
ePlace: Electrostatics Based Placement Using Nesterov’s Method

Jingwei Lu1, Pengwen Chen2, Chin-Chih Chang3, Lu Sha3, Dennis J-.H. Huang3, Chin-Chi Teng3, Chung-Kuan Cheng1

1Department of Computer Science and Engineering, University of California, San Diego
2Department of Applied Mathematics, National Chung Hsing University, 3Cadence Design Systems, Inc.

jlu@cs.ucsd.edu, pengwen@nchu.edu.tw, {chinchih, lusha, dhuang, ccteng}@cadence.com, ckcheng@ucsd.edu

Abstract—ePlace is a generalized analytic algorithm to handle large-
scale standard-cell and mixed-size placement. We use a novel density
function based on electrostatics to remove overlap and Nesterov’s method
to minimize the nonlinear cost. Steplength is estimated as the inverse of

Lipschitz constant, which is determined by our dynamic prediction and
backtracking method. An approximated preconditioner is proposed to
resolve the difference between large macros and standard cells, while
an annealing engine is devised to handle macro legalization followed

by placement of standard cells. The above innovations are integrated
into our placement prototype ePlace, which outperforms the leading-
edge placers on respective standard-cell and mixed-size benchmark suites.
Specifically, ePlace produces 2.83%, 4.59% and 7.13% shorter wirelength
while runs 3.05×, 2.84× and 1.05× faster than BonnPlace, MAPLE
and NTUplace3-unified in average of ISPD 2005, ISPD 2006 and MMS
circuits, respectively.

I. INTRODUCTION

Placement remains crucial and challenging in VLSI physical design

and could significantly impacts routing [11] and timing closure.

Modern ASIC has thousands of large macros and millions of standard

cells, of which the complexity challenges the capability of existing

placers. Various categories of standard-cell placement algorithms

have been proposed in literature. Min-cut approaches [16] simplify

the problem by recursive partitioning, while quality loss due to subop-

timal circuit and whitespace partition is hard to recover. Quadratic

approaches [7]–[9], [18] approximate wirelength and density using

quadratic functions, nevertheless, the low modeling order restricts the

solution quality and robustness. Instead, nonlinear approaches [1],

[4], [6] use high-order wirelength [5], [14] and density [4], [14] cost

functions, where multi-level cell clustering is applied to reduce netlist

complexity but introduce quality overhead.

Prior mixed-size placement can be divided into three categories.

Two-stage methods [2], [3] conduct floorplanning followed by

standard-cell placement, while the limited cell information usually in-

duces suboptimal floorplan solution. Constructive (floorplan-guided)

methods [16], [21] have standard cells grouped into soft blocks and

optimized by floorplanner with incremental placer, where suboptimal

clustering causes inevitable quality loss. One-stage methods remain

popular among analytic placement algorithms [1], [4], [7], [20].

Macros and standard cells are placed simultaneously to avoid above

limitations. However, unbalanced gradient due to problem complica-

tion usually causes placement hard to converge.

In this work, we develop ePlace, a generalized one-stage, flat,

analytic nonlinear placement algorithm. Despite broad spectrum of

topological and physical attributes, all the movable objects are equal-

ized in the optimizer’s perspective and handled in exactly the same

way to ensure high and stable performance over different benchmarks.

Our specific contributions are listed as follows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 $15.00.
http://dx.doi.org/10.1145/2593069.2593133

• We provide detail analysis on the novel density function devel-
oped in our prior work [10].

• We use Nesterov’s method as the nonlinear solver with
steplength dynamically predicted via Lipschitz constant. A back-

tracking method is developed to improve the prediction accuracy.

• We develop an approximated preconditioner to resolve the gap
between standard cells and macros.

• We devise an annealing-based macro legalizer to directly control
macro shifting. A standard cell-only global placement follows to

resolve the quality overhead induced during macro legalization.

• We integrate all the innovations into ePlace, a generalized place-
ment framework, with promising experimental results obtained

on ISPD 2005 [13], ISPD 2006 [12] and MMS [21] benchmarks.

The remainder is organized as follows. Section II introduces the

background knowledge. Section III provides an overview of ePlace.

Section IV analyzes the placement density function. Section V

discusses the development of global placement. Section VI introduces

our annealing-based macro legalizer and the standard-cell global

placer. Experiments and results are shown in Section VII. We

conclude in Section VIII.

II. ESSENTIAL CONCEPTS

Given a placement instance G = (V,E,R) with n objects V
(standard cells and macros), nets E and region R, placement is
formulated as a constrained optimization. The constraint desires a

solution v = {x1, . . . , xn, y1, . . . , yn} to accommodate objects with
sufficient sites but zero overlap or density violation. Global placement

uniformly decomposes the region into n×n rectangular grids (bins)
denoted as B. For every grid b, its density ρb(v) should not exceed
the bound ρt (benchmark specific). The objective is usually set as the
total half-perimeter wirelength (HPWL) of all the nets. Let We(v)
denote the HPWL of each net e, the total HPWL W (v) is

W (v) =
X

e∈E
We(v) =

X

e∈E

„

max
i,j∈e

|xi − xj | + |yi − yj |

«

. (1)

As a result, the cost function is formulated as

min
v

W (v) s.t. ρb(v) ≤ ρt, ∀b ∈ B. (2)

Analytic methods conduct placement using gradient-based opti-

mization. As HPWL is not differentiable, we use the weighted-

average [5] model for wirelength smoothing as below

fWex(v) =

P

i∈e xi exp (xi/γ)
P

i∈e exp (xi/γ)
−

P

i∈e xi exp (−xi/γ)
P

i∈e exp (−xi/γ)
, (3)

here fWe(v) = fWex + fWey and γ controls the modeling accuracy.
A density penalty function helps incorporate the |B| constraints
in Eq. (2) to enhance analyticity. In literature, quadratic placers [7],

[8], [19], [20] introduce anchor points to model the density gradient

as a linear term, while nonlinear placers [1], [4], [6] smooth the

density distribution by bell-shape functions [14]. Instead, we use the

electrostatics based density function proposed in our prior work [10]

to formulate the problem as

min
v

f(v) = fW (v) + λN(v), (4)

where N(v) is the density function and λ is the penalty factor.

1

III. PLACEMENT OVERVIEW

Figure 1 shows the flowchart of ePlace. Given a placement

instance, ePlace quadratically minimizes the total wirelength at the

mixed-size initial placement (mIP) stage. The initial solution vmIP

is of low wirelength but high overlap. Based on target density ρt,
our mixed-size global placer (mGP) populates extra whitespace with

unconnected fillers, and co-optimizes all the objects (standard cells,

macros and fillers) together. After mGP, we remove fillers and fix

standard cells, then invoke the annealing engine mLG to legalize

macros. In the second-phase global placement (cGP), we retrieve

all the fillers and distribute them appropriately, then free standard

cells and co-place them with fillers to further reduce the wirelength.

Finally, in cDP we invoke the detail placer in [4] to legalize and

discretely optimize the standard-cell layout.

Lipschitz

Prediction

Hessian Pre-

conditioning

f

Gradient

Computation

Steplength

Backtracking

vlo

Converge?

(< 10%)
no

inst.

Fix Macros

vcDP

Random Filler

Insertion

Remove Filler,

Fix Std-Cells

vmLG

vcGP

Macro Legalization

(mLG)

Initial Placement (mIP)

fpre
else

Nesterov’s

Optimizer

pass

Anneal Macro

Legalization

Filler-Only

Placement

vmGP

Std-Cell & Filler

Co-Placement

Detail Placement (cDP)

vmIP

vfiller

opt. vfiller

vmLG

vm

Std-Cell Global

Placemnet (cGP)
Mixed-Size Global Placement (mGP)

Fig. 1: The flowchart of ePlace.

ePlace disallows rotation or flipping of macros to follow contest

protocols [12], [13] and lithography requirements. However, it has

the flexibility to integrate the rotational and flipping gradients [4].

Deadspace allocation is not considered but can be realized by

appropriate macro inflation. 6 . 0 E + 78 . 0 E + 78 . 0 E + 71 . 0 E + 8 therl ap O V L P 2 . 0 E + 74 . 0 E + 72 . 0 E + 74 . 0 E + 76 . 0 E + 7 ot al wi rel engtot al obj ect ove m I P m G P m L G c G PH P W L 0 . 0 E + 00 . 0 E + 0 1 2 6 5 1 7 6 1 0 1 1 2 6 1 5 1 1 7 6 2 0 1 2 2 6 2 5 1 2 7 6 3 0 1 3 2 6 3 5 1 t ot o i t e r a t i o nH P W L
Fig. 2: Total HPWL and object overlap (OVLP) at different stages and
iterations of placement on MMS ADAPTEC1.

ePlace maximally expands the design space for mGP while shrinks

it for mLG and cGP. The major optimization effort is budgeted on

mGP to produce optimal layout of global placement. In contrast,

minor layout perturbation is expected in mLG and cGP. As Figure 2

shows, the constrained optimization focuses on the mGP stage and

terminates when overlap is small enough (density overflow τ ≤
10%). ePlace is built upon our recent placement work FFTPL [10]
with the same parameter setting1, filler formation, etc..

IV. DENSITY FUNCTION ANALYSIS

Our prior work [10] develops a novel density function based on

the electrostatic analogy. Modeling every object as a charge, the

density function N(v) in Eq. (5) is modeled as the total electric

1E.g., grid decomposition, initialization and iterative adjustment of wirelength
coefficient γ, density overflow τ and penalty factor λ, etc..

potential energy. The electric force spreads objects apart and reduces

total energy to zero in the end, where the electrostatic equilibrium

state (i.e., even density distribution) is reached. Compared to previous

analytic approaches, the density function enables ePlace to achieve

the minimum density overflow, as shown in Table I and Table II.

N(v) =
X

i∈V
Ni(v) =

X

i∈V
qiψi(v), (5)

here qi is the electric quantity of object i (equal to its area), and ψi
is the local potential. A well-defined Poisson’s equation in Eq. (6)

is proposed to correlate spatial density and potential distribution.

Neumann boundary condition (i.e., zero gradient at the boundary) is

enforced to prevent objects from moving outside the placement region

R. We remove the zero-frequency component from the spatial density
and potential distribution, in order to couple the equilibrium state

with even charge distribution within the placement domain, rather

than charge distribution only along the placement boundary. Also,

the constant term during integral operation can be ignored.
8

>

<

>

:

∇ · ∇ψ(x, y) = −ρ(x, y),

n̂ · ∇ψ(x, y) = 0, (x, y) ∈ ∂R,
RR

R
ρ(x, y) =

RR

R
ψ(x, y) = 0.

(6)

Here x and y are spatial coordinates, ρ(x, y) and ψ(x, y) denote
spatial density and potential distribution, n̂ is the outer norm vector at

the boundary ∂R. ξ(x, y) = ∇ψ(x, y) is the spatial field distribution.
The electric force on each object i equals qiξi(v), where ξi is the
local field and can be decomposed into horizontal (ξix) and vertical
(ξiy) components. Our density function N(v) is generalized without
special handling of fixed blocks. The global smoothness of N(v) (by
Eq. (5) and (6)) indicates that movement of any object will change

the global potential map thus energy of all the objects. The gradient

of density function w.r.t. the horizontal movement of object i is

∂N(v)

∂xi
=
∂Ni
∂xi

+
∂

“

P

j 6=iNj
”

∂xi
= qi

∂ψi
∂xi

+
X

j 6=i
qj
∂ψj
∂xi

. (7)

By the nature of electrostatics, the potential at each charge i is the
superposition of potential contributed by the remaining charges in

the system. As a result, the mutual potential energy of each pair

of charges i and j are equivalent. Let Nij denote the potential
energy of charge i contributed by j, where Ni =

P

j 6=iNij . For
the electrostatic system on the two-dimensional plane, we have

Nij = Nji =
qiqj

2πǫ0
ln(ri,j), where ri,j is the physical distance

between the two charges i and j. As a result, we have

∂
“

P

j 6=iNj
”

∂xi
=
∂

“

P

j 6=iNji

”

∂xi
=
∂Ni
∂xi

⇒
∂N

∂xi
= 2

∂Ni
∂xi

, (8)

and 2 ∂Ni

∂xi
= 2qi

∂ψi

∂xi
= 2qiξix is the density gradient. Similarly,

the density gradient of N(v) w.r.t. vertical movement of i is 2qiξiy .
We solve Eq. (6) by spectral methods to obtain ψ(x, y) thus ξx(x, y)
and ξy(x, y). The time complexity is only O(n log n) by fast Fourier
transform (FFT) [10]. The well-formulated density gradient, global

density smoothness and low computational complexity enables ePlace

to conduct placement on the flat netlist and the flat density grid of

high resolution. Compared to prior nonlinear placers [1], [4], [6]

with multi-level netlist clustering and grid coarsening, ePlace avoids

quality loss due to suboptimal clustering and low density resolution.

V. MIXED-SIZE GLOBAL PLACEMENT (MGP)

mGP conducts simultaneous optimization on both macros and

standard cells in a smooth way as Figure 3 shows. As a generalized

approach, mGP handles macros and standard cells in exactly the same

way (c.f. macro shifting when declustering [4], soft block formation

2

(a) Iter=50, W=34.76e6, O=73.30e6 (b) Iter=100, W=41.46e6, O=59.11e6

(c) Iter=125, W=44.44e6, O=49.04e6 (d) Iter=150, W=48.21e6, O=40.10e6

(e) Iter=200, W=56.99e6, O=31.56e6 (f) Iter=265, W=63.37e6, O=16.48e6

Fig. 3: Snapshots of mGP progression on MMS ADAPTEC1 with standard
cells, macros and fillers shown by red points, black rectangles and blue points.
Total wirelength and object overlap are denoted by W and O, respectively.

by standard cells [20], [21], particular macro density smoothing [6],

[8], macro shredding and pseudo-net insertion [7], etc.). In each

iteration, we compute the gradient and preconditioner, predict the

Lipschitz constant, and adjust steplength via backtracking. Nesterov’s

method solves the nonlinear problem iteratively till convergence.

A. Existing Problems

Line search remains the major runtime bottleneck in Conjugate

Gradient method2, which is used in prior nonlinear placers [6].

Moreover, in practice the steplength determined by line search usually

fails to satisfy the optimizer’s conjugacy requirement [17], i.e., the

following search direction may not be orthogonal (w.r.t. the Hessian

matrix) to all previous ones, while the theoretical convergence rate

can not be expected. Instead of line search, [4] statically determines

the steplength via upper-bounded moving distance per iteration,

where solution quality is promised by sacrificing convergence rate.

As a result, a systematic solution with dynamic steplength adjustment

and theoretical support becomes desirable.

B. Nesterov’s Method with Lipschitz Constant Prediction

In this work, we use Nesterov’s method [15] for nonlinear opti-

mization, as Algorithm 1 shows. There are two placement solutions

uk and vk concurrently updated at each iteration k, only u is output

as final solution in the end. αk is the steplength while ak is an opti-
mization parameter. Initially, we set a0 = 1 and have both u0 and v0

set as vmIP . BkTrk denotes steplength backtracking (Section V-C),
∇fpre denotes the preconditioned gradient (Section V-D). Instead of
line search, we compute the steplength through a closed-form formula

of the Lipschitz constant of the gradient defined as below.

Definition 1. ∀ convex f(v) ∈ C1,1(H), ∃L > 0 s.t. ∀u,v ∈ H ,

‖∇f(u) −∇f(v)‖ ≤ L‖u − v‖. (9)

2Our empirical studies on FFTPL [10] show that line search takes more than
60% of the total runtime on placing ADAPTEC1 of ISPD 2005.

H as Hilbert space is a generalized notion of Euclidean space,
C1,1(H) requires f(v) with Lipschitz continuous gradient. As our
objective is non-convex, we leverage Nesterov’s method in an approx-

imate way. The convergence rate of Nesterov’s method is O(1/k2)
satisfying its steplength requirement (Eq. (4) of [15]). As [15] shows,

αk = L−1 satisfies the steplength requirement. The rationale behind

is that smaller Lipschitz constant indicates higher smoothness of

the gradient thus faster convergence can be achieved via larger

steplength, vice versa. However, exact Lipschitz constant is expensive

to compute, moreover, static estimation will be invalidated through

iterative change of the cost function3. As a result, we approximate

the Lipschitz constant and steplength as follows

eLk =
‖∇f(vk) −∇f(vk−1)‖

‖vk − vk−1‖
, αk = eL−1

k , (10)

only v is used for Lipschitz constant prediction. The computation

overhead is negligible since ∇f(vk−1) and ∇f(vk) are known.

Algorithm 1 Nesterov’s method in ePlace

Input: ak, uk, vk, vk−1, ∇fpre(vk), ∇fpre(vk−1)
Output: uk+1, vk+1, ak+1

1: αk = BkTrk (vk,vk−1,∇fpre(vk),∇fpre(vk−1))
2: uk+1 = vk − αk∇fpre(vk)

3: ak+1 =
“

1 +
p

4a2
k + 1

”

/2

4: vk+1 = uk+1 + (ak − 1) (uk+1 − uk) /ak+1

5: return

C. Steplength Backtracking

We develop a backtracking method to enhance the prediction

accuracy by preventing steplength overestimation, which misguides

optimization. Being used to generate vk+1, however, αk by Eq. (10)
is predicted using vk and vk−1. The iterative parameter adjustment in

the cost function may deteriorate the prediction accuracy. As a result,

our backtracking method predicts αk using vk and vk+1 instead. At

line 1 of Algorithm 2, we set the steplength computed by Eq. (10)

as a temporary variable α̂k. The respective temporary solution v̂k+1

(line 1) is used to produce a reference steplength. If it is exceeded by

α̂k (line 2), we update α̂k and v̂k+1 at line 3 and do the backtracking

circularly until the inequality at line 2 is satisfied. Here ǫ = 0.95 is

Algorithm 2 BkTrk

Input: solutions vk and vk−1, gradients ∇f(vk) and ∇f(vk−1)
Output: steplength αk and new solution vk+1

1: α̂k =
‖vk−vk−1‖

‖∇f(vk)−∇f(vk−1)‖ ; v̂k+1 = vk − α̂k∇f(vk)

2: while α̂k > ǫ
“

‖v̂k+1−vk‖
‖∇f(v̂k+1)−∇f(vk)‖

”

do

3: α̂k =
‖v̂k+1−vk‖

‖∇f(v̂k+1)−∇f(vk)‖ ; v̂k+1 = vk − α̂k∇f(vk)

4: end while

5: vk+1 = v̂k+1; αk = α̂k
6: return αk

the scaling factor to encourage earlier return of function BkTrk thus
prevent over-backtracking, which could consume too much runtime

with limited accuracy improvement. The runtime overhead is zero if

the first check at line 2 is passed, since the newly computed gradient

∇f(v̂k+1) can be reused at the following iteration. Experiments
show that the average number of backtracks per iteration over all

MMS benchmarks [21] is 1.037, indicating less than 4% runtime
overhead on mGP. Disabling backtracking causes ePlace to fail on

MMS BIGBLUE4 and increase wirelength by 43.12% in average of

3Wirelength coefficient γ in Eq. (3) and penalty factor λ in Eq. (4) are both
iteratively adjusted.

3

the remaining 15 MMS benchmarks, showing the importance of our

steplength backtracking method.

D. Nonlinear Placement Preconditioning

Preconditioning has broad application in quadratic placers [7], [20]

but zero attempts in nonlinear placers [1], [4], [6], mainly due to the

non-convexity of the density function. In this work, we approximate

the original Hessian Hf with a positive definite diagonal matrix eHf

as the preconditioner. We apply it to the gradient vector and use

∇fpre = eH−1
f ∇f to direct optimization. The horizontal part is

Hfx ≈ eHfx =

0

B

B

B

B

B

@

∂2f(v)

∂x2
1

0 · · · 0

0
∂2f(v)

∂x2
2

· · · 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 · · ·

∂2f(v)

∂x2
n

1

C

C

C

C

C

A

(11)

By Eq. (4) we have
∂2f(v)

∂x2
i

= ∂2W (v)

∂x2
i

+λ ∂
2N(v)

∂x2
i

, and we concisely

approximate
∂2W (v)

∂x2
i

and
∂2N(v)

∂x2
i

to ensure functionality of the

preconditioner. Differentiating the wirelength function in Eq. (3) by

two orders is computationally expensive and we use the vertex degree

of object i instead,

∂2W (v)

∂x2
i

=
X

e∈Ei

∂2We(v)

∂x2
i

⇒ |Ei|, (12)

where Ei denotes the net subset incident to the object i. The non-
convexity of the density function in Eq. (5) disables the traditional

preconditioner to achieve expected performance. Eq. (13) shows its

two-order differentiation

∂2N(v)

∂x2
i

= qi
∂2ψi(v)

∂x2
i

= qi
−∂ξix(v)

∂xi
⇒ qi. (13)

Here we use the linear term qi as the density preconditioner. The
total preconditioner is concisely formulated as eHf = |Ei|+λqi, thus
we have the preconditioned gradient ∇fpre = (|Ei| + λqi)

−1∇f .
Disabling preconditioner causes ePlace to fail on nine MMS bench-

marks, since macros have much larger area thus magnitude of gradient

than standard cells. As a result, unpreconditioned gradient makes

macros bounce between opposite placement boundaries, causing the

solution to oscillate thus fail to converge within limited number of

iterations (3000 in ePlace). In average of the remaining seven MMS

benchmarks, the wirelength is increased by 24.63%, indicating the
effectiveness of our preconditioner.

VI. MACRO LEGALIZATION (MLG) &

STANDARD-CELL GLOBAL PLACEMENT (CGP)

Based on the mGP solution vmGP , mLG legalizes and fixes the

macro layout, while cGP mitigates the quality overhead due to mLG.

A. Macro Legalization (mLG)

Unlike traditional simulated annealing (SA) based floorplanners

and macro placers [2], [3], [20] which perturb floorplan expression

then physically realize it, mLG uses SA to directly control macro

motion. We expect a high-quality solution from mGP. Only local

macro shifts are needed in mLG, while the shrunk design space can

be well explored by SA. As Figure 4 shows, mLG can be decomposed

into two levels. At each iteration of the outer loop (mLG iteration)

we update the cost function fmLG(v), as Eq. (14) shows.

fmLG(v) = W (v) + µDD(v) + µOOm(v), (14)

where W (v), D(v) and Om(v) denote the total wirelength, total
standard-cell area covered by macros and total macro overlap, re-

spectively. We set mLG as a constrained optimization.

j++, update

D, O

j=0, initialize

D, O

tj,k>tmin

k=0, initialize

tj,0, rj,0

Rand. Select &

Move (<rj,k)

Macro Legalization (mLG)

Simulated Annealing (SA)

else

k++, update

tj,k, rj,k

rand. in (0,1)

Incremental

Cost Est. (f)vmGP

else

vmLG

< exp(- f / t j , k)?Overlap Check

(Om=0?)

yes

yes

else

Fig. 4: Our two-level annealing-based macro legalizer.

(a) j=0, W=63.37e6, D=12.1e5, Om=6.1e5 (b) j=2, W=64.36e6, D=14.7e5, Om=0

Fig. 5: Distribution of macros (a) before and (b) after mLG on MMS
ADAPTEC1 with fixed standard-cell layout.

• Objective is to minimize W (v) + µDD(v). Since penalty on
D(v) will be transformed to wirelength during cGP and cDP,
we treat them equally in mLG thus statically set µD = W (v)

D(v)
.

• Constraint is zero macro overlap (Om(v) = 0). We set µO as
the penalty factor and multiply it by κ at each mLG iteration to
make the legalizer more aggressive on macro overlap reduction.

At each iteration of the inner loop shown in Figure 4 (SA iteration),

the annealer randomly picks a macro and randomly determine its

motion vector within the search range. The cost difference ∆f is
then incrementally evaluated and we generate a random number

τ ∈ (0, 1) to determine whether the new layout will be accepted by

τ < exp
“

− ∆f
tj,k

”

. Here j and k denote the mLG and SA iteration

indexes. The temperature tj,k at each iteration (j, k) is determined
based on the maximum cost increase ∆fmax(j, k) that will be ac-
cepted by more than 50% probability, thus we set tj,k = ∆fmax(j,k)

ln 2
.

We set ∆fmax(j, 0) (∆fmax(j, kmax)) as 0.03×κj (0.0001×κj),
denoting that cost increase by less than 3% (0.01%) at the first
(last) SA iteration will be accepted by more than half chance. These

parameters appear small but fit well into our framework, since only

minor layout change is expected. Meanwhile, they are scaled up

per mLG iteration to adapt to enhancement of penalty factor µO .
We initialize ∆fmax(j, k) by ∆fmax(j, 0) and linearly decreased
towards ∆fmax(j, kmax). The radius rj,k of macro motion range
is dependent on both the penalty factor and the amount of macros.

Given m macros to legalize, we set rj,0 = Rx√
m

× 0.05 × κj , which
means the entire placement region R can be decomposed into m
subregions, every macro can be moved within 5% of its assigned
region at each time. Similar to the temperature, the radius is scaled

by κ at each mLG iteration. In practice, we set κ = 1.5 to achieve
good tradeoff between quality and efficiency.

B. Standard-Cell Global Placement (cGP)

Despite fixed macros, cGP uses the same algorithm as that of mGP.

In contrast, cGP introduces only small changes to the standard-cell

layout and converges much faster than mGP. mLG is unaware of

existing fillers in vmGP and may introduce substantial macro-to-filler

overlap. As a result, we retrieve all the fillers and conduct a filler-only

placement for 20 iterations to relocate them appropriately. The result

is of minimal density cost such that subsequent placement of standard

4

(a) Iter=0, W=64.36e6, O=16.13e6 (b) Iter=51, W=63.04e6, O=16.29e6

Fig. 6: Distribution of standard cells and fillers (a) before and (b) after cGP
on MMS ADAPTEC1 with fixed macro layout.

cells will not sacrifice wirelength for density. Experiments show that

in average of all MMS benchmarks, the wirelength will be increased

by 6.53% if we disable the filler-only placement. All the standard
cells and fillers are then co-optimized by cGP. The initial penalty

factor λinitcGP is determined based on the penalty factor λ
last
mGP at the

last mGP iteration. As λ will be multiplied by up to 1.1 for maximal
aggressiveness enhancement, we set λinitcGP = λlastmGP × 1.1−m

denoting that m buffering iterations are budgeted for cGP to recover
the aggressiveness of mGP. This is shown in the cGP section of

Figure 2, where the wirelength (overlap) reduces (increases) sharply

to approach a low-wirelength initial solution for cGP (similar to what

mIP does). By increasing λcGP iteratively, cGP reduces the existing
overlap with small wirelength overhead. In practice, we set m as the
number of mGP iterations divided by ten.

VII. EXPERIMENTS AND RESULTS

We implement ePlace using C programming language and execute

the program in a Linux machine with Intel i7 920 2.67GHz CPU

and 12GB memory. To validate the performance of ePlace as a

generalized algorithm, we conduct experiments on ISPD 2005 [13]

and ISPD 2006 [12] (standard cell-based) benchmarks (with mLG

and cGP disabled in ePlace), as well as experiments on modern

mixed-size (MMS) benchmarks [21]. Notice that we use the original

benchmarks in all the experiments (i.e., without modification to

the circuits). There is a benchmark-specific density upper-bound ρt
in ISPD 2006 to incorporate routability concern. By the contest

protocol, exceeding ρt will induce wirelength penalty as sHPWL =
HPWL× (1 + 0.01 × τavg) where τavg denotes the scaled density
overflow per bin. MMS benchmarks inherit the same netlists and

density constraints from ISPD 2005 and ISPD 2006 benchmarks but

have macros freed and fixed IO blocks inserted. Detailed MMS circuit

statistics can be found in [21]. ePlace invokes the detail placer in [4]

for legalization and detail placement of standard cells (cDP). There

is no benchmark specific parameter tuning in our work, and we use

the official scripts to evaluate the placement performance.

Twelve state-of-the-art standard-cell and mixed-size placers are

included for performance comparison, namely, Capo10.5 [16], Fast-

Place3.0 [20], RQL [19], MAPLE [8], ComPLx (v13.07.30) [7],

BonnPlace [18], POLAR [9], APlace3 [6], mPL6 [1], NTUplace3-

unified [4], FLOP [21], FFTPL [10]. We have obtained the binaries

of eight placers and executed them in our machine. RQL, MAPLE,

BonnPlace and FLOP are not available due to IP and other issues,

thus we cite their performance from respective publications. Capo10.5

and mPL6 fail to work with MMS benchmarks in our machine, so we

cite the respective results from [21]. Also, APlace3 crashes on every

MMS circuit as reported in [21] thus is not included in the respective

experiments. MP-tree [3] and CG [2] are not available and have been

outperformed by NTUplace3-unified [4] with 21% and 9% shorter
wirelength, thus we do not include them in our experiments.

The results on ISPD 2005, ISPD 2006 and MMS circuits are shown

in Table I, II and III, respectively. On ISPD 2005 circuits, ePlace

produces the best solutions for all the eight cases and outperforms

the leading placer BonnPlace by in average 2.83% shorter wirelength
and 3.05× faster runtime. On ISPD 2006 circuits, ePlace produces
the best solutions for seven of the eight cases and outperforms the

leading placer MAPLE by in average 4.59% shorter wirelength and
2.84× faster runtime. On the MMS circuits, ePlace produces the best
solutions for eleven of the sixteen cases. Despite none macro rotation

or flipping, ePlace still outperforms the leading mixed-size placer

NTUplace3-unified by in average 7.13% shorter wirelength with

essentially the same runtime. ePlace also achieves the smallest density

overflow among all the placers except for Capo10.5 on ISPD 2006

circuits, which lags behind ePlace by 43.73% wirelength. Figure 7
shows the runtime breakdown of ePlace on MMS benchmarks.

mGP is the most effective placement stage (as Figure 2 shows) and

it consumes the longest runtime. A further runtime breakdown of

mGP shows that computation of density and wirelength gradients

and other operations (Lipschitz constant prediction, parameter update,

etc.) consume 57%, 29% and 14% runtime of mGP, respectively.1 1 . 7 0 %1 3 . 8 8 % m I P5 1 . 3 8 %8 . 9 5 %1 4 . 0 8 % m I Pm G Pm L Gc G PD P5 1 . 3 8 % c D P
Fig. 7: The runtime breakdown of ePlace in average of MMS benchmarks.

VIII. CONCLUSION

ePlace is a generalized and effective placement algorithm to handle

standard-cell and mixed-size circuits of large scale. Using the novel

density function based on electrostatics, macros and standard cells

are equalized by preconditioning and smoothly co-optimized by Nes-

terov’s method with steplength determined by Lipschitz continuity.

ePlace resolves the traditional bottlenecks in nonlinear placement

(low efficiency due to line search, suboptimality of netlist clustering,

etc.) and shows that nonlinear placement has the capability to

outperform cutting-edge quadratic placement [8], [9], [18] with better

quality and comparable or even shorter runtime. Our future work

targets acceleration via parallel computation and extension towards

other design objectives like timing, routability, and etc..

IX. ACKNOWLEDGEMENT

The authors acknowledge the support of NSF CCF-1017864.

REFERENCES

[1] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced
Multilevel Mixed-Size Placement. In ISPD, pages 212–214, 2006.

[2] H.-C. Chen, Y.-L. Chunag, Y.-W. Chang, and Y.-C. Chang. Constraint
Graph-Based Macro Placement for Modern Mixed-Size Circuit Designs.
In ICCAD, pages 218–223, 2008.

[3] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang, and D. Liu. MP-Trees:
A Packing-Based Macro Placement Algorithm for Modern Mixed-Size
Designs. IEEE TCAD, 27(9):1621–1634, 2008.

[4] M.-K. Hsu and Y.-W. Chang. Unified Analytical Global Placement
for Large-Scale Mixed-Size Circuit Designs. IEEE TCAD, 31(9):1366–
1378, 2012.

[5] M.-K. Hsu, Y.-W. Chang, and V. Balabanov. TSV-Aware Analytical
Placement for 3D IC Designs. In DAC, pages 664–669, 2011.

[6] A. B. Kahng and Q. Wang. A Faster Implementation of APlace. In
ISPD, pages 218–220, 2006.

[7] M.-C. Kim and I. Markov. ComPLx: A Competitive Primal-dual
Lagrange Optimization for Global Placement. In DAC, pages 747–752,
2012.

[8] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji.
MAPLE: Multilevel Adaptive Placement for Mixed-Size Designs. In
ISPD, pages 193–200, 2012.

[9] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev. POLAR:
Placement based on Novel Rough Legalization and Refinement. In
ICCAD, pages 357–362, 2013.

5

TABLE I: HPWL (×106) on the ISPD 2005 benchmark suite [13]. CP=Capo, FP=FastPlace, MPE=MAPLE, CPx=ComPLx, BPL=BonnPlace, AP=APlace,
NP3U=NTUplace3-unified. Cited results are marked with ∗. All the results are evaluated by the official scripts [13].

Categories Min-Cut Quadratic Nonlinear
Benchmarks # Cells CP10.5 FP3.0 RQL∗ MPE∗ CPx BPL∗ POLAR AP3 NP3U mPL6 FFTPL ePlace

ADAPTEC1 211K 88.70 78.34 77.82 76.36 77.73 76.87 77.21 78.35 80.29 77.93 76.46 74.63

ADAPTEC2 255K 103.50 93.47 88.51 86.95 88.84 86.36 86.16 95.68 90.18 92.04 85.57 84.84

ADAPTEC3 452K 235.78 213.48 210.96 209.78 203.45 202.00 201.30 218.52 233.77 214.16 202.16 194.57

ADAPTEC4 496K 205.97 196.88 188.86 179.91 183.16 181.53 182.37 209.28 215.02 193.89 185.83 179.02

BIGBLUE1 278K 107.58 96.23 94.98 93.74 94.41 94.85 94.67 100.02 98.65 96.80 91.64 90.99

BIGBLUE2 558K 163.75 154.89 150.03 144.55 145.37 144.21 143.85 153.75 158.27 152.34 145.54 141.83

BIGBLUE3 1097K 407.28 369.19 323.09 323.05 337.72 317.71 324.53 411.59 346.33 344.25 359.00 308.77

BIGBLUE4 2177K 952.20 834.04 797.66 775.71 788.30 781.79 781.06 871.29 829.09 829.44 805.90 753.20

Average HPWL 21.14% 10.0% 5.40% 3.21% 4.50% 2.83% 3.08% 14.33% 12.05% 8.33% 4.70% 0.00%
Average Runtime 8.94× 0.53× 0.91× 2.84× 0.52× 3.05× 0.52× 9.13× 1.40× 3.78× 2.21× 1.00×

TABLE II: Scaled HPWL (×106) on the ISPD 2006 benchmark suite [12]. CP=Capo, FP=FastPlace, MPE=MAPLE, CPx=ComPLx, AP=APlace,
NP3U=NTUplace3-unified. Cited results are marked with ∗. All the results are evaluated by the official scripts [12].

Categories Min-Cut Quadratic Nonlinear
Benchmarks # Cells ρt CP10.5∗ FP3.0 RQL∗ MPE∗ CPx POLAR AP3∗ NP3U mPL6 ePlace

ADAPTEC5 843K 0.5 494.64 472.72 443.28 407.33 415.77 438.47 520.97 444.41 428.31 397.53

NEWBLUE1 330K 0.8 98.48 74.11 64.43 69.25 64.75 67.52 73.31 61.01 72.62 62.31

NEWBLUE2 442K 0.9 309.53 206.04 199.60 191.66 193.06 191.25 198.24 194.80 201.91 182.69

NEWBLUE3 494K 0.8 361.25 297.46 269.33 268.07 273.42 271.28 273.64 275.08 285.26 266.80

NEWBLUE4 646K 0.5 362.40 308.35 308.75 282.49 292.82 305.14 384.12 296.62 298.20 276.13

NEWBLUE5 1233K 0.5 659.57 621.47 537.49 515.04 507.74 521.85 613.86 537.92 535.80 492.62

NEWBLUE6 1255K 0.8 668.66 549.87 515.69 494.82 501.05 512.06 522.73 534.96 523.47 464.44

NEWBLUE7 2508K 0.8 1518.75 1105.43 1057.80 1032.60 1041.21 1045.20 1098.90 1096.16 1085.68 989.96

Average Scaled HPWL 43.73% 16.25% 7.99% 4.59% 4.86% 7.16% 18.38% 7.74% 10.11% 0.00%
Average Runtime 6.68× 0.59× N/A N/A 0.55× 0.69× 10.21× 1.63× 3.71× 1.00×

Average Density Overflow 0.45× 5.90× 9.08× 5.46× 4.19× 13.77× 5.58× 12.29× 7.14× 1.00×

TABLE III: HPWL and scaled HPWL (×106) on the MMS benchmark suite [21]. Mac=Macros, CP=Capo, FP=FastPlace, CPx=ComPLx, NP3U=NTUplace3-
unified, NR=”no rotation or flipping of macros”. Cited results are marked with ∗. All the results are evaluated by the official scripts [21].

Categories Constructive One-Stage
Benchmarks # Cells # Mac ρt CP10.5∗ FLOP∗ FP3.0 CPx POLAR mPL6∗ NP3U-NR NP3U ePlace

ADAPTEC1 211K 63 1.0 84.77 76.83 82.39 79.05 92.17 77.84 75.92 75.55 67.15

ADAPTEC2 255K 127 1.0 92.61 84.14 88.53 99.11 149.43 88.40 84.89 78.50 77.37

ADAPTEC3 452K 58 1.0 202.37 175.99 187.98 175.78 197.48 180.64 170.88 169.74 164.50

ADAPTEC4 496K 69 1.0 202.38 161.68 187.50 156.75 175.19 162.02 167.13 166.68 148.39

BIGBLUE1 278K 32 1.0 112.58 94.92 104.91 96.18 99.12 99.36 96.42 96.57 86.82

BIGBLUE2 558K 959 1.0 149.54 153.02 145.89 147.19 157.72 144.37 148.12 147.17 130.18

BIGBLUE3 1097K 2549 1.0 583.37 346.24 400.40 344.63 420.28 319.63 324.39 338.47 302.29

BIGBLUE4 2177K 199 1.0 915.37 777.84 775.43 772.53 814.07 804.00 797.17 799.66 657.92

ADAPTEC5 843K 76 0.5 565.88 357.83 338.77 338.67 380.45 376.30 295.24 294.24 315.76

NEWBLUE1 330K 64 0.8 110.54 67.97 73.91 65.26 70.68 66.93 61.13 61.25 62.56

NEWBLUE2 442K 3748 0.9 303.25 187.40 197.15 187.87 197.65 179.18 164.27 163.76 166.59

NEWBLUE3 494K 51 0.8 1282.19 345.99 325.72 269.47 601.17 415.86 N/A 280.92 304.24

NEWBLUE4 646K 81 0.5 300.69 256.54 270.70 256.97 277.60 277.69 231.59 229.36 229.95

NEWBLUE5 1233K 91 0.5 570.32 510.83 500.09 453.05 450.69 515.49 414.81 420.46 393.21

NEWBLUE6 1255K 74 0.8 609.16 493.64 512.19 452.83 475.78 482.44 471.51 474.86 410.04

NEWBLUE7 2508K 161 0.8 1481.45 1078.18 1016.10 1010.00 1107.59 1038.66 N/A 1100.84 897.81

Average (Scaled) HPWL 64.42% 14.31% 18.22% 10.90% 30.69% 16.13% 7.40% 7.13% 0.00%
Average Runtime 14.69× 2.14× 0.37× 1.15× 0.71× 6.34× 0.81× 1.05× 1.00×

Average Density Overflow N/A N/A 2.08× 1.69× 9.11× N/A 5.37× 5.26× 1.00×

[10] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and
C.-K. Cheng. FFTPL: An Analytic Placement Algorithm Using Fast
Fourier Transform for Density Equalization. In ASICON, 2013.

[11] J. Lu and C.-W. Sham. LMgr: A Low-Memory Global Router with
Dynamic Topology Update and Bending-Aware Optimum Path Search.
In ISQED, pages 231–238, 2013.

[12] G.-J. Nam. ISPD 2006 Placement Contest: Benchmark Suite and Results.
In ISPD, pages 167–167, 2006.

[13] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The
ISPD2005 Placement Contest and Benchmark Suite. In ISPD, pages
216–220, 2005.

[14] W. C. Naylor, R. Donelly, and L. Sha. Non-Linear Optimization System
and Method for Wire Length and Delay Optimization for an Automatic
Electric Circuit Placer. In US Patent 6301693, 2001.

[15] Y. E. Nesterov. A Method of Solving A Convex Programming Problem

with Convergence Rate O(1/k2). Soviet Math, 27(2):372–376, 1983.
[16] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-Cut

Floorplacement. IEEE TCAD, 25(7):1313–1326, 2006.
[17] J. Shewchuk. An Introduction to the Conjugate Gradient Method without

the Agonizing Pain. In CMU-CS-TR-94-125,, 1994.
[18] M. Struzyna. Sub-Quadratic Objectives in Quadratic Placement. In

DATE, pages 1867–1872, 2013.
[19] N. Viswanathan, G.-J. Nam, C. J. Alpert, P. Villarrubia, H. Ren, and

C. Chu. RQL: Global Placement via Relaxed Quadratic Spreading and
Linearization. In DAC, pages 453–458, 2007.

[20] N. Viswanathan, M. Pan, and C. Chu. FastPlace3.0: A Fast Multilevel
Quadratic Placement Algorithm with Placement Congestion Control. In
ASPDAC, pages 135–140, 2007.

[21] J. Z. Yan, N. Viswanathan, and C. Chu. Handling Complexities in
Modern Large-Scale Mixed-Size Placement. In DAC, 2009.

6

