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Abstract—We propose eP lace-MS, an electrostatics based
placement algorithm for large-scale mixed-size circuits. ePlace-
MS is generalized, flat, analytic and nonlinear. The density
modeling method eDensity is extended to handle the mixed-
size placement. We conduct detailed analysis on the correctness
of the gradient formulation and the numerical solution, as well
as the rationale of direct-current removal and the advantages
over prior density functions. Nesterov’s method is used as the
nonlinear solver, which shows high yet stable performance over
mixed-size circuits. The steplength as the inverse of Lipschitz
constant of the gradient function, while we develop a back-
tracking method to prevent overestimation. An approximated
nonlinear preconditioner is developed to minimize the topological
and physical differences between large macros and standard
cells. Besides, we devise a simulated annealer to legalize the
layout of macros and use a second-phase global placement to re-
optimize the standard cell layout. All the above innovations are
integrated into our mixed-size placement prototype ePlace-MS,
which outperforms all the related works in literature with better
quality and efficiency. Compared to the leading-edge mixed-size
placer NTUplace3 [13], ePlace-MS produces up to 22.98% and
on average 8.22% shorter wirelength over all the sixteen modern
mixed-size (MMS) benchmark circuits with the same runtime.

Index Terms—Analytic placement, nonlinear optimization,
electrostatic analogy, Poisson’s equation, spectral methods, fast
Fourier transform, Nesterov’s method, Lipschitz constant, pre-
conditioning.

I. INTRODUCTION

PLACEMENT remains crucial and challenging in VLSIphysical design [22], [31]. Placement performance im-

pacts downstream design phases of clock tree synthesis [27],

dynamic power minimization [28], global and detailed rout-

ing [30], and etc. The advent of billion-transistor integra-

tion [14] makes the placement performance dominant on the

overall quality. Placement quality is usually evaluated by the

total half-perimeter wirelength (HPWL), which correlates with

timing [29], [48], routability [10], [41], and power [26], subject

to the constraint of zero overlap among circuit components.

Such problem formulation is broadly used among research

developments [3], [5], [15], [17], [18], [45], [46] and well

honored by public placement benchmarks [33], [34], [47].
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Over thousands of pre-designed IP blocks, macros and mem-

ory units are embedded to shorten the total design turnaround,

where the topological and physical differences with standard

cells are huge. The high design complexity and complication

continuously challenge the capability of mixed-size placers.

Prior mixed-size placement algorithms form three cate-

gories. Two-stage methods use two separated phases of floor-

planning and placement. Location and orientation of macros

are determined and fixed at first, while placement follows

to optimize only standard cells in the global scale. MP-

tree [6] packs macros along the chip boundaries. A constraint-

graph (CG) algorithm [4] uses mathematical programming

to optimize displacement, macro positions and orientations.

However, the limited information of standard cell distribution

misguides the floorplanner at early stages, inducing suboptimal

floorplan solution to degrade the overall quality.

Constructive (floorplan-guided) approaches combine the

advantages of floorplan and placement. The floorplanner si-

multaneously optimizes both macros and soft blocks (clusters

of standard cells). An incremental placement then spread

standard cells in local scale. Capo [39] repeatedly invokes a

fixed-outline floorplanner over the top-down placement frame-

work, providing guidance to macro shifting. FLOP [47] groups

cells into soft blocks to produce initial floorplan solution.

Incremental global [46] and detailed placement further spread

and legalize the standard cells within local scale. Nonetheless,

the intrinsic limitation of partitioning and clustering usually

induce suboptimal solutions in the placement perspective.

Optimization space of standard cell placement could be sub-

stantially shrunk with quality loss hard to recover.

One-stage solution remains popular among most modern

placement algorithms [13], [15], [17], [18], [21], [46]. Macros

and standard cells are being placed simultaneously where

the limitations discussed above can be well avoided. Fast-

Place3.0 [46] performs selective grid resizing to accommodate

large macros with more whitespace. ComPLx [17] shreds

macros into small objects with sizes similar to that of the

standard cells. After placement finishes, each macro is recon-

structed based on the gravity center of instances belonging to

it. APlace3 [15] reshapes the smoothing curve of the density

function to distinguish the smoothness of macro movement

with that of standard cells. NTUplace3 [13] incorporates

rotational and flipping components into the gradient function,

which enables simultaneous optimization on the location of

all the movable objects as well as the orientation of macros.

As mentioned in [47], macro and standard cell co-placement

challenges the capability of modern analytic placement ap-

proaches. Despite largest search space, nevertheless, the sub-
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stantial topological and physical differences between macros

and standard cells might introduce gradient imbalance and

cause the solution hard to converge.

In this work, we develop a generalized one-stage, flat,

analytic nonlinear algorithm for mixed-size placement, based

on the infrastructure of our early works FFTPL [24] and

ePlace [23] for standard-cell based placement, as well as

its extension to the mixed-size circuits [25]. As the major

difficulty of mixed-size placement remains in the broad spec-

trum of topological and physical attributes among all the

movable objects (i.e., standard cells and large macros), our

innovation of nonlinear preconditioning well equalizes them in

the solver’s perspective. As a generalized algorithm, ePlace-

MS handles standard cells and macros in exactly the same

way (c.f. macro shifting when declustering [13], soft block

formation by standard cells [46], [47], special macro density

smoothing [15], [18], macro shredding [17], etc.) to ensure

high and stable performance over various integrated circuits

with potentially quite different structures of the design. Our

contributions are listed as follows.

• We extend our prior density function eDensity [24], [25]
to model mixed-size integrated circuits in a generalized

way. Besides, we provide detailed analysis and proof on

eDensity with (1) rationale of its direct-current (DC) re-

moval (2) correctness of the density gradient formulation

(3) correctness of the numerical solution (4) advantages

over literature density functions.

• We extend Nesterov’s method as the nonlinear solver
to handle mixed-size placement, with steplength dynam-

ically predicted via Lipschitz constant. Moreover, we

develop a backtracking method to effectively prevent

steplength overestimation.

• We develop an approximated nonlinear preconditioner to
resolve the substantial topological and physical gap be-

tween standard cells and macros. The solution quality is

significantly improved with negligible runtime overhead.

• We devise an annealing-based macro legalizer providing
direct control to the macro shifting. A second-phase

standard cell-only global placement is proposed to resolve

the quality overhead induced during macro legalization.

• We integrate all the innovations into ePlace-MS, an elec-
trostatics based prototype for mixed-size placement, with

promising experimental results obtained on the modern

mixed-size (MMS) [47] circuits. Specifically, ePlace-MS

outperforms the leading placer NTUplace3 [13] with

8.22% shorter wirelength and the same runtime on av-
erage of all the sixteen MMS benchmarks [47].

The remainder is organized as follows. Section II intro-

duces the background knowledge. Section III provides an

overview of ePlace-MS. Section IV analyzes our placement

density function eDensity on the mixed-size circuits. Section V

discusses the nonlinear placement optimization. Section VI

proposes a nonlinear preconditioner to equalize macros with

standard cells. Section VII introduces our annealing-based

macro legalization. Section VIII discusses the second-phase

standard-cell only global placement. Experiments and results

are shown in Section IX. We conclude in Section X.

II. ESSENTIAL CONCEPTS

Given a placement instance G = (V,E,R) with a set V
of n movable objects (standard cells and macros), nets E
and placeable region R, the placement is formulated as a
constrained optimization problem. The constraint desires a

solution v = (x,y)T = (x1, . . . , xn, y1, . . . , yn)T to accom-

modate all the objects with sufficient sites but zero overlap

or density violation. Global placement uniformly decomposes

the entire region R into m×m rectangular grids (bins) which
are denoted as grid set B. For every grid b ∈ B, the density
ρb(v) should not exceed a pre-determined upper-bound ρt,

which is named target density and usually design specific.

The objective is set as minimizing the total half-perimeter

wirelength (HPWL) of all the nets. Let HPWLe(v) denote
the HPWL of the net e, the total HPWL is expressed as

HPWL(v) =
∑

e∈E

HPWLe(v)

=
∑

e∈E

(
max
i,j∈e

|xi − xj | + max
i,j∈e

|yi − yj |
)
.

(1)

Here i and j are any two of all the objects connected by the net
e. As a result, the nonlinear optimization of global placement
is formulated as Eq. (2) and proved to be NP-complete [9].

min
v

HPWL(v) s.t. ρb(v) ≤ ρt, ∀b ∈ B, (2)

Analytic methods conduct placement using gradient-based

optimization. As the function HPWL(v) in Eq. (1) is not
differentiable, various quadratic [7], [20] and nonlinear [12],

[35] wirelength smoothing techniques have been proposed in

literature to ensure the differentiability thus analytic placement

to work. In this work, we use both the log-sum-exp (LSE) [35]

model and the weighted-average (WA) [12] model (as two

options for ePlace-MS) to approximate HPWL via a closed-

form smooth function W (v), as shown in Eq. (3) and (4).

Wex(v) =γ

 

log
X

i∈e

exp (xi/γ) + log
X

i∈e

exp (−xi/γ)

!

(3)

Wex(v) =

P

i∈e
xi exp (xi/γ)

P

i∈e
exp (xi/γ)

−

P

i∈e
xi exp (−xi/γ)

P

i∈e
exp (−xi/γ)

(4)

Here We(v) = Wex
(v) + Wey

(v) and W (v) =
∑

eWe(v).
γ is used to control the modeling accuracy, i.e., smaller γ
will improve the accuracy of approximation but decrease the

function smoothness, vice versa. In this work, we use ePlace-

MS-WA and ePlace-MS-LSE to denote the usage of each

wirelength model in our algorithm, respectively.

A density penalty function helps incorporate the |B|
constraints in Eq. (2) in order to achieve analyticity. Modern

quadratic placers [17], [18], [21], [45], [46] are all based

on the density force formulation proposed in [7], where

anchor points are inserted to drag cells away from over-filled

region, modeling the density force as a constant term in the

gradient function. In contrast, nonlinear placers formulate the

density gradient as a component independent to wirelength.

APlace3 [15] and NTUplace3 [13] ensure differentiability

of the density distribution via bell-shape curving [35] with

local smoothness, while mPL6 [3] uses Helmholtz function
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targeting global density smoothness. In this work, we use

the electrostatics based density modeling method eDensity
developed in our prior work FFTPL [24], which will be

thoroughly analyzed in Section IV with proof of correctness.

The numerous grid density constraints are all relaxed by using

this single penalty function, while we have the unconstrained

placement optimization problem defined as

min
v
f(v) = W (v) + λN(v), (5)

where N(v) (defined in Eq. (6)) is the density function and λ
is the penalty factor for adjusting the ratio between wirelength

and density.

III. PLACEMENT OVERVIEW

Figure 1 shows the flowchart of ePlace-MS. Given a place-

ment instance, ePlace-MS quadratically minimizes the total

wirelength at the first stage of mixed-size initial placement

(mIP). The initial solution vmIP is of low wirelength but

high overlap. Based on the target density ρt, our mixed-

size global placer (mGP) populates extra whitespace with

unconnected fillers, then iteratively co-optimizes all the objects

(standard cells, macros and fillers) together. After mGP, we

remove all the fillers, fix the standard-cell layout, then invoke

the annealing engine mLG to legalize the location of all

the macros. In the second-phase global placement (cGP), we

retrieve all the fillers and distribute them appropriately, then

free standard cells and co-place them with fillers to further

reduce the wirelength. Finally, in the standard-cell detailed

placement (cDP), we invoke the detailed placer in [13] to

legalize and discretely optimize the standard-cell layout.
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Fig. 1: The flowchart of ePlace-MS.

ePlace-MS does not allow rotation or flipping of any objects

due to the lithography issue. However, it has the flexibility to

smoothly integrate the rotational and flipping gradients [13] to

guide placement optimization iteratively. Deadspace allocation

is also not considered in this work, while it can be effectively

realized in ePlace-MS via appropriate macro inflation.

ePlace-MS maximally expands the design space for mGP

with the major optimization effort budgeted on mixed-size

global placement, since all the objects (standard cells, macros,

fillers) are allowed to move and can be optimized simulta-

neously. In contrast, the design spaces for mLG and cGP

are relatively shrunk, as only macros or standard cells are

allowed to move with other objects fixed thus acting as

Fig. 2: Total HPWL, total object overlap (OVLP) and total macro overlap
(mOVLP) at different stages and iterations of ePlace-MS-WA on the MMS
ADAPTEC1 benchmark. Overlap between macros are cleaned at macro
legalization (mLG) where mOVLP decreases to zero. Remaining OVLP will
all be cleaned at cDP (following cGP).

constraints, which actually constrains the search space of

mixed-size placement solution. Specifically, only minor layout

perturbation is expected to perform changes within local scale.

As Figure 21 shows, the constrained optimization focuses

on the mGP stage and terminates when overlap is small

enough. The entire placement framework is built upon our

recent work of FFTPL [24] and ePlace [23] with similar

initialization and iterative adjustment of parameters. Grid

dimension m is statically determined as m = ⌈log2

√
n′⌉ and

upper-bounded by 1024, where n′ = |V ′| is the number of
movable macros, standard cells and fillers [23], [24]. Penalty

factor λ is initially set as Eq. (10) of [5]. We iteratively update
λk = µkλk−1 in mGP to balance the wirelength and density

forces, where µk = 1.1
− ∆HP W Lk

∆HP W LREF
+1.0

based on the HPWL

variation ∆HPWLk = HPWL(~vk) − HPWL(~vk−1). In
practice, we set ∆HPWLREF = 3.5 × 105 and bound µk

by [0.75, 1.1]. Density overflow τ is used as the stopping
criterion. We terminate mGP when τ ≤ 10% and cGP when
τ ≤ 7%, respectively. Wirelength coefficient γ is used to
smooth the HPWL. We set the smoothing parameter as γ =
8.0wb × 1020/9×(τ−0.1)−1.0 to encourage global movement at

early iterations and convergence at later iterations. Fillers are

used to balance the electrostatic direct current (DC) component

in the global scale. The total area of fillers equals the total

whitespace multiplies target density then subtracted by the

total area of all the movable objects. All the fillers are equally

sized to be the average physical dimensions of all the standard

cells. More details of parameter adjustment or filler formation

can be found in [24] and [23].

IV. DENSITY FUNCTION ANALYSIS

In this section, we prove the correctness of the density

gradient formulation and numerical solution, and analyze the

rationale of DC removal and the advantages over previous

placement density methods. Given its high performance on

standard cell circuits, we extend the density function to handle

the mixed-size placement in a generalized way. Figure 3 shows

the progression via a density-only mixed-size placement by

ePlace-MS, where standard cells and macros are smoothly co-

optimized towards even density distribution. Table II and III

show that our density function has the best performance with

1Here OVLP denotes physical overlap among all the objects. Computation costs
O(n log n) time via scanline and segment-tree data structure.
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shortest wirelength and smallest density overflow versus all

the mixed-size placers in literature [13], [17], [46], [47].

A. Density Function

A placement density function is developed in our prior

work [24] based on the electrostatic analogy, which is therefore

named eDensity. Modeling every object as a positive charge,
the density function N(v) shown in Eq. (6) is modeled as
the total electric potential energy. The electric force keeps

spreading all the charges apart from each other, thus reduc-

ing the total potential energy towards zero in the end. The

electrostatic equilibrium state is coupled with even placement

density distribution and will be eventually reached. Compared

to all the previous mixed-size placement algorithms [3],

[13], [15], [17], [21], [39], [46], [47], our density function

achieves the minimum density overflow as shown in Table III,

indicating the fewest violations to the target density thus the

best performance of our density function.

N(v) =
1

2

∑

i∈V

Ni(v) =
1

2

∑

i∈V

qiψi(v), (6)

Here qi is the electric quantity of the charge i, it equals the
area of the respective object i. ψi is the local potential. Also, as

the system energy equals the sum of mutual potential energy

between all the pairs of charges, we have a factor of 1
2 for

the energy of each single charge. A well-defined Poisson’s

equation in Eq. (7) correlates the density distribution ρ(x, y)
with the potential distribution ψ(x, y), where x and y are
spatial coordinates. We enforce Neumann boundary condition

(i.e., zero gradient at the boundary of the density function or

placement domain) to prevent objects from moving outside

the placement region R. Specifically, the horizontal density
gradients along the two vertical boundaries are equivalent to

zero, vice versa, such that movement towards the placement

boundaries will be gradually slowed down and finally stopped.




∇ · ∇ψ(x, y) = −ρ(x, y),
n̂ · ∇ψ(x, y) = 0, (x, y) ∈ ∂R,∫∫

R
ρ(x, y) =

∫∫
R
ψ(x, y) = 0.

(7)

Here n̂ is the outer normal vector at the boundary ∂R. We use
ξ(x, y) = ∇ψ(x, y) to denote the electric field distribution.
The electric force on each charge i equals qiξi(v), where
ξi = (ξix

, ξiy
) is the local field vector and can be decomposed

into its horizontal (ξix
) and vertical (ξiy

) components. Our

density function N(v) is generalized. In contrast to prior
nonlinear placers [13], [15], there is no special handling or

smoothing applied to movable macros or fixed blocks. Please

refer to Section IV-E for a more detailed advantage analysis.

The global smoothness of N(v) (by Eq. (6) and (7)) indicates
that the local movement of any object will change the potential

map in the global scale. The potential energy of all the objects

will thus be changed by the movement of any single object i.

B. Direct-Current (DC) Removal

eDensity correlates even distribution of placement objects

with the electrostatic equilibrium state. However, since all

the objects are mapped to positively charged particles (with

(a) Iter=4, N=11.84e11, τ = 74.67%. (b) Iter=5, N=18.63e10, τ = 48.03%.

(c) Iter=7, N=30.33e9, τ = 26.61%. (d) Iter=12, N=97.97e7, τ = 12.78%.

(e) Iter=20, N=10.70e7, τ = 6.45%. (f) Iter=200, N=37.85e5, τ = 3.04%.

Fig. 3: Snapshots of the density distribution by eDensity via mixed-size
placement on the MMS ADAPTEC1 benchmark. The placement is driven by
only density forces (denoted by red arrows) with the magnitude of the grid
density characterized by grayscale. Total potential energy and total density
overflow are denoted by N and τ , respectively.

electric quantity set as the object area) as Figure 4(a) shows,

the electric forces applied on all the charges are purely repul-

sive. Such repulsive force will keep pushing all the charges

towards infinity. On the other hand, if moving outside the

placement domain is physically prohibited, the equilibrium

state will have all the charges stay along the boundary lines in

the end, as Figure 4(b) illustrates, causing uneven placement

density distribution. To resolve this problem, we remove the

zero-frequency (i.e., direct-current or DC) component from

the spatial density distribution ρ(x, y), in order to couple the
electrostatic equilibrium state with an even charge density

distribution. Besides, the constant terms in ψ(x, y) and ξ(x, y)
produced during the integral operations become zero and can

be ignored. This also satisfies
∫∫

R
ρ(x, y) =

∫∫
R
ψ(x, y) = 0

in Eq. (7). We use ρavg to denote the DC of the global density

distribution, i.e., the quantity to be reduced from the original

density ρb of each grid, since DC of ρ(x, y) equals the average
grid density of B. As a result, we have

∑
b ρb = 0 after

removing DC (ρavg) from ρb, ∀b ∈ B. Figure 4(c) shows that
removal of DC component reduces the sum of all the charges

to zero and thus introduces negative charges to the low density

regions, while attractive force is generated between objects

besides the original repulsive force. The combination of all the

repulsive and attractive force vectors thus guide the placement

towards an even density distribution shown in Figure 4(d),

where there is no charge anywhere within the domain and the

system potential energy is reduced to zero.
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boundary++ +++ ++ ++ + + ++ + ++++
0

(a) Initial charge density distribution.

density

0

++ ++ ++ + ++ ++ ++ + +++ +
0

x

boundary

(b) Electrostatic equilibrium state with all the charges being pushed to the
boundaries (moving beyond the placement domain is physically prohibited
here).

density ++ ++ ++ ++ +
0

DC

boundary

x

0

(c) Initial charge density distribution with the DC component (ρavg)
removed.

density ++ ++++ ++ +
0

x

boundary

DC

0

(d) Electrostatic equilibrium state with globally even density distribution.

Fig. 4: A one-dimension example showing the correlation of electrostatic
equilibrium with even density distribution after removing the DC component
(ρavg) from the spatial density distribution (ρ(x, y)).

C. Correctness of Gradient Formulation

As discussed in Section IV-A, we use qiξi as the gradient of

the density function N(v) w.r.t. the horizontal movement of
the charge i. However, by directly differentiating N(v) w.r.t.
xi, we obtain the following formula

∂N(v)

∂xi

=
1

2

0

@

∂Ni(v)

∂xi

+
∂

“

P

j 6=i Nj(v)
”

∂xi

1

A

=
1

2
qi
∂ψi

∂xi

+
1

2

X

j 6=i

qj
∂ψj

∂xi

=
1

2
qiξix

+
1

2

X

j 6=i

qj
∂ψj

∂xi

,

(8)

which is different from qiξi with one extra term. By the

nature of electrostatics, the potential at each charge i is the
superposition of the potential contributed by all the remaining

charges in the system. Let Nij
denote the potential energy

of charge i contributed by j, vice versa. For an electrostatic
system defined on the two-dimensional plane, we have

Nij
(v) = − qiqj

2πǫ0
ln

(
ri,j(v)

rref

)
= Nji

(v), (9)

where ri,j(v) is the physical distance between the two charges
i and j based on the placement solution v. rref is the reference

distance where the potential by charge i (j) dimishes to zero,
in this work we see it as the dimension of placement domain

R. As a result, we have Nij
(v) = Nji

(v). thus the mutual
potential energy of each pair of charges i and j are equivalent.
By the principle of potential superposition, we have

Ni(v) =
∑

j 6=i

Nij
(v) =

∑

j 6=i

Nji
(v). (10)

Therefore,

∂N(v)

∂xi
=

1

2


∂Ni(v)

∂xi
+
∂

(∑
j 6=iNj(v)

)

∂xi




=
∂Ni(v)

∂xi
= qi

∂ψi(v)

∂xi
= qiξix

(v),

(11)

so qiξix
(v) is the actual gradient of N(v) with respect to the

horizontal movement∆xi of the object i. Similarly, the density
gradient of N(v) with respect to the vertical movement of i
is qiξiy

(v). As a result, qiξi(v) is consistent with the gradient
descent of the density cost (potential energy) function.

D. Correctness of Numerical Solution

Poisson’s equation in Eq. (7) is solved via spectral meth-

ods [43] using a two-dimensional (2D) fast Fourier transform

(FFT) applied to the spatial domain. Sinusoidal waveform

approaches zero at the end of each function period, such

behavior well matches the Neumann condition n̂ ·∇ψ(x, y) =
0, ∀(x, y) ∈ ∂R in Eq. (7), which requires zero gradient
along the boundaries. As a result, we apply discrete sinusoidal

transformation (DST) to the spatial field distribution ξ(x, y).
As the electric potential and density distribution are the

integral and derivative of the field, i.e., ∇ψ(x, y) = −ξ(x, y)
and ρ(x, y) = ∇ · ξ(x, y), we reconstruct them via discrete
cosine transformation (DCT). Based on an even mirroring and

periodic extension, we have the DCT coefficients aj,k of the

spatial density distribution ρ(x, y) as

aj,k =
1

m2

m−1∑

x=0

m−1∑

y=0

ρ(x, y) cos(wjx) cos(wky), (12)

where wj and wk are frequency components. The density

ρ(x, y) can then be spatially expressed as

ρ(x, y) =

m−1∑

j=0

m−1∑

k=0

aj,k cos(wjx) cos(wky). (13)

As ∇ · ∇ψ(x, y) = −ρ(x, y), we have the spatial potential
distribution expressed as

ψ(x, y) =

m−1∑

j=0

m−1∑

k=0

aj,k

w2
j + w2

k

cos(wjx) cos(wky). (14)
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Notice that for every pair of horizontal and vertical frequency

components cos(wjx) and cos(wky) from density ρ(x, y) and
potential ψ(x, y), we have the Poisson’s equation in Eq. (7)
well satisfied in the numerical perspective as shown below.

∇ · ∇ψ(x, y) =
∂2ψ(x, y)

∂x2
+
∂2ψ(x, y)

∂y2

=


−

∑

j

∑

k

aj,kw
2
j

w2
j + w2

k

cos(wjx) cos(wky)


 +


−

∑

j

∑

k

aj,kw
2
k

w2
j + w2

k

cos(wjx) cos(wky)




= −
∑

j

∑

k

aj,k cos(wjx) cos(wky) = −ρ(x, y)

We remove the DC component ρavg from ρ(x, y) by setting
a0,0 = 0. The spatial field distribution is expressed as




ξx(x, y) =

∑
j

∑
k

aj,kwj

w2
j
+w2

k

sin(wjx) cos(wky),

ξy(x, y) =
∑

j

∑
k

aj,kwk

w2
j
+w2

k

cos(wjx) sin(wky),
(15)

which also satisfies Eq. (7) in the numerical perspective since

∇ψ(x, y) =

(
∂ψ(x, y)

∂x
,
∂ψ(x, y)

∂y

)

=


−

∑

j

∑

k

aj,kwj

w2
j + w2

k

sin(wjx) cos(wky),

−
∑

j

∑

k

aj,kwk

w2
j + w2

k

sin(wjx) cos(wky)




= (−ξx(x, y),−ξy(x, y)) = −ξ(x, y)

Given |V | = n′ movable objects in the netlist, ePlace-MS
decomposes the placement region R into m×m grids, where
m =

√
n′, to have one object per grid on average. The above

2D-FFT computation thus costs exactly O(n′ log n′) runtime
per iteration. As the number of fillers is at essentially the same

order of the number of all the standard cells and movable

macros, the complexity is essentially O(n log n). The well-
formulated density gradient, global density smoothness and

low computational complexity enables ePlace-MS to conduct

placement on the flat netlist and the flat density grid with

constantly high resolution. Compared to all the prior mixed-

size nonlinear placers [3], [13], [15] with multi-level netlist

clustering and grid coarsening, ePlace-MS avoids quality loss

due to the suboptimal clustering and low density resolution

especially at early iterations.

E. Advantage Analysis

Density force modeling remains quite a controversial prob-

lem [31] in quadratic placement, where the best location

of anchor point for each object is usually unclear. RQL [45]

nullifies the top 10% density force vectors to suppress over-
spreading of standard cells, while the empirical tuning lacks

theoretical support and may not guarantee convergence. [7]

uses Green’s function to determine appropriate positions

of cell anchors. The two-dimension convolution makes the

complexity to be O(n2) thus is computationally expensive.
Kraftwerk2 [44] determines the anchor position via solution

to the Poisson’s equation. Due to the function order restriction

in the quadratic placement infrastructure, the density cost

is degraded from exponential to linear, which helps achieve

convexity and efficiency but loses quality. SimPL [16] and

ComPLx [17] determine the anchor position via recursive bi-

partitioning, while convergence is theoretically promised via

the primal-dual framework. Nevertheless, the solution quality

is sensitive towards the initial solution. Moreover, it is hard to

tell how much the optimum solution would follow the initial

layout with minimum wirelength yet high overlap.

Nonlinear placement has no restriction on function orders

thus ensures more flexibility in density modeling. However,

the non-convexity of the density function remains a headache

to the nonlinear solvers. Bell-shape method [35] covers only

adjacent grids in the local scale. Iterative grid uncoarsening

is usually conducted in prior nonlinear placers [13], [15] to

keep consistent with the scale of clustered netlist. However,

the quality degradation due to low density resolution is not

negligible. Besides, such local density smoothness would force

objects to detour around obstacles thus inevitably lower the

convergence rate. Notice that bell-shape method could realize

fully global density smoothness by parameter adjustment,

nevertheless, the regarding complexity scales up to O(n2),
which is numerically expensive. Helmholtz equation in [3]

smooths the density in global scale with only O(n log n)
runtime complexity. However, sub-optimality in the choice of

the linear factor ǫ in the Helmholtz equation (Eq. (7) of [2])
introduces noises. Moreover, there is no formulation of density

gradient functions in [3], where up to millions of constraints

are simultaneously applied to all the grid density, which

complicates the problem, degrades the placement quality and

efficiency.

eDensity concisely formulates the placement density prob-

lem using the closed-form equation in Eq. (6). By differ-

entiating it we derive the gradient vector to direct density

cost reduction, where by Eq. (5) only one penalty factor is

needed for force balancing with wirelength. eDensity numer-

ically solves the partial differential equation via the spectral

methods [43] in Eq. (14) and (15). Based on the nice properties

of fast Fourier transform, it consumes exactly only O(n log n)
runtime per iteration. At each grid, the local electric potential

and field are impacted by the global density distribution,

while objects driven by density forces are able to freely move

over blockages or macros, as Figure 5 shows. Moreover, the

global smoothness enables all the movable objects in over-

filled regions to detect whitespace at remote area, as illustrated

in Figure 3, which helps quickly converge to the objective of

even density. To this end, unlike all the prior methodologies

in literature, eDensity approaches density equalization via

directly simulating the behavior of a real electrostatic system,

which in reality will always transfer towards the states of

lower potential energy (until the energy decreases to zero),

therefore theoretically guarantees the global convergence of
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eDensity. The nature of simulation enables us to use constantly

high density resolution throughout the whole global placement,

without any potential misguidance to the nonlinear solver.

V. NONLINEAR OPTIMIZATION FOR

MIXED-SIZE GLOBAL PLACEMENT (MGP)

Our prior work shows high performance of Nesterov’s

method on placing standard cell based circuits. In this section,

we extend it to handle mixed-size placement, where we

observe consistently good performance as shown by the exper-

imental results in Section IX. In the framework of ePlace-MS

(Figure 1), mGP uses Nesterov’s method to smoothly conduct

simultaneous optimization on both macros and standard cells,

as Figure 5 shows. As a generalized approach, mGP handles

macros and standard cells in exactly the same way (c.f. macro

shifting at each netlist declustering level [13], formation of soft

blocks by standard cells [46], [47], special density smoothing

of macros [15], [18], macro shredding [17], etc.). In each

iteration, we compute the gradient and preconditioner, predict

the Lipschitz constant, and adjust steplength via backtracking.

Nesterov’s method solves the nonlinear problem iteratively till

convergence is reached.

A. Existing Problems

Line search remains the major runtime bottleneck in Con-

jugate Gradient method2, which is widely used in prior non-

linear placers [15]. In practice, it is not guaranteed that the

steplength output by line search could satisfy the conjugacy

requirement [42]. Specifically, the vector of current search

direction may not be orthogonal (w.r.t. the Hessian matrix

of the cost function) to all the previous vectors. Therefore,

local convergence rate of conjugate gradient method [11],

2
(√

κ−1√
κ+1

)k

, can not be guaranteed. Instead of line search,

Chen et al. [5] determines the steplength via upper-bounding

the Euclidean distance of objects movement per iteration by

a constant number. Such prediction assumes underestimation

of steplength, which in general slows down the placement

convergence rate. Moreover, steplength overestimation could

still occur at some special area of the search space where

the gradient changes sharply, therefore degrades the solution

quality. As a result, a systematic solution with dynamic

steplength adjustment and theoretical support becomes quite

necessary.

B. Nesterov’s Method

The flow of Nesterov’s method used in ePlace-MS is illus-

trated in Algorithm 1. We use Lipschitz constant prediction

together with steplength backtracking to control the speed of

optimization. ak is an optimization parameter which is itera-

tively updated. There are two concurrently updated solutions,

uk and vk, where only u is output as the final solution (at

the end of mGP and cGP), while v is used for steplength

prediction. ∇fpre denotes the preconditioned gradient vector,

which will be discussed in Section VI. Initially, we set

a0 = 1 and have both u0 and v0 set as vmIP . BkTrk

2Our empirical studies on FFTPL [24] show that line search takes more than
60% of the total runtime on placing ADAPTEC1 of ISPD 2005.

(a) Iter=50, W=34.76e6, N=26.55e11,
τ=84.31%, O=73.30e6, Om=37.85e6.

(b) Iter=100, W=41.46e6, N=91.4e10,
τ=67.59%, O=59.11e6, Om=24.40e6.

(c) Iter=125, W=44.44e6, N=35.2e10,
τ=55.31%, O=49.04e6, Om=16.68e6.

(d) Iter=150, W=48.21e6, N=98.78e9,
τ=44.60%, O=40.10e6, Om=98.40e5.

(e) Iter=175, W=52.74e6, N=22.57e9,
τ=39.72%, O=36.81e6, Om=80.98e5.

(f) Iter=200, W=56.99e6, N=46.31e8,
τ=33.15%, O=31.56e6, Om=43.09e5.

(g) Iter=235, W=61.05e6, N=34.78e7,
τ=20.34%, O=22.76e6, Om=11.05e5.

(h) Iter=265, W=63.37e6, N=25.51e6,
τ=9.67%, O=16.48e6, Om=58.11e4.

Fig. 5: Snapshots of mGP progression in ePlace-MS-WA on the MMS
ADAPTEC1 benchmark with standard cells, macros and fillers shown by
red points, black rectangles and blue points. Total wirelength, total potential
energy, total density overflow, total object overlap and total macro overlap are
denoted by W , N , τ , O and Om, respectively.

denotes steplength backtracking as shown in Section V-D.

The convergence rate of Nesterov’s method is proven to be

O(1/k2) in [37], which achieves the upper-bound of global
convergence rate of first-order optimization methods [36], on

condition that the steplength αk satisfies Eq. (16) at every

single iteration k.

f(vk) − f (vk − αk∇f(vk)) ≥ 0.5αk‖∇f(vk)‖2 (16)

Bisection search is suggested by [37] to generate the maximal

αk without violating the inequality in Eq. (16). Similar to

line search, it usually introduces significant runtime overhead.

As [37] claims, the function f(vk − α∇f(vk)) would be
evaluated by O(logL) times along the search direction for a
single iteration, increasing the complexity to O(n log n logL).
Here L is the Lipschitz constant as defined in Definition 1. As
a result, step length prediction becomes necessary to accelerate

the optimization process.
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Algorithm 1 Nesterov’s method in ePlace-MS

Input: ak, uk, vk, vk−1, ∇fpre(vk), ∇fpre(vk−1)
Output: uk+1, vk+1, ak+1

1: αk = BkTrk (vk,vk−1,∇fpre(vk),∇fpre(vk−1))
2: uk+1 = vk − αk∇fpre(vk)

3: ak+1 =
(
1 +

√
4a2

k + 1
)
/2

4: vk+1 = uk+1 + (ak − 1) (uk+1 − uk) /ak+1

5: return

C. Lipschitz Constant Prediction

Instead of line search, we compute the steplength through a

closed-form formula of the Lipschitz constant of the gradient.

Definition 1. Given a multivariate convex function f(v) ∈
C1,1(H), ∃L > 0 s.t. ∀u,v ∈ H ,

‖∇f(u) −∇f(v)‖ ≤ L‖u − v‖. (17)

H as Hilbert space is a generalized notion of Euclidean
space, C1,1(H) requires f(v) with Lipschitz continuous gra-
dient. As our objective is non-convex, we leverage Nesterov’s

method in an approximate way. [37] states that αk = L−1

satisfies the steplength requirement specified in Eq. (16) but

lacks a formal proof. The rationale behind is that smaller

Lipschitz constant indicates higher smoothness of the gradient

thus faster convergence can be achieved via larger steplength,

vice versa. Here we provide a proof to the statement that

αk = L−1 always satisfies Eq. (16) as Theorem 1.

Theorem 1. Given convex f ∈ C1,1(H) and L defined in
Definition 1, α ≤ L−1 satisfies Eq. (16).

Proof: ∀u,v ∈ H , we have

f(v) − f(u) − 〈∇f(u), v − u〉

=

Z

v

u

∇f(v
′
)dv

′ − 〈∇f(u), v − u〉

=

Z

1

0

∇f(u + τ(v − u))d (τ(v − u)) − 〈∇f(u), v − u〉

=

Z

1

0

〈∇f(u + τ(v − u)) − ∇f(u), v − u〉dτ

≤
Z

1

0

‖∇f(u + τ(v − u)) − ∇f(u)‖ · ‖v − u‖dτ

≤
Z

1

0

L · ‖τ(v − u)‖ · ‖v − u‖dτ

=0.5L‖v − u‖2
,

(18)

where the first and second inequalities hold based on the

Cauchy-Schwartz inequality [1] and the definition of Lipschitz

constant in Eq. (17), respectively. Eq. (18) indicates that

f(v) ≤ f(u) + 〈∇f(u),v − u〉 + 0.5L‖v − u‖2. (19)

Let u = vk and v = vk − αk∇f(vk), based on Eq. (19),

f(u) − f(v) = f(vk) − f(vk − αk∇f(vk))

≥〈∇f(u),u − v〉 − 0.5L‖v − u‖2

=〈∇f(vk), αk∇f(vk)〉 − 0.5α2
kL‖∇f(vk)‖2

=αk‖∇f(vk)‖2 − 0.5α2
kL‖∇f(vk)‖2

≥(αk − 0.5α2
kα

−1
k )‖∇f(vk)‖2

=0.5αk‖∇f(vk)‖2,

(20)

where the second inequality holds if we have L ≤ α−1
k .

As a result, L−1 can be used as the steplength to accelerate

the algorithm without convergence penalty. Exact Lipschitz

constant is very expensive to compute (even more time con-

suming than line search). Moreover, static estimation will be

invalidated through iterative change of the cost function, as

both the wirelength coefficient γ in Eq. (3) and penalty factor
λ in Eq. (5) are being iteratively adjusted in ePlace-MS (more
details can be found in [24]). As a result, we approximate the

Lipschitz constant and steplength as follows

L̃k =
‖∇f(vk) −∇f(vk−1)‖

‖vk − vk−1‖
, αk = L̃−1

k , (21)

where only v is used for Lipschitz constant prediction. The

computation overhead is negligible since both ∇f(vk−1) and
∇f(vk) are known thus there is no extra computation.

D. Steplength Backtracking

We develop a backtracking method to enhance the pre-

diction accuracy via preventing potential steplength overes-

timation by Eq. (21), which would unexpectedly misguide

the nonlinear solver. Being used to generate vk+1, however,

αk by Eq. (21) is predicted using vk and vk−1. Instead, our

backtracking method predicts αk using vk and vk+1. At line

1 of Algorithm 2, we set the steplength computed by Eq. (21)

as a temporary variable α̂k. The respective temporary solution

v̂k+1 (line 3) is used to produce a reference steplength. If

it is exceeded by α̂k (line 4), we update α̂k and v̂k+1 at

lines 5 and 7 and do the backtracking circularly until the

inequality at line 4 is satisfied. vk and vk−1 are the placement

Algorithm 2 BkTrk

Input: ak, ak+1, uk, vk, vk−1, ∇fpre(vk), ∇fpre(vk−1)
Output: αk

1: α̂k = ‖vk−vk−1‖
‖∇fpre(vk)−∇fpre(vk−1)‖

2: ûk+1 = vk − α̂k∇fpre(vk)
3: v̂k+1 = ûk+1 + (ak − 1) (ûk+1 − uk) /ak+1

4: while α̂k > ǫ
(

‖v̂k+1−vk‖
‖∇fpre(v̂k+1)−∇fpre(vk)‖

)
do

5: α̂k = ‖v̂k+1−vk‖
‖∇fpre(v̂k+1)−∇fpre(vk)‖

6: ûk+1 = vk − α̂k∇fpre(vk)
7: v̂k+1 = ûk+1 + (ak − 1) (ûk+1 − uk) /ak+1

8: end while

9: αk = α̂k

10: return

solutions for the current iteration k and the past iteration
k − 1. uk is the other solution (at iteration k) simultaneously
updated with vk, as shown in Algorithm 1. ǫ = 0.95 is
the scaling factor to encourage earlier return of function

BkTrk thus prevent over-backtracking, which could consume
too much runtime with limited accuracy improvement. The

runtime overhead is zero if the first check at line 4 is passed,

since the newly computed gradient ∇f(v̂k+1) can be reused
at the following iteration. Experiments show that the average

number of backtracks per iteration over all the 16 MMS

benchmarks [47] is only 1.037, indicating less than 4% runtime
overhead on mGP. Disabling backtracking causes ePlace-MS-

WA (using the weighted-average wirelength model) to fail

on MMS BIGBLUE4 and increase wirelength by 43.12% on
average of the remaining 15 MMS benchmarks.
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VI. PRECONDITIONING

This section introduces our development of the nonlinear

preconditioner, which is used by Nesterov’s method in Algo-

rithm 1 and steplength backtracking in Algorithm 2. Precon-

ditioning reduces the condition number of a problem, which

is transformed to be more suitable for numerical solution.

Traditional preconditioning techniques compute the inverse of

the Hessian matrix Hf of the objective function f . Precondi-
tioning has broad application in quadratic placers [17], [21],

[45], [46] but none attempts in nonlinear placers [3], [13],

[15], mainly due to the non-convexity of the density function.

In this work, we approximate the original Hessian Hf with a

positive definite diagonal matrix H̃f as the preconditioner. We

multiply it to the gradient vector and use ∇fpre = H̃−1
f

∇f to
direct the nonlinear placement optimization. A preconditioned

gradient vector ∇fpre is used to stretch the function space

to be more spherical in order to smooth and accelerate the

numerical optimization. However, as the objective function

of global placement is of large scale (usually millions of

objects to place) and highly nonlinear, to compute the Hessian

matrix becomes very expensive and indeed computationally

impractical. As a result, we choose the Jacobi preconditioner

using only the diagonal terms of the Hessian matrix Hf , as

Eq. (22) shows

Hfx,x
≈ H̃fx,x

=




∂2f
∂x2

1

0 · · · 0

0 ∂2f
∂x2

2

· · · 0

...
...

. . .
...

0 0 · · · ∂2f
∂x2

n



. (22)

By Eq. (5), we have

H̃f =
(

eHfx,x 0

0 eHfy,y

)
= H̃W + λH̃N. (23)

As
∂2f(v)

∂x2
i

= ∂2W (v)
∂x2

i

+ λ∂2N(v)
∂x2

i

, we need to separately

compute or estimate ∂2W
∂x2

i

and ∂2N
∂x2

i

at every iteration.

A. Wirelength

Based on the LSE wirelength modeling equation shown in

Eq. (3), we differentiate it to derive the gradient function of

the wirelength of net e w.r.t. xi as shown below.

∂WLSE
e (v)

∂xi

=
γ

P

j∈e exp (xj/γ)
×
∂

P

j∈e exp (xj/γ)

∂xi

+

γ
P

j∈e exp (−xj/γ)
×
∂

P

j∈e exp (−xj/γ)

∂xi

=
exp (xi/γ)

P

j∈e exp (xj/γ)
−

exp (−xi/γ)
P

j∈e exp (−xj/γ)

(24)

Via further differentiating Eq. (24) w.r.t. xi, we are able to

derive the second-order gradient of the LSE function as below.

∂2W LSE
e (v)

∂x2
i

=
exp (xi/γ) {P

j∈e exp (xj/γ) − exp (xi/γ)}
γ{P

j∈e exp (xj/γ)}2
+

exp (−xi/γ) {P

j∈e exp (−xj/γ) − exp (−xi/γ)}
γ{P

j∈e exp (−x/γ)}2

(25)

Similarly, we can derive the gradient function of the WA wire-

length model by differentiating Eq. (4). However, the second-

order differentiation of Eq. (4) is complicated, moreover, quite

computationally expensive. As a result, we use the vertex

degree of object i instead,

∂2WWA
e (v)

∂x2
i

=
∑

e∈Ei

∂2We(v)

∂x2
i

≈ |Ei|, (26)

where Ei denote the set of all the nets incident to the object i.
We have the second-order derivative of the wirelength function

W (v) w.r.t. the horizontal movement of object i (i.e. xi)

expressed as below.

∂2W (v)

∂x2
i

=
∂2

∑
e∈Ei

We(v)

∂x2
i

=
∑

e∈Ei

∂2We(v)

∂x2
i

(27)

Since W (v) in both LSE and WA are strongly convex [12],
[35] and globally differentiable, the Hessian matrices are also

positive definite with straightly positive eigenvalues. As a

result, we can use the closed-form formula ∂2W
∂x2

i

in Eq. (27)

as the nonlinear wirelength preconditioner.

B. Density

By differentiating the density gradient function in Eq. (11),

we could obtain the second-order derivative as below

∂2N(v)

∂x2
i

= −qi
∂ξix

∂xi
= −qiρix

, (28)

where ρi = ρix
+ρiy

. However, the density function N(v) by
Eq. (6) is based on a repulsive force dominant system, thus

it is non-convex. As a result, we could have
∂2N(v)

∂x2
i

< 0 for

some object i. Negative preconditioner will invert the direction
of gradient, causing the cost to increase and the placement

solution to diverge. To avoid this, we concisely approximate

the density preconditioner as below.

∂2N(v)

∂x2
i

= qi
∂2ψi(v)

∂x2
i

≈ qi (29)

Such operation actually helps decompose charges of different

electric quantities all into unit charges, the electric force

applied onto each charge is uniquely determined by the local

electric field, while placement oscillation due to imbalance

of density forces is avoided. The rationale behind is similar

to the mechanical movement, where the motion velocity of

each object depends on its acceleration, which is uniquely

determined by the respective field (electrostatic, gravitational,

etc.) but not the mass of the object. As a result, our density

equalization method is indeed a simulation of the behavior of

a real electrostatic system. Such system in the real world will

always progress towards states of lower energy, which guar-

antees the convergence in the end achieving the even density

distribution. The performance comparison of the three density

preconditioners (no preconditioner, Eq. (29) and Eq. (28))

is shown in Figure 6. Compared to the other two options,

our proposed preconditioner using charge quantity qi (object
area) achieves the highest effectiveness and efficiency in the

convergence of the density cost minimization.
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Fig. 6: Performance comparison of the three candidate density preconditioners
via a density-only placement on the MMS ADAPTEC1 benchmark.

C. Summary

As a result, we use
∂2f(v)

∂x2
i

≈ ∂2W (v)
∂x2

i

+ λqi to approximate

the ith diagonal term of the placement preconditioner H̃fx,x

w.r.t. horizontal charge movement, while the preconditioner

for the vertical charge movement can be derived in a similar

way. Disabling the preconditioner causes ePlace-MS to fail on

nine out of the totally sixteen MMS benchmarks, since macros

significantly differ from standard cells with much higher

magnitude of gradients. As a result, unpreconditioned gradient

makes macros with large area and high incidence degree

to bounce between opposite placement boundaries, causing

the solution to oscillate and hard to converge within limited

number of iterations3. On average of the remaining seven

MMS benchmarks, the wirelength is increased by 24.63%,
indicating high effectiveness of our preconditioner.

VII. MACRO LEGALIZATION (MLG)

Based on the mGP solution vmGP , mLG legalizes the macro

layout via a simulated annealing (SA) [19] based approach,

as Figure 8 shows. Unlike traditional SA based floorplanners

and macro placers [4], [6], [32], [46] which perturb floorplan

expression then physically realize it, mLG uses SA to directly

control macro motion.

• We expect a high-quality solution from mGP. Only local
macro shifts are expected in mLG, the shrunk design

space can be well explored by SA.

• Our SA engine is more efficient with only minor position
change to each single macro.

• After each random perturbation of floorplan expression,
the respective floorplan realization may cause significant

layout change, which is time consuming and could induce

unexpected quality degradation.

Similar to Timberwolf [40], however, mLG legalizes macros

rather than detailedly place cells. As Figure 7 shows, mLG

can be decomposed into two levels. At each iteration of the

outer loop (mLG iteration), we update the cost fmLG(v) by

fmLG(v) = HPWL(v) + µDD(v) + µOOm(v), (30)

where HPWL(v), D(v) and Om(v) denote the total wire-
length, total standard-cell area covered by macros and total

macro overlap. mLG is set as constrained optimization.

• Objective is to minimize HPWL(v) + µDD(v). Since
penalty on D(v) will be transformed to wirelength during

3We set 3000 as the upper limit of iterations in ePlace-MS.

j++, update

D, O

j=0, initialize

D, O

tj,k>tmin

k=0, initialize

tj,0, rj,0

Rand. Select & 

Move (<rj,k)

Macro Legalization (mLG)

Simulated Annealing (SA)

else

k++, update 

tj,k, rj,k

rand. in (0,1)

Incremental

Cost Est. ( f )vmGP

else

vmLG

< exp(- f / t j , k )?Overlap Check

(Om=0?)

yes

yes

else

Fig. 7: Our two-level annealing-based macro legalizer.

cGP and cDP, we treat them equally in mLG thus

statically set µD = HPWL(v)
D(v) .

• Constraint is zero macro overlap (Om(v) = 0).
We set µO as the penalty factor and initialize it as

(HPWL(v) + µDD(v)) /Om(v). µO is multiplied by

β at each mLG iteration to make the legalizer more
aggressive on macro overlap reduction.

At each iteration of the inner loop shown in Figure 7 (SA

iteration), the annealer randomly picks a macro and randomly

determine its motion vector within the search range. The cost

difference ∆f is then incrementally evaluated and we generate
a random number τ ∈ (0, 1) to determine whether the new

layout will be accepted or not by checking if τ < exp
(
−∆f

tj,k

)
.

Here j and k denote the mLG and SA iteration indices.
The temperature tj,k at each iteration (j, k) is determined
based on the maximum cost increase ∆fmax(j, k) that will
be accepted by more than 50% probability, thus we set

tj,k = ∆fmax(j,k)
ln 2 . We set ∆fmax(j, 0) (∆fmax(j, kmax)) as

0.03×βj (0.0001×βj), denoting that cost increase by less than

3% (0.01%) at the first (last) SA iteration will be accepted by
more than 50% probability. These parameters appear small but
fit well into our framework, since only minor layout change

is expected in mLG. Meanwhile, they are scaled up per mLG

iteration to adapt to the enhancement of the penalty factor

µO. We initialize ∆fmax(j, k) by ∆fmax(j, 0) and linearly
decrease it towards∆fmax(j, kmax). The radius rj,k of macro
motion range is dependent on both the penalty factor and

the amount of macros. Given m macros to legalize, we set
rj,0 = Rx√

m
× 0.05 × βj , which means the entire placement

region R can be decomposed into m sub-regions, every macro
can be moved within 5% of its assigned region at each time.
Similar to the temperature, the radius is scaled by β at each
mLG iteration. In practice, we set β = 1.5 to achieve good
tradeoff between quality and efficiency.

VIII. STANDARD CELL-ONLY

GLOBAL PLACEMENT (CGP)

cGP mitigates the quality overhead due to mLG via a

second-phase global placement of standard cells. With macros

fixed, cGP uses the same nonlinear algorithm of mGP. AS

Figure 9 shows, cGP causes small changes to the standard-

cell layout and converges faster than mGP. mLG is unaware

of filler layout and may induce huge macro-filler overlap. As

a result, fillers are retrieved and randomly distributed first.

With standard cells fixed, a filler-only placement runs for 20

iterations to relocate fillers to their best sites. The resulting

solution with low density cost ensures placement of standard
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(a) j=0, k=0, W=63.37e6, D=12.29e5,
O=16.48e6, Om=60.94e4.

(b) j=0, k=1, W=63.61e6, D=13.57e5,
O=16.17e6, Om=17.14e4.

(c) j=0, k=9, W=64.19e6, D=14.55e5,
O=16.03e6, Om=2.16e4.

(d) j=3, k=1, W=64.36e6, D=14.83e5,
O=16.08e6, Om=0.

Fig. 8: Distribution of macros (a) before mLG (b) 1st mLG iteration (c) 2nd
mLG iteration (d) after mLG by ePlace-MS-WA on the MMS ADAPTEC1
benchmark with fixed standard-cell layout and all the fillers removed. Total
wirelength, total standard-cell area covered by macros, total object overlap
and total macro overlap are denoted by W , D, O and Om, respectively.

(a) Iter=0, W=64.36e6, N=42.05e9,
τ = 9.84%, O=16.09e6.

(b) Iter=20, W=64.36e6, N=78.27e6,
τ = 9.84%, O=16.09e6.

(c) Iter=28, W=61.30e6, N=21.70e7,
τ = 19.96%, O=22.83e6.

(d) Iter=51, W=63.04e6, N=15.29e6,
τ = 9.81%, O=16.29e6.

Fig. 9: Distribution of standard cells and fillers (a) before cGP (b) after filler
redistribution (c) standard cell and filler co-optimization (d) after cGP by
ePlace-MS-WA on the MMS ADAPTEC1 benchmark. The total wirelength,
potential energy, density overflow and object overlap are denoted by W , N ,
τ and O, respectively. Total macro overlap remains zero (by mLG).

cells not to compensate extra density violation by fillers. On

average of all the MMS benchmarks, the wirelength will be

increased by 6.53% if we skip filler-only placement.
cGP then co-optimizes standard cells with fillers. The initial

penalty factor λinit
cGP is determined based on that by the last

mGP iteration λlast
mGP . As λ will be multiplied by up to 1.1,

we set λinit
cGP = λlast

mGP ×1.1m, using m buffering iterations for
cGP to recover the aggressiveness of mGP. As cGP section of

Figure 2 shows, the wirelength (overlap) reduces (increases)

sharply for an optimal initial solution (similar to mIP). By

increasing λcGP iteratively, cGP reduces the overlap with mild

wirelength overhead. In practice, we set m as the number of

mGP iterations divided by ten.

IX. EXPERIMENTS AND RESULTS

We implement ePlace-MS using C programming language

and execute the program in a Linux machine with Intel i7

920 2.67GHz CPU and 12GB memory. The FFT package

from [38] is used in ePlace-MS to perform DCT and DST

operations. To validate the performance of ePlace-MS, we

conduct experiments on the modern mixed-size (MMS) bench-

marks [47], as shown in Table I. MMS benchmarks inherit the

same netlists and density constraints ρt from ISPD 2005 [34]

and ISPD 2006 [33] benchmarks but have all the macros

freed to place. There are also fixed IO blocks inserted within

the placement domain in order to maintain the uniqueness of

the analytic solution. Following the contest policy in ISPD

2006 [33], there is a benchmark-specific density upper-bound

ρt for eight out of the totally sixteen circuits. This target

density ρt helps produce whitespace among circuit objects

to accommodate interconnect and buffers, therefore facilitate

the following design stages of routing, timing correction, etc.

By the benchmark protocol [33], exceeding ρt will penalize

the wirelength by sHPWL = HPWL × (1 + 0.01 × τavg),
where τavg denotes the scaled density overflow per bin and

sHPWL is the scaled wirelength. More detailed circuit
statistics of MMS benchmarks can be found in [47]. After cGP

is completed, ePlace-MS invokes the detailed placer in [13] for

the legalization and detailed placement of only standard cells

(cDP). There is no benchmark specific parameter tuning in our

work, and we use the official scripts from [47] to evaluate the

performance of all the placers in our experiments.

Seven state-of-the-art mixed-size placers covering two cat-

egories of algorithms (as discussed in Section I) are in-

cluded for performance comparison, namely, Capo10.5 [39],

FastPlace3.0 [46], ComPLx (v13.07.30) [17], POLAR [21],

mPL6 [3], FLOP [47], NTUplace3-unified [13]. We have

obtained the binaries of four placers and executed them on our

machine. FLOP is not available due to IP and other issues, thus

we cite their performance from [47]. Capo10.5 and mPL6 fail

to work with MMS benchmarks in our machine, so we cite the

respective results also from [47] instead. Also, APlace3 [15]

crashes on every MMS circuit as reported in [47] thus is

not included in the results. MP-tree [6] and CG [4] are not

available due to the industrial copyrights, while their results

on MMS benchmarks are also not available. However, as both

of them have been outperformed by NTUplace3-unified [13]

with on average 21% and 9% shorter wirelength (reported in
Table V of [13]), we do not include them in our experiments.

The experimental results of HPWL and scaled HPWL (sH-

PWL) on the MMS circuits are shown in Table II. As shown in

Table I, there are no target density constraints for the first eight

circuits (i.e., 100%) thus no density penalty on the wirelength.
In other words, HPWL equals sHPWL for the first eight MMS

testcases in Table II as marked with †. NTUplace3-unified-
NR (with macro rotation and flipping disabled) fails on two

MMS benchmarks (NEWBLUE3 and NEWBLUE7) with the

average wirelength, density overflow and runtime computed

based on the other fourteen benchmarks. Compared to all

the placers in the experiments, ePlace-MS produces the best
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TABLE I: Statistics of the MMS benchmark suite [47].

Circuits # Objects # Mov. Objects # Std. Cells # Macros # Fixed I/Os # Nets # Pins Target Den. (ρt)

ADAPTEC1 211447 210967 210904 63 480 221142 944053 100 %
ADAPTEC2 255023 254584 254457 127 439 266009 1069482 100 %
ADAPTEC3 451650 450985 450927 58 665 466758 1875039 100 %
ADAPTEC4 496054 494785 494716 69 1260 515951 1912420 100 %
BIGBLUE1 278164 277636 277604 32 528 284479 1144691 100 %
BIGBLUE2 557866 535741 534782 959 22125 577235 2122282 100 %
BIGBLUE3 1096812 1095583 1093034 2549 1229 1123170 3833218 100 %
BIGBLUE4 2177353 2169382 2169183 199 7970 2229886 8900078 100 %
ADAPTEC5 843128 842558 842482 76 570 867798 3493147 50 %
NEWBLUE1 330474 330137 330073 64 337 338901 1244342 80 %
NEWBLUE2 441516 440264 436516 3748 1252 465219 1773855 90 %
NEWBLUE3 494011 482884 482833 51 11127 552199 1929892 80 %
NEWBLUE4 646139 642798 642717 81 3341 637051 2499178 50 %
NEWBLUE5 1233058 1228268 1228177 91 4790 1284251 4957843 50 %
NEWBLUE6 1255039 1248224 1248150 74 6815 1288443 5307594 80 %
NEWBLUE7 2507954 2481533 2481372 161 26421 2636820 10104920 80 %

TABLE II: HPWL (marked with †) and scaled HPWL (×106) on the MMS benchmark suite [47]. Mac=Macros, CP=Capo, FP=FastPlace, CPx=ComPLx,
NP3U=NTUplace3-unified, NR=”no rotation or flipping of macros”. Cited results are marked with ∗. All the results are evaluated by the official scripts [47].

Categories Constructive One-Stage ePlace-MS
Benchmarks CP10.5∗ FLOP-NR∗ FLOP∗ FP3.0 CPx POLAR mPL6∗ NP3U-NR NP3U LSE WA

ADAPTEC1† 84.77 77.18 76.83 82.39 79.05 92.17 77.84 75.92 75.55 66.99 66.82

ADAPTEC2† 92.61 87.17 84.14 88.53 99.11 149.43 88.40 84.89 78.50 76.74 76.76

ADAPTEC3† 202.37 182.21 175.99 187.98 175.78 197.48 180.64 170.88 169.74 161.63 161.55

ADAPTEC4† 202.38 166.55 161.68 187.50 156.75 175.19 162.02 167.13 166.68 145.89 147.04

BIGBLUE1† 112.58 95.45 94.92 104.91 96.18 99.12 99.36 96.42 96.57 87.27 86.29

BIGBLUE2† 149.54 150.66 153.02 145.89 147.19 157.72 144.37 148.12 147.17 132.72 130.06

BIGBLUE3† 583.37 372.79 346.24 400.40 344.63 420.28 319.63 324.39 338.47 287.34 284.39

BIGBLUE4† 915.37 807.53 777.84 775.43 772.53 814.07 804.00 797.17 799.66 660.17 656.68

ADAPTEC5 565.88 381.83 357.83 338.77 338.67 380.45 376.30 295.24 294.24 304.68 312.86

NEWBLUE1 110.54 73.36 67.97 73.91 65.26 70.68 66.93 61.13 61.25 60.43 61.87

NEWBLUE2 303.25 231.94 187.40 197.15 187.87 197.65 179.18 164.27 163.76 159.11 162.98

NEWBLUE3 1282.19 344.71 345.99 325.72 269.47 601.17 415.86 N/A 280.92 287.69 304.16

NEWBLUE4 300.69 256.91 256.54 270.70 256.97 277.60 277.69 231.59 229.36 226.29 229.20

NEWBLUE5 570.32 516.71 510.83 500.09 453.05 450.69 515.49 414.81 420.46 392.77 392.93

NEWBLUE6 609.16 502.24 493.64 512.19 452.83 475.78 482.44 471.51 474.86 414.56 409.28

NEWBLUE7 1481.45 1113.07 1078.18 1016.10 1010.00 1107.59 1038.66 N/A 1100.84 889.18 895.11

Avg. (s)HPWL 66.14% 20.16% 15.46% 19.47% 12.04% 32.03% 17.25% 8.61% 8.22% −0.57% 0.00%

TABLE III: Scaled average density overflow per bin on the MMS benchmark suite [47]. Mac=Macros, CP=Capo, FP=FastPlace, CPx=ComPLx,
NP3U=NTUplace3-unified, NR=”no rotation or flipping of macros”. Cited results are marked with ∗.

Categories Constructive One-Stage ePlace-MS
Benchmarks CP10.5∗ FLOP-NR∗ FLOP∗ FP3.0 CPx POLAR mPL6∗ NP3U-NR NP3U LSE WA

ADAPTEC5 N/A N/A 4.19 2.41 1.00 5.48 N/A 4.59 5.34 0.09 0.75

NEWBLUE1 N/A N/A 1.14 1.03 1.05 2.39 N/A 0.53 1.35 0.06 0.04

NEWBLUE2 N/A N/A 0.87 0.07 0.19 0.02 N/A 0.12 0.05 0.05 0.03

NEWBLUE3 N/A N/A 1.02 0.01 0.01 0.00 N/A N/A 0.00 0.00 0.00

NEWBLUE4 N/A N/A 4.94 2.62 1.35 10.43 N/A 8.69 10.1 0.35 0.29

NEWBLUE5 N/A N/A 2.85 1.21 1.08 7.68 N/A 7.80 9.14 0.17 0.17

NEWBLUE6 N/A N/A 1.34 1.11 1.06 5.10 N/A 1.53 2.09 0.27 0.23

NEWBLUE7 N/A N/A 1.48 0.60 0.99 1.88 N/A 28.51 0.33 0.14 0.09

Avg. Den. Ovf. N/A N/A 27.64× 7.49× 7.69× 23.99× N/A 17.65× 17.99× 1.15× 1.00

solutions with the shortest wirelength for fourteen out of the

totally sixteen testcases. Besides, it outperforms the leading-

edge mixed-size placer NTUplace3 [13] by up to 22.98%
shorter wirelength4 and on average 8.22% shorter wirelength
over all the MMS circuits. Notice that unlike NTUplace3,

ePlace-MS does not allow macro rotation or flipping, which

indicates further improvement space thus potentially better

solution quality. The statistics of density overflow (i.e. the

4ePlace-MS produces 22.98% shorter wirelength than NTUplace3 on NEW-
BLUE7, which is the largest design in the MMS benchmark suite with roughly
2.5 million components.

amount of violations to the testcase dependent target density ρt

as specified in Table I) is shown in Table III. The respective re-

sults of Capo10.5, FLOP-NR and mPL6 are not available from

respective publications [47]. ePlace-MS obtains consistently

the lowest density overflow at all the eight testcases (with

predefined target density), showing the best performance of

our density modeling method eDensity. The runtime statistics
is shown in Table IV. On average of all the sixteen MMS

benchmarks, ePlace-MS runs faster than Capo10.5, FLOP,

ComPLx, mPL6, and shows essentially the same efficiency

with NTUplace3. Despite longer runtime than FastPlace3.0
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TABLE IV: Runtime (minutes) on the MMS benchmark suite [47]. Mac=Macros, CP=Capo, FP=FastPlace, CPx=ComPLx, NP3U=NTUplace3-unified,
NR=”no rotation or flipping of macros”. Cited results are marked with ∗.

Categories Constructive One-Stage ePlace-MS
Benchmarks CP10.5∗ FLOP-NR∗ FLOP∗ FP3.0 CPx POLAR mPL6∗ NP3U-NR NP3U LSE WA

ADAPTEC1 92.78 12.03 13.73 3.32 5.43 4.85 40.07 5.63 6.50 5.25 5.47

ADAPTEC2 122.88 20.32 19.87 3.28 21.55 9.73 47.83 8.45 6.30 7.58 7.43

ADAPTEC3 282.88 32.38 35.27 6.73 14.07 10.72 99.72 15.10 10.57 26.22 27.23

ADAPTEC4 291.15 39.97 40.45 6.80 16.87 12.52 99.52 9.40 8.97 56.40 29.35

BIGBLUE1 140.97 29.60 33.45 5.05 4.25 4.95 47.15 12.07 10.90 7.85 7.82

BIGBLUE2 294.12 39.55 51.83 5.32 49.80 12.28 203.37 17.08 17.68 13.97 13.70

BIGBLUE3 91165.35 117.28 990.62 20.27 176.38 46.07 159.13 47.30 58.13 82.20 72.98

BIGBLUE4 1829.75 230.27 327.85 36.73 126.02 56.63 397.80 115.95 92.17 141.37 204.15

ADAPTEC5 399.28 84.13 54.88 15.22 13.15 21.37 377.27 53.78 46.07 50.27 48.35

NEWBLUE1 52.22 22.80 16.87 5.03 4.58 6.20 52.85 11.85 10.75 11.70 10.87

NEWBLUE2 135.93 44.10 40.23 6.52 51.02 21.93 100.73 13.55 15.00 51.12 62.40

NEWBLUE3 1222.32 38.93 45.95 12.08 36.30 39.27 293.72 N/A 58.08 30.57 17.53

NEWBLUE4 109.82 42.92 40.92 9.05 10.57 13.58 162.20 28.05 32.07 28.27 29.73

NEWBLUE5 275.80 146.68 152.72 21.60 35.78 30.62 413.43 82.03 77.50 55.47 63.40

NEWBLUE6 301.27 157.50 159.38 18.37 21.25 28.02 218.53 62.97 65.73 112.62 69.65

NEWBLUE7 723.10 312.75 418.40 50.53 73.75 66.77 528.00 N/A 116.03 392.02 191.47

Avg. CPU 13.71× 1.96× 2.06× 0.36× 1.09× 0.67× 5.92× 0.90× 1.00× 1.18× 1.00×

and POLAR, ePlace-MS produces on average 19.47% and

32.03% shorter wirelength. In general, ePlace-MS outperforms
all the mixed-size placement algorithms in literature and

achieves good results on both LSE and WA wirelength models,

showing that our density function and nonlinear optimization

algorithm have high and stable performance, which are not

dependent on specific wirelength models.

Fig. 10: The runtime breakdown of ePlace-MS-WA on average of all the
sixteen MMS benchmarks.

Fig. 11: The runtime breakdown of mGP of ePlace-MS-WA on average of
all the sixteen MMS benchmarks.

Figure 10 shows the CPU breakdown of ePlace-MS-WA

on average of all the MMS benchmarks. mGP is the most

effective placement stage (as Figure 2 shows) and consumes

the longest runtime. A further breakdown of mGP by Figure 11

illustrates that computation of density and wirelength gradients

and other operations (Lipschitz constant prediction, parameter

update, etc.) consume 57%, 29% and 14% runtime of mGP.

X. CONCLUSION

eP lace-MS is a generalized and effective placement al-
gorithm to handle mixed-size circuits of very large scale.

Using the density function eDensity based on electrostatics
analogy, macros and standard cells are equalized by precon-

ditioning and smoothly co-optimized by Nesterov’s method.

Steplength is determined via Lipschitz continuity together with

a backtracking strategy to prevent overestimation. Unlike all

the approaches in literature, ePlace-MS treats standard cells

and macros in exactly the same way. The experimental results

on MMS benchmarks validate its high and stable performance.

The analytic nature of ePlace-MS ensures smooth integration

of other design objectives (timing, routability, thermal, etc.).

More details of ePlace-MS can be found at its homepage [8].
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