MS to determine 
whether they were negative for the epitope or whether they were 
low-titer positive. MPO-ANCA patients with values in the range 
of healthy individuals were found to be negative by MS analysis. 
MPO peptide (aa 516–524), a second linear epitope identified by 
MS, was confirmed by ELISA to be reactive with Ig from active dis-

ease samples; however, reactivity was found in remission samples 
in both cohorts (Figure 2B). In an effort to validate conforma-
tional MPO epitopes, peptides of the amino acid sequences were 
synthesized and used as substrates for ELISAs. Ig samples positive 
by MS were negative by ELISA, confirming that these are confor-
mationally dependent epitopes (Supplemental Figure 3).

Intriguingly, visualization of epitopes on the crystal structure of 
MPO as a monomer, shown in Figure 2C, revealed that epitopes of 
asymptomatic or natural autoantibodies were spatially adjacent to 
epitopes “exclusive to active disease.” Essential amino acids within 
these epitopes were identified by fine epitope mapping using a 

Figure 2
MPO-ANCA reactive with epitope aa–447-459 are 

exclusively associated with active disease. (A and 

B) ELISA results testing for reactivity against 2 

linear epitopes identi�ed by MS. Anti-MPO447–459 

autoantibodies correlated with disease activity in 

both the UNC and NL cohorts (A). Anti-MPO516–524 

autoantibodies were present in active disease and 

remission but were absent in healthy subjects in 

both cohorts (B). (Note: ELISAs of NL cohorts 

were conducted at the UMCG using their speci�c 

protocol and reagents, except for synthetic pep-

tides provided by UNC). (C) Location of epitopes 

on the MPO molecule. Disease-associated epit-

opes (blue) (including aa 447–459) exist in tandem 

with epitopes recognized by natural autoantibodies 

(green). Amino acids predicted to be required for 

autoantibody binding are highlighted in red.
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chymotrypsin enzymatic digestion (for refined epitopes see Sup-
plemental Figure 4). The sequential alignment of epitopes is sug-
gestive of epitope spreading from nonpathogenic to pathogenic 
epitopes as disease develops.

“ANCA-negative” AAV patients have MPO-ANCA specific for an epit-
ope exclusive to active disease. A variation of epitope excision MS for 
MPO-ANCA methodology produced a “discovery” tool used to 
search for putative autoantigens in ANCA-negative AAV. ANCA-
negative AAV patients were identified by retrospective review of 
medical records insuring histological evidence of vasculitis with 
negative serological test results from the UNC Hospital clinical 
laboratory. As an additional measure, sera samples selected for 
analysis were retested for ANCA reactivity in the research labo-
ratory and externally in the laboratory of John Niles (Massachu-

setts General Hospital), and all were confirmed ANCA negative. 
Protein lysate of total peripheral blood leukocytes was probed for 
antigen or antigens reactive with purified total Ig from ANCA-
negative AAV patients’ sera (Figure 3A). A sole peptide was eluted 
and identified in the MS spectrum analysis at a mass of 1492.141 
(Figure 3B), which corresponded to the MPO peptide aa 447–459 
(RKIVGAMVQIITY), the linear epitope we identified in approxi-
mately 50% of MPO-ANCA–positive AAV patients with active 
disease. It was found that purified Ig reacted with native MPO by 
ELISA even though sera from these ANCA-negative patients did 
not (Figure 3, C and D). By ELISA testing purified Ig, levels of reac-
tivity to native MPO and MPO peptide aa 447–459 were detected  
in 8 of 10 UNC AAV patients and in 6 of 11 NL AAV patients 
(cohort demographics, Table 1). Reactivity corresponded well with 

Figure 3
Epitope excision/MS detects autoantibodies in patients with an ANCA-negative serology. Ig from seronegative UNC patients (n = 10) and NL 

patients (n = 12) was incubated with leukocyte protein lysates as depicted (A). Reactive antigens were captured by autoantibodies. Sites of 

contact between the autoantigen and the Ig (epitope) were protected from digestion. Peptides remaining bound to Ig after digestion were eluted 

and analyzed by MALDI-TOF/TOF MS/MS. A search for autoantigens recognized by Ig puri�ed from patients with pauci-immune vasculitis and 

ANCA-negative serology revealed a single MS peak determined to be an MPO epitope aa 447–459 (B). MS results were validated by ELISA indi-

cating Ig reactivity against native MPO and MPO peptide aa 447–459 (C and D). Analysis of longitudinal samples (UNC cohort, n = 4) (NL cohort,  

n = 5) indicated a correlation between active disease and the presence of Ig reactive with native MPO and MPO peptide aa 447–459 (C and D).
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disease activity, declining to low levels as patients entered disease 
remission in both the UNC (n = 4) and NL (n = 5) patient cohorts.

An epitope-masking factor in sera interferes with conventional sero-
logic testing for MPO-ANCA in ANCA-negative AAV. To address the 
question of why the discrepancy of no detectable ANCA reac-
tivity in sera but positive reactivity in purified Ig, an ELISA was 
performed to directly compare serum to purified Ig from each 
ANCA-negative patient. Data confirmed that anti-MPO447–459 
autoantibodies were not detectable by conventional serologic 
tests, while purified Ig readily reacted with both native MPO 
protein (Figure 4A) and MPO peptide aa 447–459 (Figure 4B). 
Titration of serum into purified Ig blocked reactivity, regard-
less of whether serum was from a patient with ANCA disease 
or from a healthy subject (Figure 4C). We hypothesized that a 
component in sera was obscuring detection of antibodies reac-
tive with MPO aa 447–459.

To isolate the putative serum factor, immobilized MPO aa 
447–459 peptide was used as bait to fish out host proteins with 
binding capacity. Ceruloplasmin (CP) was identified by MS as 
a binding partner. However, the CP bound to MPO peptide aa 

447–459 was primarily a 50-kDa protein on SDS-PAGE, while 
full-length CP is 151 kDa (Figure 4D). An anti-CP Western blot 
confirmed the 50 kDa protein was a fragment of CP (Figure 4E). 
To test whether proteolytically processed CP was required for 
epitope blocking, a plasmin-generated fragment of CP (11) was 
tested for epitope-masking capability (Figure 4F). The digested 
CP decreased anti-MPO447–459 autoantibody reactivity by 30%–50% 
(n = 8) (Figure 4G), while full-length CP did not (Figure 4G). The 
effect of the CP-masking fragment was selective for blocking 
anti-MPO447–459 reactivity and did not affect the overall binding 
of polyclonal MPO-ANCA Ig to native MPO (Figure 4H).

Pathogenic potential of anti-MPO autoantibodies specific for MPO epi-
tope aa 447–459. Anti–MPO447–459 autoantibodies induced neu-
trophilic release of reactive oxygen species similar to total MPO-
ANCA in an in vitro activation assay (Figure 5), indicative of a 
pathogenic potential. For comparison, 3 asymptomatic or natu-
ral anti-MPO autoantibodies purified from patients’ sera (n = 4) 
during disease remission and adjusted for concentration showed 
essentially no release of reactive oxygen species. This study repli-
cates prior studies of MPO-ANCA activation of neutrophils (2).

Figure 4
MPO epitope aa 447–459 is masked by a proteolytic fragment of a common serum protein. Sera from ANCA-negative vasculitis patients (n = 8) 

was negative for reactivity against native MPO, while Ig was positive by direct ELISA (A). (B) Similar results when testing for reactivity against MPO 

peptide aa 447–459 by direct ELISA. (C) Inhibitory effects of serum spiked into puri�ed Ig. (D–F) Data from protein studies to identify the masking 

factor in serum. Affinity puri�cation of serum proteins that complex with peptide aa 447–459 identi�ed an approximately 50-kDa protein by SDS-

PAGE, Coomassie-stained gel (D). MS analysis identi�ed the protein as CP. Identity was con�rmed by Western blot (E) probed with an anti-CP 

antibody. Puri�ed CP was purchased and digested with plasmin in vitro to produce a 50-kDa fragment SDS-PAGE, Coomassie-stained gel (samples 

were run on the same gel but were not contiguous) (F). ELISA results (G) indicated that full-length CP (151 kDa) did not mask the epitope, while 

CP cleaved by plasmin was effective in blocking reactivity by 30%–50%. Reactivity appears unaffected by addition of undigested CP to MPO-ANCA 

IgG (polyclonal) from 4 patients (H), indicating that speci�city of the CP fragment effect on aa 447–459. Error bars represent the mean ± SEM.
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In collaboration with colleagues at Monash University, the 
pathogenic potential of anti-MPO autoantibodies targeting epi-
tope aa 447–459 was studied in their established animal model. 
Mice deficient in murine MHC II and transgenic for HLA-
DRB1*15:01 (DR2 Tg mice) were immunized with murine MPO 
peptide aa 409–428 (PRWNGEKLYQEARKIVGAMV) (bold let-
ters indicate the aa overlap between human and murine peptides), 
an epitope that induces glomerulonephritis in mice (12). This 
pathogenic murine T cell epitope overlaps with the human dis-
ease–associated B cell epitope aa 447–459 (RKIVGAMVQIITY).

DR2 Tg mice were immunized with a peptide containing the 
human disease–associated B cell epitope (LYQEARKIVGAM-
VQITTYR; the human and mouse sequences are identical). Com-
pared with OVA aa 323–339–immunized mice, MPO aa 442–460–
immunized mice developed albuminuria and hematuria and had 
increased blood urea nitrogen (BUN) values and mild glomerular 
proliferation (Supplemental Figure 5). Pooled sera IgG purified 
from these mice showed a p-ANCA pattern when applied to normal 
Mpo+/+, but not Mpo–/– neutrophils (Supplemental Figure 5A). This 
IgG pool was passively transferred into naive DR2 Tg mice treated 
with LPS. When studied 1 and 6 days after IgG transfer, recipi-
ents of anti-MPO antibodies from MPO aa 442–460–immunized 
donors developed albuminuria, some early hematuria, and a raised 
BUN (Figure 6, A–C). IgG induced glomerular injury (Figure 6,  
D and E) and neutrophil recruitment after transfer to DR2 Tg 
recipients (Figure 6F). Each recipient mouse developed glomeru-
lar histological abnormalities marked by hypercellularity with glo-
merular neutrophil accumulation, producing a proliferative, albeit 
not a necrotizing, lesion. Immunizing MHC II humanized mice 
with aa 442–460 (conserved between human and mice) induced a 
proliferative glomerular disease and MPO-reactive antibodies after 
28 days. A causal role for MPO-reactive antibodies was supported 
by disease of greater severity upon transfer of IgG from the immu-
nized animals into naive recipients.

As HLA-MHC II help shape the B and T cell repertoires, and 
consequently the response to foreign and self antigens, we wanted 
to define the epitope specificity of the anti-MPO autoantibod-
ies that could be induced experimentally using DR2 Tg mice. In 
this way, we could assess development of the anti-MPO antibody 
response after immunization of a single epitope in the context of a 
human MHC II. IgG from sera of immunized mice was profiled for 

anti-MPO epitope specificity using epitope excision MS. DR2 Tg 
mice developed antibodies targeting the human B cell epitope aa 
447–459, which is within a conserved region of both murine and 
human MPO. Unpredictably, immunized DR2 Tg mice initiated a 
polyclonal response producing autoantibodies against the entire 
MPO molecule. The epitope profile was astonishingly similar to 
that of the MPO-ANCA human profile (Table 2), indicative of the 
critical nature of this epitope.

Discussion

Fundamental questions problematic to the understanding of 
ANCA vasculitis were resolved, at least in part, by the studies pre-
sented here. These studies explain why asymptomatic or natural 
MPO autoantibodies can exist in individuals free of disease: epit-
ope specificity defines pathogenicity. They explain why there is a 
lack of correlation between MPO-ANCA titers and active disease: 
clinical tests do not discriminate between natural anti-MPO auto-
antibodies and potentially pathogenic ANCA. They explain why 
some patients with vasculitis are seronegative for ANCA in clinical 
tests: detection of a monoclonal MPO-ANCA reactive with a small, 
restricted epitope is obstructed by a protein present in sera.

For years, ANCA-negative small vessel vasculitis (SVV) has posed 
a clinical and pathogenical dilemma. Our findings suggest that 
they develop a restricted autoantibody response against a linear 
epitope on MPO (aa 447–459), an epitope masked by a CP frag-
ment, which is a crucial finding concerning this group of patients. 
Clinically, patients with ANCA-negative SVV have the same signs 
and symptoms of disease as those patients who are ANCA-positive 
(4, 13). Frequently, these patients are diagnosed late in the course 
of their illness. Many of these patients have reoccurring ear, nose, 
and throat disease. We were surprised that many, but not all, of the 
UNC and NL cohorts who were ANCA-negative had an antibody 
to MPO and not to PR3. From a pathogenic perspective, ANCA-
negative patients presented a real quandary to those who propose 
that ANCA are fundamental to the pathogenesis of pauci-immune 
SVV. The findings in this study, that a portion of ANCA-negative 
patients have MPO-ANCA, diminish that concern. The linear epit-
ope identified is the same one that was found to be associated with 
active disease in the MPO-ANCA–positive patient group, which 
declined upon clinical remission. These findings underscore the 
pathogenic capacity of antibodies against this epitope, further 

Figure 5
In vitro and in vivo pathogenic potential of anti-

MPO447–459. Affinity-puri�ed anti-MPO447–459 auto-

antibodies were capable of activating neutrophils, 

as measured by their ability to induce release of 

reactive oxygen species, while nonpathogenic 

(MPO516–524) and natural (MPO579–590, MPO237–248, 

and MPO530–536) anti-MPO autoantibodies were 

not. Neutrophils isolated from healthy subjects  

(n = 4) were exposed to puri�ed autoantibodies 

from unique individuals (n = 4). Results represent 

the mean ± SEM. No further statistics were done 

due to the limited sample size.
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supported by their ability to activate neutrophils in vitro and 
cause nephritogenic disease in a transgenic murine model. A cru-
cial role of an autoantibody to murine MPO epitope aa 409–428 or 
overlapping human MPO epitope aa 442–460 (12) is further dem-
onstrate by data implying that this initial immune response may 
be the instigating event that triggers a polyclonal autoantibody 
profile, similar to an MPO-positive patient’s polyclonal repertoire 
during active disease (Table 2).

Anti–MPO447–459 autoantibodies are exclusive to active disease. 
An enzymatically produced fragment of a natural host protein, 
abundant in serum, shields MPO epitope aa 447–459 from auto-
antibody binding. It remains a puzzle as to why only enzymatically 
processed CP fragments have the epitope “blocking” capability, 
while full-length protein does not. We used plasmin to digest CP 
mainly because plasmin had been reported to produce a fragment 
of approximately 50 kDa (11). We found that CP cleaved with 
urokinase also blocked antibody binding, but thrombin did not, 
underscoring the specificity of the “blocking” mechanism. Full-
length CP is the natural inhibitor of MPO activity, and it was ini-
tially suggested that patients diagnosed with MPO-ANCA might 
be deficient in CP. Subsequent reports determined the converse 

to be true, that ANCA patients did not have a deficiency in serum 
CP levels and instead had a marked increase during active disease 
(14, 15). In addition, ANCA were reported to have the ability to 
disassociate the MPO/CP complex (16). However, anti–MPO447–459 
autoantibodies did not dislodge the complex of MPO peptide aa 
447–459 and the CP fragment in our assays, highlighting the high 
affinity of the complex.

Researchers who have studied anti-MPO–specific epitopes 
agreed that most epitopes were likely conformationally dependent, 
although a few linear epitopes were identified. Our data verify and 
extend the epitope mapping literature. The light chain of MPO was 
reported to contain immunodominant linear epitopes recognized 
by MPO-ANCA sera samples (17). We too found a linear epitope in 
the light chain (aa 237–248) of MPO along with 3 conformational 
epitopes. Conformationally dependent epitopes were reported to 
lie within 2 regions of the heavy chain (aa 279–341 and aa 474–512) 
(18–20), which overlap with 3 disease-associated conformational 
epitopes we identified here. Using MPO human/mouse chimeras, 
aa 517–667 and aa 668–774 were identified as important epitopes 
(21). We also identified 12 epitopes that fall within these 2 seg-
ments. Another group used overlapping peptide ELISAs and iden-

Figure 6
Passive transfer of IgG from MPO442–460– 

immunized mice is nephritogenic. 

Independently, a T cell MPO epitope 

had been identified, and DR2 trans-

genic mice were injected with the 

overlapping MPO peptide aa 442–460 

(LYQEARKIVGAMVQIITYR) that 

includes the human MPO epitope aa 

447–459 (RKIVGAMVQIITY). Albu-

minuria and hematuria (A and B) 

were measured on days 1 and 6 and 

BUN on day 6 (C). Abnormal glomeruli 

(day 6, D, E, G, and H) were assessed 

based on capillary wall thickening and 

mesangial hypercellularity on formalin-

fixed PAS–stained kidney sections. 

Scale bar: 45 μm). Neutrophil recruit-

ment (F) was assessed based on 

immunohistochemistry by anti–Gr-1 

antibodies on PLP-�xed frozen kidneys.
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ed epitopes and autoantibody-auto-
antigen pairs in other diseases and 
help elucidate a role for modulation 
of epitope specificity in the develop-
ment, progression, and remission of 
autoimmune diseases. Moreover, it 
provides a channel to gain informa-
tion on the contribution of asymp-
tomatic circulating autoantibodies 
in healthy individuals who eventu-
ally develop autoimmune disease 
(8). The detection of autoantibodies 
directed against MPO, a previously 
unrecognized autoantigen target in 
patients with ANCA-negative AAV, 
illustrates the power of this method 
for identifying novel autoantigens 
and epitopes in other autoimmune 
diseases. The elucidation of the 
structural and functional diversity 
of autoantibodies exclusive to active 
disease and asymptomatic and nat-
ural autoantibodies demonstrates 
that not all ANCA have equal patho-
genic potential.

In summary, these observations 
demonstrate substantial MPO-
ANCA epitope diversity. Three 
functionally distinct classes of 
autoantibody/epitope pairs are 
recognized: epitopes exclusive to 
active disease, persistent during 

remission, and asymptomatic or natural. While titers of total 
MPO-ANCA do not correlate well with disease activity; specific 
titers of MPO-ANCA directed against epitopes exclusive to active 
disease correlate extremely well with disease activity. For what we 
believe is the first time, the perplexing ANCA-negative subset of 
AAV patients is explained by identifying occult MPO-ANCA that 
have very restricted specificity for an anti-MPO autoantibody that 
is blocked in serum by a CP fragment.

Methods

Patient data

UNC cohort. Patients with ANCA SVV, categorized by the Chapel Hill Con-

sensus Conference nomenclature (24), were included in this study. The 

UNC cohort (Table 1) included 45 MPO-ANCA–positive patients with 

MPA (37.8%), GPA (22.2%), renal-limited disease (31.1%), and overlapping 

pauci-immune vasculitides (2.2%). This cohort was 51.1% female and 80.3% 

of mixed European descent, with a median age of 59.0 years and a range of 

19–83 years. Samples for MS studies were obtained from 52 patients with 

active disease and 35 patients in remission. Of these samples, there were 22 

longitudinal active and remission samples from individual patients. The 

median follow-up for the cohort was 3.9 years, with 50% of patients fol-

lowed from 1.2 to 9.3 years (full range was a few days [for those who died 

early] to as long as 27.9 years). Healthy subjects’ samples for MALDI-MS 

assays were from 10 volunteers who were carefully screened for autoim-

mune diseases, hypertension, and inflammatory diseases. Sera from an 

additional 40 healthy volunteers were used for ELISA. Definitions of dis-

ease remission and relapse have been previously described (25).

tified 7 linear immunodominant epitopes (22). One of these, aa 
511–522 (RLDNRYQPMEPN), overlapped with one we identified 
as a disease-associated epitope, aa 516–524 (YQPMEPNPR).

Asymptomatic or natural autoantibodies are known to occur 
prior to the onset of autoantibody-induced ANCA and anti–glo-
merular basement membrane (anti-GBM) disease (7, 8, 23). Visu-
alizing epitopes on the 3D crystal structure of MPO (pdb 3f9) 
revealed an interesting adjacency of natural epitopes to epitopes 
exclusive to active disease (Figure 2C). This suggests the possibility 
that an asymptomatic autoantibody response to MPO may precede 
the onset of autoimmune disease (7, 8, 23) and that epitope spread-
ing produces disease-causing antibodies. It is also conceivable that 
asymptomatic autoantibodies against MPO could structurally alter 
the conformation of adjacent epitopes and expose cryptic epitopes 
that would induce potentially pathogenic autoantibodies.

A limitation of this study is the focus on continuous (or linear) 
epitopes. Discontinuous (or conformational) epitopes are structur-
ally more complicated to study due to the tertiary and quaternary 
structure of the protein, and further characterization is beyond 
our epitope-mapping methodology. We are aware of the likelihood 
that other critical epitopes may not have been detected using our 
approach. An anti–MPO447–459 autoantibody was not detected in 
2 ANCA-negative sera from the UNC cohort and 5 from the NL 
cohort, indicating that another autoantigen or masked epitope 
may be a target. The inherently small sample size of the ANCA-
negative cohort limited the statistical power of our study.

The highly sensitive epitope excision MS assay employed in our 
study could facilitate the discovery of unidentified disease-associat-

Table 2

Comparison of human and mouse MPO epitopes upon immunization and passive transfer of MPO 

epitope aa 442–460

Epitope  Epitopes found  Epitopes found  Found in  Epitope structure 

sequence no. in humans in immunized mice samples

490–499 IANVFTNAFR IANVFTNAFR A Conformational

537–548 VVLEGGIDPILR VVLEGGIDPILR A Conformational

328–351 NQINALTSFVDASMV  A Conformational

220–228 NGFPVALAR  A Conformational

198–219 WLPAEYEDGFSLPYG  A Conformational

447–459 RKIVGAMVQIITY RKIVGAMVQIITY A Linear

369–374 FQDNGR  A Conformational

184–193 RSPTLGASNR RSPTLGASNR A Conformational

605–622 FCGLPQPETVGQLGT  A Conformational

442–447 LYQEAR  A Conformational

715–725 NNIFMSNTYPR NNIFMSNTYPR A Conformational

657–664 VGPLLACI  A Conformational

560–571 QNQIAVDEIR  A,R Conformational

692–701 QALAQISLPR  A,R Conformational

474–480 KYLPTYR  A, R Conformational

437–441 WDGER  A, R Conformational

396–405 IPCFLAGDTR IPCFLAGDMR R Conformational

516–524 YQPMEPNPR  A, R, HC Linear

579–590 IGLDLPALNMQR IGLDLPALNMQR A,R,HC Linear

530–536 VFFASWR VFFASWR A, R, HC Linear

237–248 FPTDQLTPDQER  A, R, HC Linear

460–473 RDYLPLVLGPTAMR  A, R, HC Conformational

593–603 DHGLPGYNAWR DHGLPGYNAWR A, R, HC Conformational

572–578 LFEQVMR LFEQVMR A, R, HC Conformational

678–691 FWWENEGVFSMQQR  A, R, HC Conformational

HC, healthy control; A, active disease; R, remission.
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acid and analyzed on a 4800 Plus MALDI-TOF/TOF-MS/MS (referred to in 

text as MS) in conjunction with ProteinPilot software (AB SCIEX).

MS analysis of ANCA-negative Ig samples were conducted as above, with 

the exception that immobilized ANCA-negative Ig were exposed to a leuko-

cyte protein lysate preparation from a healthy donor.

MS analysis for epitopes recognized by MPO autoantibodies from 

healthy individuals (n = 10) and for detection of low ANCA titers in remis-

sion samples (n = 35) required the use of isotope H2
18O (Cambridge Isotope 

Laboratories) to increase sensitivity (10). H2
18O in the diluent during tryp-

tic digestion resulted in incorporation of H2
18O isotope on the carboxy-

terminus of each proteolytic fragment of MPO with a 4-kDa shift in mass.

To identify linear epitopes versus conformational epitopes, native MPO 

was predigested/fragmented with immobilized trypsin (Promega) prior to 

exposure to Ig fractions. Positive identification of a bound fragment by MS 

indicated a linear epitope.

ELISA
UNC cohort. A total of 195 Ig samples were tested by ELISA for native MPO 

or peptide reactivity. Samples included Ig from healthy controls (n = 59), 

those with active disease (n = 80), and remission patients (n = 56). Total Ig 

was added to wells (2 μg/well) precoated with 1–2 μg peptide (UNC-CH 

peptide synthesis core). Goat anti-human with alkaline phosphatase con-

jugate secondary antibody specific to Ig (H+L) (Millipore) (1:10,000) was 

added and detected using 1-Step PNPP substrate (Thermo Scientific) and 

read at λ = 405 nm after 30 minutes.

NL cohort. Aloquots of peptides used for ELISAs at UNC were provided to 

Groningen. All other substrates used to test NL cohort samples by ELISAs 

were prepared in Groningen. Total Ig (1:500, ∼2 μg/well) was added to pre-

coated wells blocked with 1% BSA. Secondary antibody, goat anti-human 

conjugated with alkaline phosphatase (A5403; Sigma-Aldrich) (1:5000), was 

added and detected using p-nitrophenyl-phosphate disodium substrate.

Identification of the epitope-masking factor in sera
Serum proteins that bound immobilized MPO peptide aa 447–459 were 

eluted and sequenced for identification. A protein present in both patient 

and healthy sera was observed at ∼50 kDa by SDS-PAGE. Sequenced on a 

4800 MALDI-TOF-TOF, the protein was identified as CP and confirmed by 

Western blot analysis probed with a rabbit anti-human anti-CP polyclonal 

antibody (Abcam). Native CP was purchased (Enzo Life Science) and pro-

teolytically digested in vitro by plasmin (Haemtech).

In vitro neutrophil activation
Neutrophil activation assays were performed using MPO-ANCA affin-

ity purified to linear MPO epitopes. Reactivity and specificity of puri-

fied antibodies were confirmed by ELISA. Human neutrophils isolated 

from 4 healthy donors were purified (2) and primed with cytochalasin B  

(Sigma-Aldrich). Activation of human neutrophils was assessed by the 

amount of reactive oxygen species released using the superoxide dismutase.

In vivo assay
Actively induced anti-MPO–associated glomerulonephritis. DR2 Tg mice (12, 

29) were immunized subcutaneously with 3 × 100 μg of peptide antigen 

(OVA323–339 [n = 4] or MPO442–460 [n = 10]) first in FCA then FIA on days 0, 

7, and 14. Mice were culled on day 28.

MPO-ANCA–induced glomerulonephritis. Serum Ig purified from DR2 Tg 

mice immunized with either OVA323–339 or MPO442–460 were passively trans-

ferred intravenously (35 μg/g, n = 5 per group) into LPS primed (1 μg/g 

intraperitoneally) DR2 Tg naive recipient mice, which were culled 6 days later.

Assessment of injury. For indirect immunofluorescence, ethanol-fixed 

thioglycollate–induced peritoneal neutrophils were cytospun onto 

Criteria for classification of ANCA-negative SVV required biopsy of kidney, 

lung, or upper respiratory tract, with histologic findings consistent with AAV 

and persistently negative ANCA tests by antigen-specific ELISA for MPO and 

PR3. Table 1 shows the 14 blood samples obtained from 10 ANCA-negative 

patients (80% female and 80% mixed European descent with a median age of 

44.0 years). Three of the ten patients had a positive p-ANCA IFA on one occa-

sion, with persistently negative MPO ELISA results. For 4 patients, longitudi-

nal samples were obtained during disease activity and in remission.

ANCA-negative samples from UNC were tested at the UNC Hospital clini-

cal laboratory using both the INOVA direct ELISA kit and IFA (Quanta lite 

and NOVA lite). Secondly, they were assayed by an in-house direct ELISA (21). 

In addition, they were confirmed to be ANCA-negative by a radioimmunoas-

say at Massachusetts General Hospital (26). ANCA-negative samples from the 

NL cohort were assayed by IFA (27) and in-house capture ELISA (28).

The potential that medications may influence autoantibody detection 

was examined. There was no obvious bias. The patient cohort was inclusive 

of all stages of disease with varied treatment regimens. The study included 

11 of 52 samples collected at disease onset prior to initiation of treatment. 

Of the 35 patients in remission, 11 remained positive for anti-MPO reac-

tivity. Three were on no immunosuppressive or maintenance therapy, and 

the remainder were on a variety of therapies, including prednisone, methyl-

prednisolone, azathioprine, and mycophenolate mofetil (Table 1).

NL replication study. An independent replication cohort was tested in 

Groningen, The Netherlands (demographics shown in Table 1). Immuno-

globulin samples (n = 49) obtained from UMCG included MPO-ANCA glo-

merulonephritis patients with active disease (n = 20) and in disease remis-

sion (n = 20), in addition to 9 samples from healthy individuals. The 49 

samples included patients with MPA (52.2%), renal-limited disease (34.8%), 

and GPA (13.0%). This cohort was 47.8% female and 95.7% of mixed Euro-

pean descent, with a mean age of 61.9 years.

UMCG had an ANCA-negative cohort (Table 1) of 13 unique individu-

als (1 individual was positive for elastase) with samples from active disease 

(n = 11) and disease remission (n = 11) from patients with GPA (61.5%) 

and renal-limited disease (38.5%). This cohort was 61.5% female and 100% 

of mixed European descent, with a median age of 60.7 years. Matched, 

active disease versus remission, samples were obtained from 9 patients. 

At UMCG, criteria for ANCA-negative SVV required kidney, lung, or nose 

biopsies showing pauci-immune extracapillary glomerulonephritis with 

or without fibrinoid necrosis and crescents in the kidney (n = 5) or capil-

laritis or granuloma of the lung (n = 1) or upper respiratory tract (n = 7),  

with pathologic evidence of necrotizing vasculitis or leukocytoclastic vas-

culitis. Sera were routinely tested by indirect immunofluorescence by the 

Laboratory of Clinical Immunology UMCG as described (27) and were 

found negative in 10 of 13 patients in the ANCA-negative cohort at the 

moment of diagnosis (the 3 sera-positive on IIF showed an atypical [n = 2]  

or perinuclear [n = 1] pattern of fluorescence). All sera were retested in 

an in-house–developed capture ELISA for antibodies PR3 and MPO per-

formed at the Laboratory of Clinical Immunology UMCG and determined 

to be negative on all ANCA-negative patients (28). One patient was found 

positive for antibodies against elastase by capture ELISA.

MALDI-TOF/TOF MS
Total Ig was purified from sera using protein A/G PLUS-Agarose Reagent 

according to commercial protocol (Santa Cruz Biotechnology Inc.). Purified 

Ig was immobilized on CNBr-activated Sepharose 4B (GE Healthcare) in 

compact reaction columns (CRC) (USB Corporation) and exposed to human 

native MPO protein (Elastin Products Co, Inc) followed by digestion with 

sequencing grade TPCK-treated trypsin (Worthington). For murine studies, 

Ig was exposed to recombinant mouse MPO (R&D Systems). MPO peptides 

remaining bound to Ig after digestion were eluted with 0.1% Trifluoro acetic 
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slides, and purified serum Ig (1 mg/ml) was applied for 20 minutes; 

then anti-mouse Ig Ab was detected using FITC-conjugated anti-mouse 

Ig Ab (Silenus).(12, 30). Albuminuria was assessed by ELISA (Bethyl 

Laboratories) and hematuria assessed by urine test strips (Combur) 

from a 24-hour urine sample. BUN was measured using standard labo-

ratory methods on serum collected at the end of experiment. Glomeru-

lar abnormalities assessed on 3-μm thick, PAS-stained, formalin-fixed, 

paraffin-embedded sections (≥ 50 glomeruli/mouse) were thickening of 

the capillary walls and mesangial hypercellularity (31) Total glomerular 

cell nuclei were enumerated (≥20 glomeruli/mouse). Glomerular neu-

trophils were detected by immunoperoxidase staining of 6-μm thick, 

periodate lysine paraformaldehyde–fixed, frozen kidney sections using 

anti–Gr-1 antibodies (RB6-8C5).

Statistics
P values were calculated by Wilcoxon’s 2 sample tests for 2-sample com-

parisons, Kruskal-Wallis test for 3 groups comparison, and signed rank 

test for paired group comparisons. Bonferroni’s correction was used, 

α = 0.05/3 = 0.167. For in vivo mouse studies, P values were calculated 

using unpaired 2-tailed Student’s t test and a P value of less than 0.05 

was considered significant.

Study approval
This study and study protocols were compliant with and approved by the 

UNC Institutional Review Board. Informed consent was obtained prior to 

all blood collections. Animal studies were approved by the Monash Univer-

sity Animal Ethics Committee.
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