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Abstract

Background: In biological systems, diseases are caused by small perturbations in a complex network of interactions

between proteins. Perturbations typically affect only a small number of proteins, which go on to disturb a larger part

of the network. To counteract this, a stress-response is launched, resulting in a complex pattern of variations in the

cell. Identifying the key players involved in either spreading the perturbation or responding to it can give us important

insights.

Results: We develop an algorithm, EpiTracer, which identifies the key proteins, or epicenters, from which a large

number of changes in the protein-protein interaction (PPI) network ripple out. We propose a new centrality measure,

ripple centrality, which measures how effectively a change at a particular node can ripple across the network by

identifying highest activity paths specific to the condition of interest, obtained by mapping gene expression profiles

to the PPI network.

We demonstrate the algorithm using an overexpression study and a knockdown study. In the overexpression study, the

gene that was overexpressed (PARK2) was highlighted as the most important epicenter specific to the perturbation.

The other top-ranked epicenters were involved in either supporting the activity of PARK2, or counteracting it. Also, 5 of

the identified epicenters showed no significant differential expression, showing that our method can find information

which simple differential expression analysis cannot. In the second dataset (SP1 knockdown), alternative regulators of

SP1 targets were highlighted as epicenters. Also, the gene that was knocked down (SP1) was picked up as an epicenter

specific to the control condition. Sensitivity analysis showed that the genes identified as epicenters remain largely

unaffected by small changes.

Conclusions: We develop an algorithm, EpiTracer, to find epicenters in condition-specific biological networks, given

the PPI network and gene expression levels. EpiTracer includes programs which can extract the immediate influence

zone of epicenters and provide a summary of dysregulated genes, facilitating quick biological analysis. We demonstrate

its efficacy on two datasets with differing characteristics, highlighting its general applicability. We also show that

EpiTracer is not sensitive to minor changes in the network. The source code for EpiTracer is provided at Github

(https://github.com/narmada26/EpiTracer).
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Background

A biological system consists of a large number of proteins

involved in a series of intricate and tightly orchestrated

interactions. Representing this complex system as a net-

work allows us to harness network-mining methodologies

to analyse the system as a whole. Diseases typically affect

only a small number of proteins [1, 2]. The immediate

interacting partners of these proteins can be expected

to show a change in expression levels or behavior. In

addition, the inter-connected nature of the system causes

cascade effects, altering the levels of proteins far removed

from the original source. At the same time, the systemmay

attempt to restore its equilibrium by launching a stress-

response [3]. It would be interesting and useful to identify

the key players in this tug-of-war, which are most influ-

ential in either spreading or curtailing the perturbation.

These key proteins are referred to as epicenters specific to

that condition.

A vast amount of data is generated by microarray

experiments, which provide a snapshot of the active and

inactive players of the system. These datasets are avail-

able on public databases such as Omnibus [4]. Most

studies in biology focus on only a few proteins or path-

ways, and work with a restricted field of view. Through

algorithms such as EpiTracer, we hope to enable the

analysis of large scale and detailed models, giving a

picture which reflects the intricate workings of living

systems more closely. In this paper, we work with a

dataset consisting of nearly half the complement of human

genes.

In this paper, we develop an algorithm called EpiTracer,

which identifies the epicenters from which either the per-

turbation or the reaction to it ripples out. This is done

using a protein-protein interaction (PPI) network into

which gene expression levels before and after the per-

turbation are integrated. To the best of our knowledge,

no method exists currently which can identify epicen-

ters with this type of data. Other methods that provide

insights into influential nodes require a causal network

as input, where each edge depicts a causal relationship,

and is directed from the cause to the effect [5, 6]. How-

ever, clear-cut causal dependencies have been established

for only a small set of proteins, making it impossible to

analyse large networks. Network motifs have also been

used to highlight important proteins in directed biolog-

ical networks [7]. However these methods do not make

use of information about changes in expression levels

of genes, thus losing out on a rich source of infor-

mation. Methods also exist which highlight the nodes

which, when intentionally perturbed, spread the pertur-

bation the fastest [8]. This is not the same as identify-

ing the epicenter of a naturally occurring perturbation,

which is a more complicated and biologically relevant

scenario.

The EpiTracer algorithm is based on the observation

that an epicentric protein would have to be highly active

in order to exert its influence, and also have good con-

nectivity in order for its influence to spread. We define

a new centrality measure called ripple centrality, which

gives a combined measure of a node′s activity as well

as its connectivity, thus allowing us to rank proteins on

their ability to be an effective epicenter. The top-ranked

proteins qualify to be epicenters. The algorithm com-

bines the PPI network and gene expression levels in such

a way as to ease the computation of active paths. The

sub-network with high activity paths only in the per-

turbed condition is extracted, thus reducing the search

space for the next step. The nodes in this sub-network

are then ranked on the basis of their ripple centrality

score, with the top 10 nodes considered as epicenters.

The efficacy of the algorithm is demonstrated through

two case studies. The first case study analyses human

glioma cell line (U251) upon overexpression of the gene

PARK2 (GSE61973) [9]. The algorithm was able to iden-

tify PARK2 as the most important epicenter without any

prior knowledge of the perturbation. Functional enrich-

ment analysis showed that most of the top 10 epicenters

play a role in enabling or countering the activity of PARK2.

Also, 5 of the top 10 epicenters showed no significant

fold change, proving that our method is capable of iden-

tifying more than simple differential expression analysis.

The EpiTracer pipeline includes a program for extracting

the immediate influence zone of the epicenters. Analy-

sis of the immediate influence zone of the top-ranked

epicenter (PARK2) showed that it was enriched in genes

involved in cell-cycle regulation. The second case study

attempts to identify the target genes regulated by tran-

scription factor SP1 by knocking down the expression of

SP1 in HeLa cells (GSE37935) [10]. In this study, Epi-

Tracer was able to identify SP1 among the top ranked

epicenters. Sensitivity analysis was carried out by increas-

ing the gene expression levels of all nodes by upto 5%

(100 independent experiments), and decreasing the gene

expression levels of all nodes by upto 5% (100 inde-

pendent experiments). It was found that irrespective of

the direction or extent of perturbation, 9 nodes always

appear in the top 10 ranks, and 16 nodes always appear

in the top 20 ranks of epicenters. This shows that the

nodes ranked as epicenters remain largely unaffected even

when every gene in the system is subjected to a minor

change.

Methods

A high-density protein-protein interaction network was

reconstructed for use in this work. Condition-specific

gene expression profiles were obtained from published lit-

erature. The inputs as well as the algorithm are explained

below.
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Protein-protein interaction network

A base network containing known and predicted protein-

protein interactions, genetic interactions and regulatory

interactions with directions was taken from Khurana

et. al., 2013 [11]. Metabolic interactions from KEGG [12]

were added to this, resulting in a directed network with

10,306 nodes and 74,404 edges.

Gene expression profiles

Two gene expression datasets were obtained from the

GEO database [13]. In the first dataset GSE61973 [9],

PARK2 gene was overexpressed in human glioma cell line

(U251). In the second study GSE37935 [10], SP1 gene was

knocked down using siRNA in HeLa cells. These two case

studies were selected to demonstrate the general appli-

cability of the EpiTracer algorithm. GeneSpringX 12.6.1,

with Robust Multichip Averaging (RMA) [14] was used

for microarray data normalization. A 1.5 fold cut-off was

applied for differential gene expression analysis (P-value

≤ 0.05 by T-test with Benjamini-Hochberg false discovery

rate correction).

Combining the inputs

The gene expression profile of each condition wasmapped

onto the PPI network, to create one weighted network

per condition (Fig. 1(a)). The nodes (proteins) were given

a weight equal to the normalized signal intensity for

the corresponding gene in that condition. wx
i = SIx

where wx
i is the weight of node i in condition x, and

SIx is the normalized signal intensity in condition x.

This formulation stems from the assumption that the

expression level of a gene gives a reasonably good approx-

imation of the abundance of the protein in the system.

The cost of an edge (protein-protein interaction) was

taken as a function of the abundance of the participating

proteins, as

cxi =
1

√

wx
u ∗ wx

v

where cxi is the cost of edge i in condition x, and wx
u, w

x
v

are the weights of the nodes comprising the edge. This fol-

lows from the assumption used in mass-action kinetics,

that the activity of a reaction is directly proportional to

Fig. 1 The EpiTracer workflow. a Gene expression profiles of each condition are mapped onto the base PPI network. b Highest activity paths are

calculated for each condition, and common paths are discarded, giving condition-specific highest activity paths (CSHAPs). c The network induced

by the CSHAPs form the condition-specific highest activity networks (CSHANs). d Nodes in the perturbed highest activity network are ranked

according to ripple centrality. e The ranked list of nodes is split into two lists based on overlaps with the control highest activity network. Top 10

nodes in the list unique to the perturbed condition form the epicenters specific to the perturbation
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the concentration of the participants. Taking the inverse

makes sure that a highly active interaction has a very low

edge cost.

Given a path with n edges, the sum of costs of the edges

involved in the path gives the cost of the path.

pathcost =

n
∑

i=1

cxi

where cxi is the edge cost for each edge in the path,

and n is the length of the path. A shortest path algo-

rithm will preferentially choose edges with the least cost

for a given source and destination, which in our for-

mulation translates to identifying the highest activity

path.

EpiTracer algorithm – rationale

In order to be effective, an epicenter should be highly

active and participate in high activity paths only in the

perturbed condition. To capture this, we calculate highest

activity paths in each condition and discard common

paths. The common paths correspond to the paths which

remain highly active and unchanged irrespective of the

perturbation. Such paths add no information about the

perturbation (Fig. 1(b)). The edges involved in these

CSHAPs induce a sub-network of the original network,

referred to as the condition-specific highest activity net-

works (CSHANs) (Fig. 1(c)).

An epicenter should also be able to reach many nodes in

the network in order to exert its influence, and the paths

from the epicenter to these nodes must also be highly

active. This is captured by the new centrality measure

proposed here termed ripple centrality, and is explained

below.

Closeness centrality

Closeness centrality [15] of a node u is defined as the

reciprocal of the sum of shortest path costs from u to

every reachable node v

C(u) =
1

∑

v σ(u, v)

where σ(u, v) is the cost of the shortest path from u to

v. Because of the way edge costs are formulated, a node

u with highly active paths to a set of nodes v will have

high closeness centrality. This is depicted by node Acl in

Fig. 2a. Here a thicker edge corresponds to a highly active

reaction.

Outward reachability

Given a node u, the number of nodes reachable from u is

termed its outward reachability [16].

Rout(u) =
∣

∣nodes reachable fromu
∣

∣

where Rout(u) denotes outward reachability of u.

Ripple centrality

In Fig. 2a, the node Acl represents nodes which have very

high activity paths, but to only a small number of nodes.

Such a node would have high closeness centrality [15],

but would not be a good candidate for an epicenter as

any perturbation arising at this point could not spread to

a large number of nodes. On the other hand, node Aor

(Fig. 2b) represents nodes which have very good connec-

tivity, but participate in relatively low activity paths. These

Fig. 2 Illustration of ripple centrality. a Node Acl is the source of highly active paths, and has high closeness centrality. However it can only reach 4

nodes, and is not a good epicenter. b Node Aor can reach 14 nodes, but paths originating at Aor have low activity. Thus it is not a good epicenter. c

Node Arc is the source of highly active paths and can reach a large number of nodes (7), making it the best candidate for an epicenter. The hexagon

represents candidate epicenters
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types of nodes would have high outward reachability, but

are poor candidates for epicenters. Thus neither close-

ness centrality nor outward reachability are sufficient on

their own. Node Arc in Fig. 2c has highly active paths to

a large number of nodes, and is the best candidate for an

epicenter.

We formulate a new measure, ripple centrality, which

serves as a logical AND between closeness centrality and

outward reachability.

Ripple centrality(u) = C(u) ∗ Rout(u)

In the calculation, both closeness centrality and outward

reachability are normalized. Ripple centrality is calcu-

lated for the nodes in the perturbed CSHAN, resulting

in the proteins being ranked on the basis of their effec-

tiveness as potential epicenters (Fig. 1(d)). The ranked

list is then split into two lists – (a) nodes occurring only

in the perturbed CSHAN, and (b) nodes common to

both CSHANs (Fig. 1(e)). Common nodes work as global

epicenters, playing key roles both before and after the

perturbation. Since identical paths have already been dis-

carded (Fig. 1(b)), these proteins are those which have

undergone re-wiring, and participate in a different path-

way upon perturbation. The nodes occurring only in the

perturbed CSHAN are epicenters specific to the perturba-

tion, involved in either the spread of the perturbation or

the reaction to it.

EpiTracer algorithm

The EpiTracer algorithm consists of three modules

(1) highest_activity_paths extracts the paths with

cost inside a user-defined percentile threshold, (2)

condition_specific_han uses highest_activity_paths to

identify the highest activity network specific to each

condition, and (3) the main module, get_epicenters,

uses the above two modules to identify the top 10

epicenters in the perturbed condition, as well as the

top 10 epicenters common to both conditions. The

pseudocode for each module is provided in Algorithms

1, 2 and 3. The symbols GA and GB refer to the

graph for condition A and the graph for condition B,

respectively.

Algorithm 1: Function highest_activity_paths

Purpose: Compute highest activity paths

input: network, percentile output: highest activity

paths

1: Calculate all-pairs-shortest-paths and path costs;

2: Discard paths with length 1;

3: sorted_paths = sort(paths, asc, path_cost);

4: return top percentile of sorted_paths;

Algorithm 2: Function condition_specific_han

Purpose: Compute condition specific highest activity

network

input: GA, GB, percentile output: condition specific

han

1: GA_hap = highest_activity_paths(GA, percentile);

2: GB_hap = highest_activity_paths(GB, percentile);

3: common_paths = GA_hap ∩ GB_hap;

4: GA_specific_hap = GA_hap − common_paths;

5: GB_specific_hap = GB_hap − common_paths;

6: return (GA_specific_hap.edges),

(GB_specific_hap.edges)

Algorithm 3: Function get_epicenters

Purpose: Identify epicenters

input: GA, GB, percentile output: top 10 epicenters

(GB only, common)

1: GA_shan, GB_shan=condition_specific_han(GA, GB,

percentile);

2: common_nodes =GA_shan.nodes ∩GB_shan.nodes;

3: GB_only_nodes =GB_shan.nodes−common_nodes;

4: for all node ∈ GB_shan.nodes do

5: C(node) = closeness centrality of node;

6: Rout(node) = outward reachability of node;

7: Ripple centrality(node) = C(node) ∗ Rout(node);

8: end for

9: ranked = sort(GB_shan.nodes, desc, Ripple

centrality);

10: ranked_GB_only = ranked ∩ GB_only_nodes;

11: ranked_common = ranked ∩ common_nodes;

12: return top 10 in (ranked_GB_only,

ranked_common);

Biological analysis

The proteins identified as epicenters, as well as the pro-

teins surrounding them were subjected to biological and

functional analysis.

Immediate influence zone

The nodes that occur within two hops upstream or

downstream from an epicenter are designated the

immediate influence zone of that epicenter. For the

top-ranked epicenter, the immediate influence zone

was identified manually and was restricted to the per-

turbed highest activity network. Downregulated genes

which occur within two hops of the epicenter were

picked from the full network and added to the influence

zone.

Since manually examining the full network for dysreg-

ulated genes in the vicinity of every epicenter is a time
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consuming and laborious task, an automated script was

developed to facilitate the quick extraction of the influ-

ence zone. This can be done on the full network or on

the highest activity network. This allows for easy iden-

tification of nodes with significant dysregulation, and

can be used for further analysis. This script uses a

default fold change cut-off of 2.0. Both the number of

hops and the fold change can be varied by the user if

necessary.

Functional enrichment

Gene set enrichment was performed against the KEGG

[12] database using WebGestalt [17]. A hypergeometric

test with P-value of 0.05 with FDR correction was used for

statistical analysis. Network visualization was carried out

with Cytoscape, and the Cytoscape plugin ClueGO [18]

was used for GO module enrichment.

Sensitivity analysis

Two separate sensitivity analyses were carried out, one

by increasing the expression levels of all genes by a ran-

domly chosen value between 0 and 5%, and the other

by decreasing the expression levels of all genes similarly.

This reflects measurement errors that can be introduced

in the microarray data due to variability in the sensitiv-

ity of the detector. All numbers reported are an average of

100 independent experiments.

Results

The algorithm was implemented in Python 2.7, and uses

the functions provided by Networkx 1.7 for computing

all the centrality measures. Dijkstra′s algorithm [19] was

used for finding shortest paths. The EpiTracer algorithm

was able to analyse a dataset consisting of 10,306 nodes

and 74,404 edges on a 16 core Xeon server in less than 30

minutes.

The results of the first case study are provided in detail

in the next section, followed by a summary of the second

case study.

Case study 1

Microarray data for the overexpression of PARK2 in

human glioma cell line (U251) and control (GFP) were

taken from (E–GEOD–61973) [9]. PARK2 (PARKIN) is

an E3 ubiquitin ligase whose dysfunction has been asso-

ciated with Parkinsonism. The authors of this data, in

their study [9], show that PARK2 is frequently deleted or

downregulated in human glioma, and demonstrate that

overexpression of PARK2 can significantly inhibit glioma

cell growth. Through the EpiTracer algorithm, we uncover

the global reprogramming of gene expression resulting

from this perturbation, and highlight the epicenters of this

process.We also provide a ranked list of influential players

in this perturbation.

System description

The gene expression profiles were normalized and filtered,

and the list of differentially expressed genes was extracted

using a fold change cut-off of 1.5. It was found that 605

genes were downregulated and 1,089 genes were upregu-

lated as a result of the overexpression of PARK2. In gen-

eral, genes associated with cell cycle, ubiquitin mediated

proteolysis, ErbB signaling pathway, MAPK, JAK-STAT

signaling, WNT signaling, Hedgehog signaling pathway

and pathways related to lipid metabolism were differ-

entially expressed. A summary of network properties is

shown in Fig. 3a.

Highest activity paths (HAPs)

All-pairs-shortest paths were calculated for the control

network as well as the perturbed network. Paths with

length ≥ 2 were sorted in the ascending order of path

cost. It was found that the number of paths retained at

a percentile cut-off of 0.2 was twice that retained when

a cut-off of 0.1 was used. Thus the conservative thresh-

old of 0.1 percentile was chosen, resulting in 67,728

paths being retained as highest activity paths (HAPs) in

the perturbed network and 58,570 HAPs in the control

network.

Condition-specific highest activity network (CSHAN)

Highest activity paths common to both conditions cor-

respond to the paths which are highly active all the

time, and are unaffected by the perturbation. Such paths

were removed, giving us 9,621 HAPs specific to the

control condition, and 18,779 HAPs specific to the per-

turbed condition. The edges involved in these paths corre-

spond to the condition-specific highest activity networks

(CSHANs). Interestingly, the CSHANs were themselves

well-connected networks (Fig. 3b).

Of the 1,756 genes in the perturbed CSHAN, 75 genes

were found to be downregulated, and 130 were found to be

upregulated. These belonged to the functional categories

of cell cycle, MAPK, ErbB, p53 and mTOR signaling path-

way, ubiquitin mediated proteolysis, regulation of actin

cytoskeleton and oocyte meiosis.

Tracing the epicenter

The nodes in the perturbed CSHAN were ranked

in descending order of their ripple centrality. This

ranked list was then split into two - nodes occurring

only in the perturbed CSHAN, and nodes common

to both CSHANs (global epicenters). Since common

paths have already been removed, nodes common to

both CSHANs correspond to the nodes which par-

ticipate in a different pathway after the perturbation.

Nodes occurring only in the perturbed CSHAN are

those which have become active and influential after the

perturbation.
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Fig. 3 Case study 1 (PARK2 overexpression in human glioma cell line). Data corresponding to overexpression of PARK2 in human glioma cell line

(U251). a Human PPI network comprising of 10,306 nodes and 74,404 edges. Nodes colored red are upregulated upon perturbation, and nodes

colored green are downregulated. (a1) Table of network properties. b Perturbation-specific *HAN (highest activity network), with network properties

in table b1. c The 5 epicenters which were differentially expressed, along with their immediate neighbors d List of epicenters specific to the

perturbation as well as global epicenters

The top 10 nodes from each list were considered as

epicenters, and are listed in Fig. 3d. PARK2 was iden-

tified as the highest ranked epicenter among the nodes

unique to the perturbed CSHAN, in spite of the fact

that the algorithm was given no prior knowledge of the

perturbation. Only 5 out of the 10 epicenters specific to

the perturbed condition were found to have significant

differential expression. This shows that EpiTracer is able

to capture information that simple differential expression

analysis cannot. The 5 epicenters which were differentially
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expressed, along with their immediate neighbors, have

been depicted in Fig. 3c.

Biological interpretation

Top global epicenters were found to correspond to highly

conserved and ubiquitously expressed proteins such as

TUBB, GAPDH, VCL, ACTG1, DYNLL1 and ANXA2.

RAC1 is known to promote cell migration and invasion in

glioma cells. APP is associated with axonogenesis, neurite

growth and neuronal adhesion [20]. PRDX1 is involved in

redox regulation of the cell. B2M is associated with MHC

Class I antigen presentation.

Further, the top epicenters specific to the perturbed

(PARK2 overexpression) condition were examined. It

was found that 5 out of the 10 genes being examined

showed significant differential expression, namely PARK2,

RGS2, EPHA2, DNAJC1 and FGF2 (Fig. 3c). PARK2 was

highlighted as the most important epicenter specific to

the PARK2 overexpression condition. PARK2 negatively

regulates cell cycle by degrading Cyclin E and D through

its activity as an E3 ubiquitin ligase. RGS2 is involved in

G0 to G1 transition [20]. Inhibition of EPHA2 leads to

stalling of cells in G0/G1 phase [21]. In the PARK2 overex-

pression condition, EPHA2 was found to be upregulated.

FGF2 blocks cell proliferation and causes a G2/M arrest

[22]. When considered together, our analysis revealed that

most of the top ranked genes were associated with cell

cycle regulation.

Immediate influence zone of the top-ranked epicen-

ter In order to understand the cellular response to the

top-ranked epicenter specific to the perturbed condition

(PARK2 in this case), the influence zone around it was

analysed. The subgraph induced by considering nodes

upto two hops up/downstream of PARK2 in the perturbed

CSHAN were considered to be in the PARK2 influence

zone. Any downregulated nodes within 2 hops of PARK2

in the complete network were also added (Fig. 4a). GO

enrichment was carried out specifically for cell cycle regu-

lation as PARK2 is known to be a cell cycle regulator. Inter-

estingly, it was found that the PARK2 influence zone was

highly enriched for cell cycle regulation (Fig. 4b), includ-

ing G2/M transition and G1/S transition of mitotic cell

cycle, mitotic cell cycle, positive and negative regulation

of cell cycle.

The influence exerted by PARK2 was studied by focus-

ing on the nodes downstream of PARK2 (Fig. 4c). It

was found that many downstream genes such as MDM2,

CHEK1, SQSTM1 and DUSP1 were involved in cell cycle

regulation.

Since overexpression of PARK2 inhibits the progression

of cell cycle, the expected response from the cell would

be to modify other regulatory mechanisms of cell cycle

progression to counteract this arrest. Examination of the

nodes downstream of the top-ranked epicenter (PARK2)

showed that this was indeed the case (Fig. 4d). Major

remodeling can be inferred from the G0/G1 and G1/S

transition. SQSTM1 (P63) is involved in exiting of the cell

from the M phase in the cell cycle. CD44, EPHA2, RGS2

and ARL6IP1 are positive regulators for G0/G1 transition.

MDM2 is an activator of G1/S transition as it inhibits

P53 and Rb proteins. However, CHEK1 and DUSP1 are

repressors of G1/S phase transition. CHEK1 acts as a

Cyclin E repressor by inhibiting Cdc at the DNA-repair

check-point. DUSP1 is a repressor of the MAPK path-

way [23]. FGF2 and NEK6 are repressors of G2/M phase

transition [24].

Since creation of such influence zones for every highly

ranked gene is a tedious task, an automated script was

developed to output the influence zone as well as to

summarize the details of differentially expressed genes

in an easy-to-read table. The table thus generated for

the second highest ranked epicenter, CD44, is shown in

Table 1.

Sensitivity analysis

The gene expression levels of all the genes were either

increased or decreased as indicated in the Methods

section. The results of the 200 independent runs were then

analysed to check how the top ranked epicenters fared. It

was found that 9 nodes were always present in the top 10

ranked epicenters specific to the perturbed condition irre-

spective of the direction or extent of perturbation. When

the top 20 ranks were considered, 16 nodes were common

to all 200 experiments. Also, PARK2 was ranked the 9.6th

most important epicenter specific to the perturbed con-

dition on average out of 10,306 possible candidates. This

shows that even when every single node in the network

was perturbed, the nodes ranked as epicenters remained

largely unaffected.

Case study 2

Microarray data for the knockdown of SP1 gene in HeLa

cells were taken fromGSE37935 [10]. The knockdownwas

carried out by treating HeLa cells with an siRNA directed

against the SP1 mRNA. SP1 is a global transcription fac-

tor, and regulates various important biological processes

such as proliferation, cell differentiation and oncogene-

sis. Since the knockdown of a transcription factor can

lead to downregulation of its target genes which are pos-

itively regulated, these genes will have higher activity in

the control condition. Hence in this scenario, we analyse

epicenters specific to the perturbed as well as the control

condition.

Biological interpretation

In the perturbed (SP1 knockdown) condition, the top

10 ranked epicenters consist of 14 genes. 5 genes are
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Fig. 4 PARK2 influence zone. Detailed biological interpretation of PARK2 influence zone. a The PARK2 influence zone consists of 118 nodes and 119

edges. Red colored nodes correspond to upregulated genes, and green corresponds to downregulated genes. The epicenter is depicted using a

hexagon. b GO enrichement of genes in PARK2 influence zone shows that most genes are involved in cell-cycle regulation. c Nodes downstream of

PARK2 dMechanistic insights into cell-cycle dysregulation upon PARK2 overexpression

assigned the same rank due to similar activity and con-

nectivity. Out of the 14 epicenters, 5 genes, namely

GPRC5A, EBF1, PTPN4, FAS and ADCK2 were differen-

tially expressed. GPRC5A, EBF1 and PTPN4 genes play

important roles in development, cellular growth, and dif-

ferentiation [20]. FAS is involved in physiological regula-

tion of programmed cell death. The function of ADCK2

is not yet clear. In the control condition, top 10 epicenters

include 50 genes, with 30 genes being ranked 7th and 9

genes being ranked 2nd due to similar activity. In this case,

SP1 appeared as the 10th ranked epicenter.

Immediate influence zone The immediate influence

zone of the top 10 epicenters was constructed as a com-

bined network. The targets of SP1 and their first interac-

tors were added to this network, and the entire network

was pruned to retain only epicenters, targets of SP1, differ-

entially expressed genes, and genes which were essential

for the connectivity of the graph. This pruned graph con-

tains 142 nodes and 228 edges, and is shown in Fig. 5a.

Analysis of the graph showed that epicenters were gener-

ally indirect regulators of the targets of SP1. This could

indicate that alternative methods of regulating SP1 targets
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Table 1 Automated summary for CD44 (case study 1). CD44 was the 2nd ranked epicenter specific to the perturbed condition. The table shows the nodes in the immediate

influence zone (up to 2 hops up/downstream) of CD44 which showed significant differential expression (2-fold). The first row corresponds to the input node, CD44. In the

subsequent rows, the first column shows the differentially expressed gene (DEG). If the DEG is more than 1 hop away from CD44, the intermediate nodes on the unweighted

shortest path are described in columns 6 onwards

Node Direction Num_hops Fold_change Which_network Intermediate_node_1 Fold_change Significant_fc? Which_network

CD44 input_node 0 1.0776225906 unique to perturbed CSHAN

L1CAM down_CD44 2 4.3995043553 unique to perturbed CSHAN EZR 1.4077313131 False common to both CSHANs

CBLB down_CD44 2 2.7450193138 unique to perturbed CSHAN EGFR 0.9625043727 False common to both CSHANs

TNNT1 down_CD44 2 0.3519677136 unique to control CSHAN FYN 1.047836048 False common to both CSHANs

RPS6KA2 down_CD44 2 3.7937197295 unique to perturbed CSHAN EGFR 0.9625043727 False common to both CSHANs

NEDD9 down_CD44 2 0.4699818669 not in any CSHAN FYN 1.047836048 False common to both CSHANs

TFPI down_CD44 2 2.7743880699 not in any CSHAN MMP7 0.1323159054 True not in any CSHAN

MBNL3 down_CD44 2 4.0574758277 not in any CSHAN LCK 0.967172212 False not in any CSHAN

IVNS1ABP down_CD44 2 2.0134951539 common to both CSHANs ARHGEF1 1.0053092034 False not in any CSHAN

ITGB3 down_CD44 2 0.2450269938 not in any CSHAN COL1A2 1.6105271705 False common to both CSHANs

PLA2G4A down_CD44 2 7.496384226 not in any CSHAN COL1A2 1.6105271705 False common to both CSHANs

FN1 down_CD44 2 2.2964207553 unique to perturbed CSHAN COL1A2 1.6105271705 False common to both CSHANs

MEF2C down_CD44 2 2.2667831761 unique to perturbed CSHAN CD74 0.9449408306 False not in any CSHAN

PTK2 down_CD44 2 0.2821339725 not in any CSHAN EGFR 0.9625043727 False common to both CSHANs

CHN1 down_CD44 2 3.1958019401 unique to perturbed CSHAN TGFBR1 0.7284950123 False common to both CSHANs

EGR1 down_CD44 2 2.1681746909 common to both CSHANs ARHGEF1 1.0053092034 False not in any CSHAN

SRGN down_CD44 1 0.4947740703 not in any CSHAN

OCLN down_CD44 2 2.9381790192 not in any CSHAN TGFBR1 0.7284950123 False common to both CSHANs

ADAM12 down_CD44 2 2.3217184015 unique to perturbed CSHAN IGFBP3 1.9432883668 False common to both CSHANs

TIMP1 down_CD44 2 0.4692561311 unique to control CSHAN MMP1 0.9852575467 False not in any CSHAN

MMP7 down_CD44 1 0.1323159054 not in any CSHAN

L1CAM up_CD44 2 4.3995043553 unique to perturbed CSHAN ANK1 0.7930398677 False not in any CSHAN

ITGB3 up_CD44 2 0.2450269938 not in any CSHAN COL1A2 1.6105271705 False common to both CSHANs

MMP7 up_CD44 1 0.1323159054 not in any CSHAN
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Fig. 5 Case study 2 (SP1 knockdown in HeLa cell line). Influence zone of the top 10 epicenters was constructed from the condition-specific highest

activity network and enriched with the targets of SP1 and their immediate neighbors. This network was pruned to retain only epicenters, SP1 targets,

differentially expressed genes, and the genes connecting them. Nodes with a hexagonal shape represent epicenters, a golden border around the

node indicates SP1 target, and a pink border around the node indicates mediator gene. The rank of each epicenter is written next to it in red. (a) SP1

knockdown condition. 14 genes occur in the list of top 10 epicenters (5 genes correspond to rank 5). (b) Control condition. 50 genes correspond to

top 10 epicenters. 30 genes correspond to rank 7, and regulate MYC, a target of SP1. Similarly, 9 genes correspond to rank 2, and regulate CEBPB
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gained importance due to the knockdown of SP1. Many

targets of SP1 were found in the highest activity paths

which trace back to the epicenters. For example, MYC and

TP53 were highlighted as important genes regulated by

SP1, and 10 regulators of MYC were ranked as epicen-

ters, with 5 of them being assigned the same rank due to

similar activity. The paths tracing back to the epicenters

clearly illustrate the cascade of influence of the epicenters

to the targets of SP1, involving mediator genes. The most

prominent mediator genes in the SP1 knockdown condi-

tion are EEF1A1 and HSPA8. EEF1A1 is regulated by 7

epicenters, of which FAS, EBF1 and PTPN4 are differen-

tially expressed. EEF1A1 in turn regulates 5 targets of SP1,

of which EP300 is differentially expressed. EP300 is a tran-

scriptional co-activator protein, and is important in the

processes of cell proliferation and differentiation.

Since the data being analysed is of knockdown of a tran-

scription factor (SP1), we investigate the targets regulated

by SP1 by focusing on the highest activity network specific

to the control condition. The influence zone for the epi-

centers with top 10 ranks was constructed and pruned as

in the perturbed condition. This graph contains 125 nodes

and 168 edges, and is shown in Fig. 5b. MYC and CEBPB

emerged as important genes in this condition. MYC is a

direct target of SP1, and also regulates other targets of

SP1. CEBPB is an important mediator gene, which regu-

lates 4 targets of SP1, and is regulated by 9 epicenters, all

of which were ranked 2nd.

In conjunction, the analysis of the two conditions

revealed that the effect of SP1 knockdown spreads

through 3 important hubs - MYC, CEBPB and TP53.

Regulators of these important hubs were ranked as epi-

centers by our algorithm. MYC has 11 target genes which

are differentially expressed. ZNFX1, TAF1D, NFX1, TFIIF

and NFX1 are involved in tanscriptional and post tran-

scriptional regulation [20]. CDKN2A activity leads to cell

cycle arrest. ODC1 is an enzyme of polyaminemetabolism

and PFAS participates in purine metabolism [12]. Both

metabolic pathways are necessary for DNA replication

and transcription. NFX1 is mainly involved in inflamma-

tory response. TP53 also regulates 11 genes, of which

three genes, namely PTTG1, COPS5 and CDKN2A, are

differentally expressed. COPS5 is one of the members of

the COP9 signalosome which regulates mutiple signaling

pathways [20]. PTTG1 is involved in cell cycle regula-

tion. CEBPB regulates 10 gene in the control condition, of

which two were differentally expressed - SP1 and INHBE.

Discussion

EpiTracer identifies nodes at which highly active paths

originate and which are able to reach a large fraction of

the active network. When annotated with the condition

in which they are active, these nodes correspond to the

most influential players in that specific condition and are

termed epicenters. It is important to note that the epicen-

ter does not necessarily correspond to the source of the

perturbation.

EpiTracer can be expected to have wide applicability,

demonstrated here by two entirely different datasets stud-

ied in this work. Since the algorithm focuses on active

nodes and edges, the network on which the analysis is

carried out must be chosen based on the context. As

demonstrated in case study 1, analysing the perturbed

highest activity network is preferable when the pertur-

bation is expected to be an upregulation event. If the

perturbation is expected to be a downregulation event,

analysing the control highest activity network will yield

the set of nodes which were influential before the knock-

down (case study 2). An analysis of the perturbed highest

activity network is also useful since it can yield a list of

epicenters that are activated in the perturbed condition

upon removal of the knocked-out regulator. If the nature

of the perturbation is unknown, both highest activity net-

works should be analysed. A limitation of the algorithm is

that the source of the perturbation may not appear in the

highest activity networks if its expression level remains

low both before and after the perturbation. In such cases

EpiTracer will be able to highlight the highly active nodes

close to the source of the perturbation, but not the

source itself.

It was observed during the course of this work that the

largest strongly connected component (LSCC) plays an

important role in spreading a perturbation through the

network. The largest strongly connected component is the

largest subgraph in which there exists a path from every

node to every other node. It was found that the epicen-

ter was a part of the LSCC in the highest activity network

under study. If the LSCC comprises a big enough per-

centage of the graph, we believe it might be possible to

speed up the algorithm by restricting the search only to

the nodes in the LSCC.

Conclusion

We propose a new algorithm, EpiTracer, to trace the epi-

center of perturbations in a condition-specific biological

network. The algorithm is capable of extracting the high-

est activity network specific to each condition under study

and ranking the nodes in these highest activity networks

with a ripple centrality score, which reflects how well any

influence from that node can ripple out into the rest of

the network.

The algorithm has been demonstrated on two case stud-

ies, one where a gene was overexpressed, and another

where a gene was knocked down. In the case of over-

expression, EpiTracer was able to identify the overex-

pressed gene as the most important epicenter. Biological

analysis of the top-ranked epicenters showed that all of

them had functions relevant to cell cycle progression,
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and highlighted a scenario where the most important

epicenters were involved in either spreading the influ-

ence of PARK2 or working to counteract its effect. Also,

5 of the top 10 epicenters showed no significant change

in expression level, and yet were found to be biologically

meaningful epicenters. This shows that our algorithm is

able to highlight more than simple differential expression.

The immediate influence zone of PARK2 generated by

the EpiTracer pipeline, and the dysregulated genes in this

were also found to be enriched in genes involved in cell

cycle regulation. In the knockdown case study, alterna-

tive regulators of the knocked-down gene’s targets were

highlighted as epicenters. Also, the gene that was knocked

down was picked up as an epicenter in the control con-

dition. This demonstrates the general applicability of the

algorithm. Sensitivity analysis has been carried out to

show that the epicenters identified by EpiTracer are largely

unaffected by small changes in the network.

The EpiTracer algorithm identifies the epicenters which

either spread a perturbation or respond to it. The paths

along which the influence ripples out of the epicenters is

highlighted by the condition-specific highest activity net-

work. This gives a system-wide, unbiased view of a disease

phenotype, and how the organism responds to it.
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