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Abstract

We describe a novel public-key cryptosystem, EPOC (Efficient Probabilistic Public-Key
Encryption), which has two versions: EPOC-1 and EPOC-2. EPOC-1 is a public-key encryp-
tion system that uses a one-way trapdoor function and a random function (hash function).
EPOC-2 is a public-key encryption system that uses a one-way trapdoor function, two ran-
dom functions (hash functions) and a symmetric-key encryption (e.g., one-time padding and
block-ciphers).
EPOC has several outstanding properties as follows:

1. EPOC-1 is semantically secure or non-malleable against chosen ciphertext attacks
(IND-CCA2 or NM-CCA2) in the random oracle model under the p-subgroup as-
sumption, which is comparable to the quadratic residue and higher degree residue
assumptions.

2. EPOC-2 with one-time padding is semantically secure or non-malleable against chosen
ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model under the
factoring assumption.

3. EPOC-2 with symmetric encryption is semantically secure or non-malleable against
chosen ciphertext attacks (IND-CCA2 or NM-CCA2) in the random oracle model under
the factoring assumption, if the underlying symmetric encryption is secure against
passive attacks.

4. The trapdoor technique with EPOC is fundamentally different from any other previous
scheme including RSA-Rabin and Diffie-Hellman-ElGamal.

5. Under the most practical environment in which public-key cryptosystems would be
used, the encryption and decryption speeds of EPOC are comparable (several times
slower) to those of elliptic curve cryptosystems.

Compared with OAEP (RSA) with small e (e.g.,216 + 1), although the encryption
speed of EPOC is slower than that of OAEP, the decryption speed is faster than that
of OAEP.

The encryption scheme described in this contribution is obtained by combining three
results: one [25] on the trapdoor function technique is by Okamoto and Uchiyama, and the
others [13, 14] on conversion techniques using random functions are by Fujisaki and Okamoto.
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1 Background

1.1 Trapdoor One-way Functions and Our Novel Function

Diffie and Hellman proposed the concept of the public-key cryptosystem (or trapdoor one-way
function) in 1976 [11]. Although extensive research has been made by numerous cryptographers
and mathematicians to realize the concept of public-key cryptosystems for more than 20 years,
very few concrete techniques that seem to be secure have been found.
A typical class of techniques is RSA-Rabin, which is the combination of the polynomial

time algorithm of finding a root of a polynomial over a finite field and the intractability of
the factoring problem. Another typical class of techniques is Diffie-Hellman-ElGamal, which is
the combination of the commutative property of the logarithm in a finite Abelian group and
the intractability of the discrete logarithm problem. The RSA-Rabin class includes RSA [29],
Rabin [28], Williams [31, 32], LUC [30], Kurosawa-Itoh-Takeuchi [18], Cubic RSA [19] and the
elliptic curve versions of RSA [17, 10]. The Diffie-Hellman-ElGamal class includes the Diffie-
Hellman [11], ElGamal [12], and the elliptic/hyperelliptic curve versions of the Diffie-Hellman
and ElGamal [23, 16, 6]. Several other techniques have been proposed such as the Goldwasser-
Micali scheme [15] based on quadratic residuosity, the Ajtai-Dwark scheme [2] based on the
lattice problem, the McEliece scheme [21] based on the error correcting code, knapsack type
cryptosystems including the Merkle-Hellman, Chor-Rivest and Naccache-Stern schemes [22, 7,
24], and multivariate polynomial type cryptosystems including the Matsumoto-Imai and Patarin-
Goubin schemes [20, 26, 27]. However they are not so efficient or not so secure1. Therefore,
from the practical viewpoint, only two techniques, RSA-Rabin and Diffie-Hellman-ElGamal,
have been used in many applications.
Among the RSA-Rabin and Diffie-Hellman-ElGamal techniques for realizing a trapdoor one-

way function, no trapdoor function except the Rabin function and its variants such as its elliptic
curve versions and Williams has been proven to be as secure as the primitive problems2 (e.g.,
factoring and discrete logarithm problems).
Recently the authors, Okamoto and Uchiyama [25], proposed a novel one-way trapdoor

function that is practical, provably secure, and has some other interesting properties as follows:

1. New trick: The trapdoor technique is fundamentally different from any other previous
technique including RSA-Rabin and Diffie-Hellman-ElGamal.

2. Probabilistic function: It is a probabilistic trapdoor function. Let E(m, r) be a cipher-
text of plaintext m as randomized by r.

3. One-wayness of the trapdoor function: Inverting the function is proven to be as hard
as factoring n = p2q.

4. Semantical security: It is semantically secure if the following assumption, the p-subgroup
assumption, is true: E(0, r) = hr mod n and E(1, r′) = ghr′ mod n are computationally in-

1The expression, “not so secure” includes the case where its security has not been sufficiently investigated.
2We say a trapdoor function is “provably secure” if inverting the function is proven to be as hard as solving

the related primitive problem.
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distinguishable, where r and r′ are uniformly and independently selected from Z/nZ. This
assumption is comparable to the quadratic residue and higher degree residue assumptions.

5. Efficiency: Under the most practical environment of using public-key cryptosystems,
where a public-key cryptosystem is used only for distributing a secret key (e.g., 112 and
128 bits long) of a secret-key cryptosystem (e.g., triple-DES and IDEA), the encryption
and decryption speeds of our trapdoor function are comparable (several times slower) to
those of elliptic curve cryptosystems.

Compared to the RSA function with small e (e.g., 3 or 216 + 1), although the encryption
speed of our function is slower than that of RSA, the decryption speed of our function is
faster than that of RSA.

6. Homomorphic property: It has a homomorphic property:
E(m0, r0)E(m1, r1) mod n = E(m0 +m1, r3), if m0 +m1 < p.

Such a property is used for electronic voting and other cryptographic protocols.

Note that no other encryption scheme except the higher-degree residue encryption [8]
has such a homomorphic property, and the higher-degree residue encryption is extremely
inefficient in decryption.

7. Randomizability of ciphertext: Even someone who does not know the secret key
can change a ciphertext, C = E(m, r), into another ciphertext, C ′ = Chr′ mod n, while
preserving plaintext m (i.e., C ′ = E(m, r′′) ), and the relationship between C and C ′ can
be concealed (i.e., (C,C ′) and (C,E(m′, t)) are indistinguishable).

Such a property is useful for privacy protecting protocols.

1.2 Provable Security of Public-key Encryption and Our Conversion

One of the most important properties of public-key encryption is provable security. The strongest
security notion in public-key encryption is that of non-malleability or semantical security against
adaptive chosen-ciphertext attacks. Bellare, Desai, Pointcheval and Rogaway [3] show that
semantical security against adaptive chosen-ciphertext attacks (IND-CCA2) is equivalent to (or
sufficient for) the strongest security notion (NM-CCA2).
A promising way to construct a practical public-key encryption scheme semantically secure

against adaptive chosen-ciphertext attacks (IND-CCA2) is to convert a primitive trap-door one-
way function (such as RSA or ElGamal) by using random functions. Here, an ideally random
function, the “random oracle”, is assumed when proving the security, and the random function
is replaced by a practical random-like function such as a one-way hash function (e.g., SHA-1 and
MD5, etc.) when realizing it in practice. This approach was initiated by Bellare and Rogaway,
and is called the random oracle model [4, 5].
Although security in the random oracle model cannot be guaranteed formally when a practi-

cal random-like function is used in place of the random oracle, this paradigm often yields much
more efficient schemes than those in the standard model and gives an informal security guarantee
of the schemes.
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Two typical primitives of the trap-door one-way function are deterministic one-way permu-
tation (e.g. RSA function) and probabilistic one-way function (e.g., ElGamal and Okamoto-
Uchiyama functions).
Bellare and Rogaway presented a generic and efficient way to convert a trap-door one-way

permutation to an IND-CCA2 secure scheme in the random oracle model. (The scheme created
in this way from the RSA function is often called OAEP.) However, their method cannot be
applied to probabilistic trap-door one-way functions such as ElGamal.
Very recently the authors, Fujisaki and Okamoto [13, 14] realized two generic and efficient

measures to convert a probabilistic trap-door one-way function to an IND-CCA2 secure scheme
in the random oracle model. One is conversion from a semantically secure (IND-CPA) trap-
door one-way function to an IND-CCA2 secure scheme. The other is from a trap-door one-way
(OW-CPA) function and a symmetric-key encryption (including one-time padding) to an IND-
CCA2 secure scheme. The latter conversion can guarantee the total security of the public-key
encryption system in combination with a symmetric-key encryption scheme.

2 Description of EPOC

2.1 Overview

This section describes the proposed public-key encryption scheme, EPOC, which is specified by
triplet (G, E ,D), where G is the key generation operation, E the encryption operation, and D
the decryption operation.
We have two versions of EPOC: EPOC-1 and EPOC-2. EPOC-1 is designed for key-

distribution and EPOC-2 is designed for both usages: the combination of key-distribution and
encrypted data transfer, as well as distribution of a longer key under limited public-key size.

2.2 EPOC-1

2.2.1 Key Generation: G
The input and output of G are as follows:
[Input ] Security parameter k(= pLen), which is a positive integer.

[Output ] A pair of public-key, (n, g, h,H, pLen,mLen, hLen, rLen), and secret-key, (p, gp).

The operation of G, on input k, is as follows:
• Choose two primes p, q (|p| = |q| = k), and compute n := p2q. Here, p − 1 = p′u and
q − 1 = q′v such that p′ and q′ are primes, and |u| and |v| are O(log k).

• Choose g ∈ (Z/nZ)∗ randomly such that the order of gp := gp−1 mod p2 is p. (Note that
gcd(p, q − 1) = 1 and gcd(q, p − 1) = 1.)

• Choose h0 from (Z/nZ)∗ randomly and independently from g. Compute h := hn0 mod n.
• Set pLen := k. Set mLen and rLen such that mLen+ rLen ≤ pLen− 1.
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• Select a (hash) function H: {0, 1}∗ −→ {0, 1}hLen.
Note: gp is a supplementary parameter that improves the efficiency of decryption, since gp can
be calculated from p and g. h can be gn mod n when hLen = (2 + c0)k (c0 is a constant > 0).
H can be fixed by the system and shared by many users.

2.2.2 Encryption: E
The input and output of E are as follows:
[Input ] PlaintextM ∈ {0, 1}mLen along with public-key (n, g, h,H, pLen, mLen, hLen, rLen).
[Output ] Ciphertext C.

The operation of E , on input M and (n, g, h,H,mLen, rLen), is as follows:
• Select R ∈ {0, 1}rLen uniformly, and compute r := H(M ||R). Here M ||R denotes the
concatenation of M and R.

• Compute C:
C := g(M ||R)hr mod n.

2.2.3 Decryption: D
The input and output of D are as follows:
[Input ] Ciphertext C along with public-key (n, g, h,H, pLen,mLen, hLen) and secret-key

(p, gp).

[Output ] Plaintext M or null string.

The operation of D, on input C along with (n, g, h,H, pLen,mLen, hLen) and (p, gp), is as
follows:

• Compute Cp := Cp−1 mod p2, and X := L(Cp)
L(gp)

mod p, where L(x) := x−1
p .

• Check whether the following equation holds or not:

C = gXhH(X) mod n.

• If it holds, output [X]mLen as decrypted plaintext, where [X]mLen denotes the most sig-
nificant mLen bits of X. Otherwise, output null string.
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2.3 EPOC-2

2.3.1 Key Generation: G
The input and output of G are as follows:
[Input ] Security parameter k(= pLen).

[Output ] A pair of public-key, (n, g, h,H,G, pLen, hLen, gLen, rLen), and secret-key, (p, gp).

The operation of G, on input k, is as follows:
• Choose two primes p, q (|p| = |q| = k), and compute n = p2q. Here, p − 1 = p′u and
q − 1 = q′v such that p′ and q′ are primes, and |u| and |v| are O(log k).

• Choose g ∈ (Z/nZ)∗ randomly such that the order of gp := gp−1 mod p2 is p. (Note that
gcd(p, q − 1) = 1 and gcd(q, p − 1) = 1.)

• Choose h0 from (Z/nZ)∗ randomly and independently from g. Compute h := hn0 mod n.
• Set pLen := k. Set rLen such that rLen ≤ pLen− 1.
• Select (hash) functions H: {0, 1}∗ −→ {0, 1}hLen, and G: {0, 1}∗ −→ {0, 1}gLen.

Note: gp is a supplementary parameter that improves the efficiency of decryption, since gp can
be calculated from p and g. h can be gn mod n when hLen = (2 + c0)k (co is a constant > 0).
H and G can be fixed by the system and shared by many users.

2.3.2 Encryption: E
Let SymE = (SymEnc, SymDec) be a pair of symmetric-key encryption and decryption algo-
rithms with symmetric-key K, where the length of K is gLen. Encryption algorithm SymEnc
takes key K and plaintext X, and returns ciphertext SymEnc(K,X). Decryption algorithm
SymDec takes key K and ciphertext Y , and returns plaintext SymDec(K,Y ).
The input and output of E are as follows:

[Input ] PlaintextM ∈ {0, 1}mLen along with public-key (n, g, h,H,G, pLen, hLen, gLen, rLen)
and SymEnc.

[Output ] Ciphertext C = (C1, C2).

The operation of E , on input M , (n, g, h,H,G, pLen, hLen, gLen, rLen) and SymEnc, is as
follows:

• Select R ∈ {0, 1}rLen uniformly, and compute G(R).
• Compute H(M ||R). Here M ||R denotes the concatenation of M and R.
•

C1 := g
RhH(M ||R) mod n,

C2 := SymEnc(G(R),M).
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Remark: A typical way to realize SymE is one-time padding.
That is, SymEnc(K,X) := K⊕X, and SymDec(K,Y ) := K⊕Y , where ⊕ denotes the bit-wise
exclusive-or operation.

2.3.3 Decryption: D
The input and output of D are as follows:
[Input ] Ciphertext C = (C1, C2) along with public-key (n, g, h,H,G, pLen, hLen, gLen, rLen),

secret-key (p, gp) and SymDec.

[Output ] Plaintext M or null string.

The operation of D, on input C = (C1, C2) along with (n, g, h,H,G, pLen, hLen, gLen),
(p, gp) and SymDec, is as follows:

• Compute Cp := C1p−1 mod p2, and R′ := L(Cp)
L(gp)

mod p, where L(x) := x−1
p .

• Compute M ′ := SymDec(G(R′), C2).
• Check whether the following equation holds or not:

C1 = g
R′hH(M

′||R′) mod n.

• If it holds, output M ′ as decrypted plaintext. Otherwise, output null string.

2.4 Remark

We can use any random-like one-way functionsH and G for EPOC. (As mentioned in subsection
1.2, EPOC can be proven to be secure if H and G are ideal random functions, while no formal
security is guaranteed if they are practical random-like one-way functions.) In this subsection
we will show a typical construction of function H with hLen > 160 out of SHA (NIST Secure
Hash Algorithm), which was suggested by Bellare and Rogaway [5].
We denote by SHAσ(x) the 160-bit result of SHA applied to x, except that the 160-bit

“starting value” in the algorithm description is taken to be ABCDE = σ. Let SHAlσ(x) denote
the first l-bits of SHAσ(x). Fix the notation < i > for i encoded as a binary 32-bit word. We
define the function H as:

H(x) := SHA80σ (< 0 > ||x)||SHA80σ (< 1 > ||x)|| · · · ||SHALlσ (< l > ||x),
where l = b3k80c, and Ll = hLen − 80l.

3 Attributes and Advantages of EPOC

1. [Security of EPOC-1] If the p-subgroup assumption (see the next section) is true,
EPOC-1 is secure in the strongest sense under the random oracle model. Here security
in the strongest sense means to be semantically secure or non-malleable against adaptive
chosen-ciphertext attacks (IND-CCA2 or NM-CCA2).
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2. [Security of EPOC-2 with one-time padding] If the factoring assumption for n = p2q
is true, EPOC-2 with one-time padding (OTP) is secure in the strongest sense under the
random oracle model, when the parameters are appropriately selected.

Other practical and provably secure (IND-CCA2) encryption schemes such as (RSA based)
OAEP and Cramer-Shoup are based on stronger number theoretic assumptions, the RSA
or decision Diffie-Hellman assumption, than the factoring assumption. Here note that
the Cramer-Shoup scheme is provably secure in the standard model (i.e., assuming not a
random oracle but a universal one-way hash function (UOWHF)).

Schemes Security Number-theoretical Random function
against CCA assumption assumption

EPOC-2(with OTP) Secure (IND-CCA) Factoring Truly random

OAEP Secure (IND-CCA) RSA Truly random

Cramer-Shoup Secure (IND-CCA) DDH UOWHF

3. [Security of EPOC-2 with symmetric-key encryption] If the factoring assumption
for n = p2q is true and the underlying symmetric-key encryption is secure against passive
attacks, EPOC-2 with the symmetric-key encryption is secure in the strongest sense under
the random oracle model, when the parameters are appropriately selected.

The advantage of this scheme is that security in the strongest sense is guaranteed for the
total system that integrates the asymmetric and symmetric encryption schemes. Therefore,
even if the underlying symmetric-key encryption is secure only against passive attacks and
not against active attacks, EPOC-2, overall, guarantees security against active attacks.

Additional property of EPOC-2 is authentication without using MAC function. That
is, the recipient can confirm whether the decrypted message is the same as the one the
originator sent.

4. [Efficiency] Under the most practical environment of using public-key cryptosystems,
where a public-key cryptosystem is used only for distributing a secret key (e.g., 112 and
128 bits long) of a secret-key cryptosystem (e.g., triple-DES and IDEA), a typical example
of the parameters for EPOC-1 and EPOC-2 is as follows: for EPOC-1, mLen = 128,
rLen = 80, and hLen = 208. For EPOC-2 with one-time padding, rLen = 80, gLen = 128,
hLen = 80. The corresponding encryption and decryption speeds of EPOC-1 and EPOC-2
are comparable (several times slower) to those of elliptic curve cryptosystems.

Compared to OAEP (RSA) with small e (e.g.,216 + 1), although the encryption speeds
of EPOC-1 and EPOC-2 are slower than that of OAEP, the decryption speeds are faster
than that of OAEP.

4 Security Assessment of EPOC

This section shows our results on the security of EPOC-1 and EPOC-2. They are easily obtained
from the results presented in [25, 13, 14]. (See Appendix for [13].)
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Definition 4.1 Let G be a key generator of EPOC-1, and (n, g, h, pLen, hLen) is the public-key.
Let b ∈ {0, 1} and r{0, 1}hLen be randomly and uniformly chosen. C := gbhr mod n.
The p-subgroup problem is intractable if for any (uniform/non-uniform) probabilistic polyno-

mial time machine Adv, for any constant c, for sufficiently large k(= pLen),

Pr[Adv(k, hLen, n, g, h,C) = b] < 1/2 + 1/kc.

The probability is taken over the coin flips of G and Adv.
The assumption that the p-subgroup problem is intractable is called the p-subgroup assump-

tion.

Definition 4.2 Let G0 be an instance generator such that G0(k) → n, n = p2q, |p| = |q| = k,
(p, q : primes). Here, the distribution of n is the same as that of n with EPOC-2. The factoring
problem is, given (n, k), to find (p, q).
The factoring problem is intractable, if for any (uniform/non-uniform) probabilistic polyno-

mial time machine A, for any constant c, for sufficiently large k,

Pr[A(k, n) = (p, q)] < 1/kc.

The probability is taken over the coin flips of G0 and A.
The assumption that the factoring problem is intractable is called the factoring assumption.

Definition 4.3 Let Adv be an adversary that runs in two stages. In the first stage, Adv
endeavors to come up with a pair of equal-length messages, X0 and X1, along with some state
information s, where |X0| = |X1| ≤ (gLen)a (a: constant). In the second stage, Adv is given a
ciphertext Y := SymEnc(K,Xb), where key K ∈ {0, 1}gLen and b ∈ {0, 1} are randomly and
uniformly chosen.
SymE is secure against passive attacks (IND-PAS), if for any (uniform/non-uniform) prob-

abilistic polynomial time machine Adv, for any constant c, for sufficiently large gLen,

Pr[Adv(gLen,X0,X1, s, Y ) = b] < 1/2 + 1/(gLen)
c.

The probability is taken over the coin flips of (K, b) and Adv.

Theorem 4.4 EPOC-1 is semantically secure against adaptive chosen-ciphertext attacks (IND-
CCA2) or non-malleable against adaptive chosen-ciphertext attacks (NM-CCA2) in the random
oracle model, provided that the p-subgroup assumption is true.

Theorem 4.5 Let SymE for EPOC-2 be one-time padding. Let rLen = pLen−1, and hLen =
(2 + c0)pLen (c0 > 0: constant). EPOC-2 is semantically secure against adaptive chosen-
ciphertext attacks (IND-CCA2) or non-malleable against adaptive chosen-ciphertext attacks
(NM-CCA2) in the random oracle model, provided that the factoring assumption for n = p2q is
true.

Theorem 4.6 Let rLen = pLen − 1, and hLen = (2 + c0)pLen (c0 > 0: constant). EPOC-2
is semantically secure against adaptive chosen-ciphertext attacks (IND-CCA2) or non-malleable
against adaptive chosen-ciphertext attacks (NM-CCA2) in the random oracle model, provided
that the factoring assumption for n = p2q is true and that the underlying SymE is secure
against passive attacks (IND-PAS).
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Remark: We can also give the concrete analysis of the reduction cost for proving the security,
and show that our reduction is tight [13, 14]: for example, the ability to break IND-CCA2
security of EPOC-2 (with one-time padding) with a certain amount of computational resources
implies the ability to factor n with almost the same computational resources.

5 Limitations

As for the limitations on the formal security proof in the random oracle model, our comments
are the same as those by [1].

6 Intellectual Property Statement

NTT has filed patent applications (Japan, USA, UK, France and Germany) on the techniques
used in this contribution. NTT will license any resulting patent in a reasonable and non-
discriminatory fashion. A letter to this effect will be provided.
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Appendix

How to Enhance the Security of Public-Key Encryption
at Minimum Cost3

Eiichiro Fujisaki Tatsuaki Okamoto

Abstract

This paper presents a simple and efficient conversion from a semantically secure public-
key encryption scheme against passive adversaries to a non-malleable (or semantically secure)
public-key encryption scheme against adaptive chosen-ciphertext attacks (active adversaries)
in the random oracle model. Since our conversion requires only one random (hash) function
operation, the converted scheme is almost as efficient as the original one, when the random
function is replaced by a practical hash function such as SHA-1 and MD5. We also give
a concrete analysis of the reduction for proving its security, and show that our security
reduction is (almost) optimally efficient. Finally this paper gives some practical examples of
applying this conversion to some practical and semantically secure encryption schemes such
as the ElGamal, Blum-Goldwasser and Okamoto-Uchiyama schemes [4, 7, 9].

Key words: semantical security, non-malleability, chosen-plaintext attack,
adaptive chosen-ciphertext attack, random oracle model.

1 Introduction

1.1 Background

One of the most important topics in cryptography is to propose a practical and provably
secure public-key encryption scheme. The strongest security notion in the public-key encryp-
tion is that of non-malleability or semantical security against adaptive chosen-ciphertext
attacks. In [3], Bellare, Desai, Pointcheval and Rogaway show that semantical security
against adaptive chosen-ciphertext attacks (IND-CCA2) is equivalent to (or sufficient for)
the strongest security notion (NM-CCA2).
A promising way to construct a practical public-key encryption scheme semantically

secure against adaptive chosen-ciphertext attacks (IND-CCA2) is to convert from a primitive
trap-door one-way function (such as RSA or ElGamal) by using random functions. Here,
an ideally random function, the “random oracle”, is assumed when proving the security,
and the random function is replaced by a practical random-like function such as a one-way
hash function (e.g., SHA-1 and MD5, etc.) when realizing it in practice. This approach was
initiated by Bellare and Rogaway, and is called the random oracle model [2].
Although security in the random oracle model cannot be guaranteed formally when a

practical random-like function is used in place of the random oracle, this paradigm often
yields much more efficient schemes than those in the standard model and gives an informal
security guarantee of the schemes.
Two typical primitives of the trap-door one-way function are RSA and ElGamal. The

RSA function is a trap-door one-way permutation, and the ElGamal function is a probabilis-
tic trap-door one-way function.

3The revised version of this appendix will be presented at PKC’99 in March 1–3, 1999, Kamakura, Japan, and
appear in the proceedings of PKC’98, LNCS, Springer-Verlag.
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Bellare and Rogaway presented a generic and efficient way to convert a trap-door one-
way permutation to an IND-CCA2 secure scheme in the random oracle model. (The scheme
created in this way from the RSA function is called OAEP.)
However, their method cannot be applied to a probabilistic trap-door one-way function

such as ElGamal. Therefore, a new measure to convert a probabilistic trap-door one-way
function to an IND-CCA2 secure scheme (in the random oracle model) should be very valu-
able.
This paper will present such a generic and efficient measure. It converts a probabilistic

trap-door one-way function to an IND-CCA2 secure scheme in the random oracle model
provided that the trap-door one-way function is semantically secure (IND-CPA).
Since our conversion requires only one random (hash) function operation, the converted

scheme is almost as efficient as the original scheme, when the random function is replaced
by a practical hash function such as SHA-1 and MD5. Therefore, we can construct practical
IND-CCA2 secure schemes (in the random oracle model) based on several practical IND-CPA
secure schemes (under some reasonable assumptions) such as the (elliptic curve) ElGamal,
Blum-Goldwasser and Okamoto-Uchiyama schemes [4, 7, 9, 11].
We begin by examining the notions of public-key encryption security.

1.2 Classification of Encryption Scheme Security

We can define the security levels of public-key encryption schemes, using the pairs of goals
and adversary models (We saw this classification first in the paper of [3], which stated that
the viewpoint was suggested to the authors by Naor).
The goals are one-wayness (OW), indistinguishability (IND) [8],and non-malleability

(NM) [6] of encryption. One-wayness (OW) is defined by the adversary’s inability, given
a challenge ciphertext y, to decrypt y and get the whole plaintext x. Indistinguishability
(IND) is defined by the adversary’s inability, given a challenge ciphertext y, to learn any
information about the plaintext x. Non-malleability (NM) is defined by the adversary’s
inability, given a challenge ciphertext y, to get a different ciphertext y′ such that the corre-
sponding plaintexts, x and x′, are meaningfully related. Here a meaningful relation is, for
instance, x = x̄′.
The three adversary models are called chosen plaintext attack model(CPA), non-adaptive

chosen-ciphertext attack model(CCA1), and adaptive chosen ciphertext attack model(CCA2).
In CPA, the adversary is given only the public key. Of course, she can get the ciphertext of
any plaintext chosen by her. Clearly, in public-key encryption schemes, this attack cannot be
avoided. In CCA1, in addition to the public key, the adversary can access to the decryption
oracle although she is only allowed to access to the oracle before given a challenge ciphertext.
In CCA2, the adversary can access to the decryption oracle anytime (before or after given a
challenge ciphertext). She is only prohibited from asking for the decryption of the challenge
ciphertext itself.
Furthermore, we separate public-key encryption schemes into the random oracle (RO)

model or the standard model. In the random oracle model, every adversary, independent of
the adversary models, can be allowed to access to the random oracle anytime,
We say, for the security of public-key encryption scheme Π, that Π is secure in the sense

of GOAL-ATK in the RO (or standard) model, where GOAL = {OW, IND, NM} and ATK
= {CPA, CCA1,CCA2}. Here one can think of pairs of goals and attacks; OW-CPA, . . . ,
OW-CCA2, IND-CPA, . . . , NM-CCA2. According to [3], the relations among each notion
of security are as follows: 4

4Although one-wayness is not described in [3], the relations among OW and other goals in the diagram are
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NM-CPA ←− NM-CCA1 ←− NM-CCA2
6−→

↓ 6↘ 6↖ ↓ ↓↑
IND-CPA ←− IND-CCA1 ←− IND-CCA2
↓ ↓ ↓

OW-CPA ←− OW-CCA1 ←− OW-CCA2

Here, for A,B ∈ GOAL-ATK “A → B” (say, A implies B) denotes that encryption scheme
Π := (K, E ,D) being secure in the sense of A is also secure in the sense of B, while “A 6→ B”
(say, A doesn’t imply B) denotes Π being secure in the sense of A is not always secure in the
sense of B.
We will provide precise definitions of these notations in Sec.2 (Due to the space limitation,

one-wayness is not discussed).

1.3 Our Results

This paper shows a simple and efficient conversion from an IND-CPA secure public-key
encryption scheme to an NM-CCA2 (or IND-CCA2) secure public-key encryption scheme in
the random oracle model.
Suppose Epk(X,R) is an IND-CPA secure public-key encryption function, where pk is

a public-key, X is a message with k + k0 bits and R is a random string with l bits. The
conversion is

E ′pk(x, r) := Epk(x||r,H(x||r)), (1)

where H is a random function of {0, 1}k+k0 −→ {0, 1}l, x is a message of the converted
public-key encryption scheme Π′ := (K′, E ′,D′), r is a random string with k0 bits, and ||
denotes concatenation.

Main Theorem (Theorem 4.3)
If there exists a (t, qH , qD, ε)-breaker A for Π

′(1k) (the converted scheme, Π′ := (K′, E ′,D′))
in the sense of IND-CCA2 in the random oracle model, then there exist constants, c0, c1,
and a (t′, 0, 0, ε′)-breaker A′ for Π(1k+k0) (the original scheme, Π := (K, E ,D)) in the sense
of IND-CPA where

t′ = t+ c1 · qH · k + qD · qH · (TE(k) + c0 · k), and
ε′ = (ε− qH

2k0−1
) · (1− 1

2l
)qD .

Here, (t, qH , qD, ε)-breaker A (informally) means that A stops within t steps, succeeds with
probability ≥ ε, makes at most qH queries to random oracle H, and makes at most qD
queries to decryption oracle Dsk (see Sec. 2 for the formal definition). TE(k) denotes the
computational time of the encryption algorithm Epk(·), and c0 and c1 depend on details of
the underlying model of computation.

This theorem implies that if the original scheme Π is IND-CPA secure, the converted
scheme Π′ is IND-CCA2 secure (and NM-CCA2 secure as well) in the random oracle model,
provided that k, k0 and l are in proportion to system size.

clear.
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1.4 Merits and Related Works

As mentioned above, Bellare-Rogaway conversion [2] can be applied to a trap-door one-way
permutation (such as RSA) and our conversion can be applied to a probabilistic trap-door
one-way function (such as ElGamal).
Since our conversion starts from a more secure scheme, an IND-CPA secure scheme, than

that of Bellare-Rogaway conversion, our conversion is simpler and more efficient than theirs,
i.e., our conversion requires only one random function operation, while Bellare-Rogaway
conversion requires two random function operations.
In addition, the security reduction in our conversion is more efficient (tight) than that of

Bellare-Rogaway’s, since we need no additional reduction for semantical security.
Recently, Cramer and Shoup presented a new public-key encryption scheme which is

IND-CCA2 secure in the standard model [5]. Although their scheme is still practical, our
approach has some advantages over their scheme as follows:
Our converted version of the ElGamal scheme (the enhanced ElGamal scheme) is at least

twice as efficient as the Cramer-Shoup scheme. Here, the enhanced ElGamal is IND-CCA2
secure in the random oracle model and under the decision Diffie-Hellman assumption, while
the Cramer-Shoup is IND-CCA2 secure under the universal one-way hash assumption and
the decision Diffie-Hellman assumption.
In [11], Tsiounis and Yung proposed a converted ElGamal scheme which is secure in the

NM-CCA2 sense in the random oracle model as well. However our conversion is much more
efficient than theirs under the same assumption (the decision Diffie-Hellman assumption).

2 Definitions and Security Models

In this section, we give some definitions about encryption scheme security. Basically, we
follow the terminology in [2, 3].

Definition 2.1 Let A be a probabilistic algorithm and let A(x1, . . . , xn; r) be the result of
A on input (x1, . . . , xn) and coins r. We define by y ← A(x1, . . . , xn) the experiment of
picking r at random and letting y be A(x1, . . . , xn; r). If S is a finite set, let y ←R S be the
operation of picking y at random and uniformly from finite set S. ε denote the null symbol
and, for list τ , τ ← ε denote the operation of letting list τ be empty. Moreover, let || denote
the concatenation operator and, for n-bit string x, [x]k and [x]k denote the first and last
k-bit strings of x respectively (k ≤ n).
Definition 2.2 [Random Oracle Model]We define by Ω the set of all maps from the set
{0, 1}∗ of finite strings to the set {0, 1}∞ of infinite strings. H ← Ω means that we chose
map H from a set of an appropriate finite length (say : {0, 1}a) to a set of an appropriate
finite length (say {0, 1}b), from Ω at random and uniformly, restricting the domain to {0, 1}a
and the range to the first b bits of output.

Definition 2.3 [Public-Key Encryption]We say that a triple of algorithmΠ := (K, E ,D)
is a public-key encryption scheme if

• K, the key-generation algorithm, is a probabilistic algorithm which on input 1k (k ∈ N)
outputs, in polynomial-time in k, a pair (pk, sk) of matching public and secret keys.

• E , the encryption algorithm, is a probabilistic algorithm which on input public-key pk
and message x ∈ {0, 1}∗ outputs ciphertext y in polynomial-time in k. We denote by
Epk : {0, 1}k × {0, 1}l(k) → {0, 1}n(k) the map from the product of k-bit message and
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l(k)-bit coin-flipping spaces to n(k)-bit cipher space, where functions, l(·) and n(·), are
bounded in some polynomial, namely l(k), n(k) < ∃p(k) for enough large k.

• D, the decryption algorithm, is a probabilistic algorithm which on input secret-key sk
and ciphertext y outputs Dsk(y) such that

Dsk(y) :=
{
x ∈ {0, 1}∗ if there exists x such that y = Epk(x)
ε (null) otherwise.

We say that ciphertext y is valid if if there exists a message x such that y = Epk(x).
When Π := (K, E ,D) is defined in the random oracle model and we insist on the fact, we

will denote Π := (K, EH ,DH).
Below, we give the precise definitions of GOAL-ATK described in Sec.1.2. Due to the

space limitations, one-wayness is not described.

Definition 2.4 [IND-ATK] Let Π := (K, E ,D) be a public-key encryption scheme and let
A := (A1, A2) be a pair of probabilistic algorithms (say Adversary). For atk ∈ {cpa,cca1,cca2}
and k ∈ N, let define Advind-atkA,Π (k) :=

2Pr[H ← Ω; (pk, sk)← K(1k); (x0, x1, s)← AO1,H1 (pk); b←R {0, 1};
y ← Epk(xb) : AO2,H2 (x0, x1, s, y) = b]− 1.

Here, O1(·), O2(·) are defined as follows:
• If atk=cpa then O1(·) = ε and O2(·) = ε
• If atk=cca1 then O1(·) = Dsk(·) and O2(·) = ε
• If atk=cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In addition we define that A1 outputs x0, x1 with |x0| = |x1| and, in the case of IND-CCA2,
A2 does not ask its oracle to decrypt y.
We say that Π is secure in the sense of IND-ATK if for any adversaryA being polynomial-

time in k Advind-atkA,Π (k) is negligible in k.
We insist that A := (A1, A2) is not allowed to access to H in the standard model. When

we insist on that, we write AO11 and A
O2
2 instead of A

O1,H
1 and AO2,H2 , respectively. On the

other hand, when we insist on the random oracle model, we write EHpk(·) and DHsk(·) instead
of Epk(·) and Dsk(·), respectively.
Definition 2.5 [NM-ATK] Let Π := (K, E ,D) be a public-key encryption scheme and let
A := (A1, A2) be a pair of probabilistic algorithms (say Adversary). For atk ∈ {cpa,cca1,cca2}
and k ∈ N, let define

Advnm-atkA,Π (k) := |Succnm-atkA,Π (k)− Succnm-atkA,Π,$ (k)|

where Succnm-atkA,Π (k) :=

Pr[H ← Ω; (pk, sk)← K(1k); (M, s)← AO1,H1 (pk);x, x′ ←M ; y ← Epk(x);
(R, ~y)← AO2,H2 (M, s, y); ~x← Dsk(~y) : (y 6∈ ~y) ∧ (ε(null) 6∈ ~x) ∧R(x, ~x)]

and Succnm-atkA,Π,$ (k) :=

Pr[H ← Ω; (pk, sk)← K(1k); (M, s)← AO1,H1 (pk);x, x′ ←M ; y ← Epk(x);
(R, ~y)← AO2,H2 (M, s, y); ~x← Dsk(~y) : (y 6∈ ~y) ∧ (ε(null) 6∈ ~x) ∧R(x′, ~x)]
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Here, O1(·), O2(·) are defined as before. In the case of IND-CCA2, A2 does not ask its
oracle to decrypt y.
We say that M is valid if |x| = |x′| for any x, x′ that are given non-zero probability in

the message space M .
We say that Π is secure in the sense of NM-ATK if any adversary A being polynomial-

time in k outputs a valid message space M samplable in polynomial in k and a relation R

computable in polynomial in k, then Advnm-atkA,Π (k) is negligible in k.
We insist that A := (A1, A2) is not allowed to access to H in the standard model. When

we insist on that, we write AO11 and A
O2
2 instead of A

O1,H
1 and AO2,H2 , respectively. On the

other hand, when we insist on the random oracle model, we write EHpk(·) and DHsk(·) instead
of Epk(·) and Dsk(·), respectively.
We review some important results proven in [3] below. Here, as mentioned above, for

A,B ∈ GOAL-ATK “A → B” (say, A implies B) denotes that encryption scheme Π :=
(K, E ,D) being secure in the sense of A is also secure in the sense of B, while “A 6→ B” (say,
A doesn’t imply B) denotes Π being secure in the sense of A is not always secure in the sense
of B.

Proposition 2.6 IND-CCA2 → NM-CCA2.
From this proposition, it is clear that

Corollary 2.7 IND-CCA2 ←→ NM-CCA2.
Proposition 2.8 IND-CCA1 6→ NM-CCA2.
The following definition is utilized to discuss security more exactly (exact security).

Definition 2.9 [Breaking Algorithm] Let Π := (K, E ,D) be a public-key encryption
scheme. We say that an adversary A is a (t, qH , qD, ε)-breaker for Π(1k) in GOAL-ATK if

Adv
goal-atk
A,Π (k) ≥ ε and, moreover, A runs within at most running time t, asking at most

qH queries to H(·) and at most qD queries to Dsk(·). In addition, qH denotes the number of
queries A asks to random function H(·), and similarly, qD denotes the number of queries A
asks to decryption oracle Dsk(·). In the case of atk = cpa, then qD = 0. In the case of the
standard model, then qH = 0.

In the following, we will recall the notion of Plaintext Awareness and the main results.

Definition 2.10 [Plaintext Awareness (PA)] Let Π := (K, E ,D) be a public-key en-
cryption scheme, let B be an adversary, and let K be an polynomial-time algorithm (say
knowledge extractor) . For any k ∈ N let SuccpaK,B,Π(k) :=

Pr[H ← Ω; (pk, sk)← K(1k); (τ, η, y)← runBH,Epk(pk) : K(τ, η, y, pk) = Dsk(y)].
where τ := {(h1, H1), . . . , (hqH , HqH )}, η := {y1, . . . , yqE}, and y 6∈ η. We describe a
supplementary explanation: By (τ, η, y) ← runBH,Epk(pk) we mean the following. Run B
on input pk and oracles H(·) and Epk(·) and record (τ, η, y) from B’s interaction with its
oracles. τ denotes the set of all B’s queries and the corresponding answers of H(·). η denotes
the set of all the answers (ciphertexts) received as the result of Epk. Here we insist that η
doesn’t include the corresponding queries (plaintexts) from B. y denotes the output of B.

We say that K is a (t, λ(k))-knowledge extractor if Succ
pa
K,B,Π(k) ≥ λ(k) and K runs

within at most running time t (or t steps).
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We say that Π is secure in the sense of PA if Π is secure in the sense of IND-CPA and
there exists a (t, λ(k))-knowledge extractor K where t is polynomial in k and (1 − λ(k)) is
negligible in k.

The following results proven in [3] is important.

Proposition 2.11 PA → IND-CCA2 in the random oracle model.
Corollary 2.12 PA → NM-CCA2 in the random oracle model.

3 Basic Scheme

Suppose a public-key encryption scheme, Π:= (K, E ,D), exists which is semantically secure
against every chosen-plaintext (passive) attack. We denote by E := Epk(x, r) the encryption
function of the encryption scheme. Here x denotes a message, r denotes a random value, and
Epk : {0, 1}k×{0, 1}l(k) → {0, 1}n(k). Let H : {0, 1}k+k0 → {0, 1}l be an ideal hash function,
where l := l(k + k0).
We introduce a new public-key encryption scheme, Π′ := (K′, E ′,D′) which is derived

from Π and hash function H as follows:

Basic Scheme Π′ := (K′, E ′,D′)
• K′(1k) := K(1k+k0 ) where k0 := k0(k) is associated to k, for instance k0 ≤ k.
• E ′pk : {0, 1}k × {0, 1}k0 → {0, 1}n is defined by

E ′pk(x, r) := Epk(x||r,H(x||r)),
where |x| = k, |r| = k0, and n := n(k + k0).

• D′sk(y) : {0, 1}n → {0, 1}k is defined by

D′sk(y) :=
{
[Dsk(y)]k if y = Epk(Dsk(y), H(Dsk(y)))
ε (null) otherwise

where [Dsk(y)]k denotes the first k-bit of Dsk(y).
Hereafter we will show that Π′ is semantically secure against every adaptive chosen-

ciphertext attack, namely, non-malleable against every adaptive chosen-ciphertext attack as
well.

4 Security

Theorem 4.1 [Knowledge extractor K of Π′] If there exists a (t, qH)-adversary B, then
there exist a constant c0 and a (t

′, λ(k))-knowledge extractor K such that

t′ = t+ qH(TE(k) + c0 · k) and
λ(k) = 1− 2−l.

Here TE(k) denotes the computational running time of the encryption algorithm Epk(·), and
c0 depends on details of the underlying model of computation.

Proof:

The specification of knowledge extractor K is as follows:
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Extractor: K(τ, η, y, pk)
for qH times do

if y == Epk(hi, Hi);
then x← [hi]k and break
else x← ε (null)

return x
End.

Now we define c0 as corresponding to the computation time of comparing a bit to a bit
plus some overhead. Then, from the specification, K runs within t+ qH(TE(k)+ c0 ·k) time.
Next we think of the probability that K outputs the plaintext x correctly, namely x =

Dsk(y). Recall that τ := {(h1, H1), . . . , (hqH , HqH )}, η := {y1, . . . , yqE}, and y 6∈ η. Here
let Fail be an event (or a propositional variable) assigned to be true iff x 6= D′sk(y) and
let AskH be an event assigned to be true iff there exists (hi, Hi) in the list τ such that
y = Epk(hi, Hi). Then it follows that

Pr[Fail] = Pr[Fail|AskH ] · Pr[AskH ] + Pr[Fail|¬AskH ] · Pr[¬AskH ]
≤ Pr[Fail|AskH ] + Pr[Fail|¬AskH ] ≤ 0 + 2−l = 2−l.

We explain that Pr[Fail|¬AskH ] is at most 2−l. For valid y, there exists h such that
y = Epk(h,H(h)). As y 6∈ η, it follows that h 6= Dsk(yi) for every yi ∈ η. Therefore, if
B doesn’t ask query h to oracle H(·), she can only guess a pair (h,H(h)) at most with
probability 2−l. This means that Pr[y is valid|¬AskH ] ≤ 2−l. On the other hand, if ¬AskH
is true, from the specification, the extractor K always outputs ε, namely y is invalid. This
means that Pr[Fail|¬AskH ] = Pr[ε 6= Dsk(y)|¬AskH ] ≤ 2−l.
Hence, λ(k) = 1− Pr[Fail] = 1− 2−l. ¶

Theorem 4.2 [Π′: IND-CPA secure] If there exists a (t, qH , 0, ε)-breaker A := (A1, A2)
for Π′(1k) in the sense of IND-CPA in the RO model, then there exist a constant c1 and a
(t′, 0, 0, ε′)-breaker A′ := (A′1, A′2) for Π(1k+k0 ) in the sense of IND-CPA (in the standard
model) where

t′ = t+ c1 · qH · k, and ε′ = ε− qH

2k0−1
.

Here c1 depends on details of the underlying model of computation of A
′.

Proof:

We run A′ := (A′1, A′2) in the IND-CPA and standard model setting, using A := (A1, A2)
as oracles respectively.
Basically, when Ai asks query h, A

′
i works as follows: If h has not been entered in list τ ,

A′i, choosing l-bit random string H , makes an entry of (h,H) in τ and answers Ai with H .
If (h,H) is already in list τ , A′i answers Ai with the corresponding H . The list τ is empty
at first. When A1 outputs (x0, x1, s), A

′
1 outputs (x0||r0, x1||r1, s) where r0, r1 are k0-bit

random strings generated by A′1. Then, outside A′, y := Epk(Xb, R) is computed using a
random bit b ∈ {0, 1} and l-bit random string R, where X0 := (x0||r0) and X1 := (x1||r1).
y is inputted on A′2 as well as (X0, X1, s).
If A2 asks either X0 or X1 as a query, A

′
2 makes A2 stop and outputs the corresponding

b ∈ {0, 1} as an answer, otherwise A2 follows the basic rule mentioned above. When A2 asks
neither of them, A′2 outputs b that A2 output as an answer.
The argument behind the proof is as follows: If A2 asks a query to A

′
2, which coincides

with either (x0||r0) or (x1||r1), it is almost equivalent to Dsk(y), because (even unbounded
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powerful) A2 has no clue to k0-bit random string rb̄, where b̄ is the complement of bit b.
Therefore, if A2 asks either of them, the corresponding b is expected to be valid. On the
other hand, if A2 asks neither of them, A2 is expected to output valid b because A2 cannot
distinguish y from a correct ciphertext for A2.
The specification of adversary A′ := (A′1, A′2) is as follows:

Adversary: A′1(pk)
τ ← ε;
run A1(pk)
do while A1 does not ask query h to H(·)

if h 6∈ τh, where τh is the list of h’s in τ
H ←R {0, 1}l;
put (h,H) on the list τ ;
answer A1 with H ;
else h ∈ τh
answer A1 with H such that (h,H) ∈ τ

A1 outputs (x0, x1, s)
r0, r1 ←R {0, 1}k0;
return (x0||r0, x1||r1, s)

End.

Adversary: A′2(x0||r0, x1||r1, s, y)
run A2(x0, x1, s, y)
do while A1 does not ask query h to H(·)

if h == (xb||rb) for b ∈ {0, 1}
stop A2 and output b
else if h 6∈ τh, where τh is the list of h’s in τ
H ←R {0, 1}l;
put (h,H) on the list τ ;
answer A1 with H ;
else h ∈ τh
answer A1 with H such that (h,H) ∈ τ

A2 outputs b
return b

End.

Here, from Definition 2.4, b is chosen from {0, 1} with probability 1/2, R is an l-bit
random string, and y = Epk(xb||rb, R).
We consider that c1 corresponds to the computational time of comparing a bit to a bit,

coin-flipping, plus some overhead. Then, from the specification of A′, it runs within at most
running time (t+ c1 · qH · k).
We now analyze the success probability of adversary A′ := (A′1, A′2). First we define the

following events:

SuccA := [H ← Ω; (pk, sk)← K(1k+k0 ); (x0, x1, s)← AH1 (pk); b←R {0, 1};
rb, rb̄ ←R {0, 1}k0; y ← Epk((xb||rb), H(xb||rb)) : AH2 (x0, x1, s, y) = b], and

SuccA′ := [(pk, sk)← K(1k+k0 ); (X0, X1, s)← A′1(pk′); b←R {0, 1};
Rb, Rb̄ ←R {0, 1}k0; y ← Epk(Xb, Rb) : A′2(X0, X1, s, y) = b],

where b̄ denotes the complement of b.
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We can define the advantages of A and A′, without loss of generality, as Advind-atkA,Π′ (k+

k0) := 2 · Pr[SuccA]− 1, and Advind-atkA′,Π (k) := 2 · Pr[SuccA′]− 1.
Next, let us define by Ask0 an event assigned to be true iff a query of A2 coincides with

(xb||rb) and by Ask1 an event assigned to be true iff a query of A2 coincides with (xb̄||rb̄).
Then,

Pr[SuccA] = Pr[SuccA|Ask0] · Pr[Ask0] + Pr[SuccA|(¬Ask0) ∧Ask1] · Pr[(¬Ask0) ∧Ask1]
+Pr[SuccA|(¬Ask0) ∧ (¬Ask1)] · Pr[(¬Ask0) ∧ (¬Ask1)], and

Pr[SuccA′] = Pr[SuccA′|Ask0] · Pr[Ask0] + Pr[SuccA′|(¬Ask0) ∧Ask1] · Pr[(¬Ask0) ∧Ask1]
+Pr[SuccA′|(¬Ask0) ∧ (¬Ask1)] · Pr[(¬Ask0) ∧ (¬Ask1)].

From the specification ofA′ above, it is clear that Pr[SuccA′|Ask0] = 1, Pr[SuccA′|(¬Ask0)∧
Ask1] = 0 and Pr[SuccA|(¬Ask0) ∧ (¬Ask1)] = Pr[SuccA′|(¬Ask0) ∧ (¬Ask1)]. Hence,
Pr[SuccA′] is at most Pr[(¬Ask0) ∧Ask1]) less than Pr[SuccA] because
Pr[SuccA′]− Pr[SuccA] = (1− Pr[SuccA|Ask0]) · Pr[Ask0]− Pr[SuccA|(¬Ask0) ∧Ask1]

·Pr[(¬Ask0) ∧Ask1] ≥ −Pr[(¬Ask0) ∧Ask1].
Finally, we have

Pr[SuccA′] ≥ ε+ 1
2
− qH
2k0
,

since we infer that Pr[(¬Ask0) ∧Ask1] ≤ qH
2k0
,

Therefore, we have that ε′ = ε− qH
2k0−1 . ¶

From Definition 2.10 and Theorems, 4.1 and 4.2, Π is secure in the sense of PA, and
hence, by Proposition 2.11, secure in the sense of IND-CCA2. Thus, our interest in the
following theorem is focused on the efficiency of the reduction.

Theorem 4.3 [Π′: IND-CCA2 secure] If there exists a (t, qH , qD, ε)-breakerA := (A1, A2)
for Π′(1k) in the sense of IND-CCA2 in the RO model, then there exist constants, c0, c1, and
a (t′, 0, 0, ε′)-breaker A′ := (A′1, A′2) for Π(1k+k0 ) in the sense of IND-CPA (in the standard
model) where

t′ = t+ c1 · qH · k + qD · qH · (TE(k) + c0 · k), and
ε′ = (ε− qH

2k0−1
) · (1− 1

2l
)qD .

Here TE(k) is defined as before, and c0 and c1 depend on details of the underlying model of
computation.

The specification of adversary A′ is as follows:

Adversary: A′1(pk)
τ ← ε;
η ← ε;
run ADsk,H1 (pk)
do while A1 does not ask query h to H(·) nor ask query y′ to Dsk(·)

if A1 asks query h to H(·)
if h 6∈ τh
H ←R {0, 1}l;
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put (h,H) on the list τ ;
answer A1 with H ;
else h ∈ τh
answer A1 with H such that (h,H) ∈ τ

else if A1 asks query y
′ to Dsk(·)

run K(τ, η, y′, pk)
K outputs x′

answer A1 with x
′

A1 outputs (x0, x1, s)
r0, r1 ←R {0, 1}k0;
return (x0||r0, x1||r1, s)

End.

Adversary: A′2(x0||r0, x1||r1, s, y)
η ← y;
run ADsk,H2 (x0, x1, s, y)
do while A1 does not ask query h to H(·) nor ask query y′ to Dsk(·)

if A1 asks query h to H(·)
if [h]k0 == rb where [h]k0 denotes the last k0-bit of h.
stop A1 and output b
else if h 6∈ τh
H ←R {0, 1}l;
put (h,H) on the list τ ;
answer A1 with H ;
else h ∈ τh
answer A1 with H such that (h,H) ∈ τ

else if A1 asks query y
′ to Dsk(·)

run K(τ, η, y′, pk)
K outputs x′

answer A1 with x
′

A1 outputs b
return b

End.

5 Examples: Enhanced Probabilistic Encryptions

In this section, we convert IND-CPA secure ones to IND-CCA2 (or NM-CCA2) secure ones.
The ElGamal, Okamoto-Uchiyama, and Blum-Goldwasser encryption schemes [4, 7, 9] are
candidates, since they are practical and secure in the IND-CPA sense under some reasonable
assumptions; the decision Diffie-Hellman 5, p-subgroup, and factoring assumptions, respec-
tively.

[Enhanced ElGamal scheme]

• Key-generator K: (pk, sk)← K(1k+k0 )
• pk := (p, q, g, y) and sk := (p, q, g, s) where y = gs mod p, |p| = k + k0, s ∈ Z/qZ,
q|p− 1, and # < g >= q.

5To our knowledge, Tsiounis and Yung first proved in [11] that the ElGamal encryption scheme is as secure
as the decision Diffie-Hellman problem. In addition, they also presented a converted ElGamal scheme which is
NM-CCA2 secure in the random oracle model. However, our conversion is far more efficient than theirs.
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• Hash function H : {0, 1}k+k0 −→ Z/qZ.
• Encryption E :

(y1, y2) := E ′pk(x, r) := (gH(x||r) mod p, (x||r) ⊕ (yH(x||r) mod p)),
where message x ∈ {0, 1}k and r←R {0, 1}k0.

• Decryption D:

Dsk(y1, y2) :=
{
[y2 ⊕ (ys1 mod p)]k if y1 = g

H(y2⊕(ys1modp)) mod p
ε (null) otherwise

where [y2 ⊕ (ys1 mod p)]k denotes the first k-bit of y2 ⊕ (ys1 mod p).
Lemma 5.1 In the random oracle model, the Enhanced ElGamal encryption scheme is
secure in the sense of NM-CCA2 (or IND-CCA2) if the decision Diffie-Hellman problem is
intractable.

[Enhanced Okamoto-Uchiyama scheme]

• Key-generator K: (pk, sk)← K(1k+k0 )
• pk := (n, g, h, k) and sk := (p, q) where n = p2q, |p| = |q| = k + k0, g ∈ (Z/nZ)∗ such
that the order of gp := g

p−1 mod p2 is p, and h = gn mod n.
• Hash function H : {0, 1}k+k0−1 −→ Z/nZ.
• Encryption E :

y := Epk(x, r) := g(x||r)hH(x||r) mod n,
where message x ∈ {0, 1}k and r←R {0, 1}k0−1.

• Decryption D:

Dsk(y) :=
{
[
L(yp)
L(gp)

mod p]k if y = gXhH(X) mod n

ε (null) otherwise

where yp := y
p−1 mod p2, L(x) := x−1

p , and X :=
L(yp)
L(gp)

mod p.

Lemma 5.2 In the random oracle model, the Enhanced Okamoto-Uchiyama encryption
scheme is secure in the sense of NM-CCA2 (or IND-CCA2) if the p-subgroup problem (see
[9]) is intractable.

[Enhanced Blum-Goldwasser scheme]

• Key-generator K: (pk, sk)← K(1k+k0 )
• pk := (n) and sk := (n, p, q) where n = pq, |p| = |q| = k/2, and p, q are William
integers (i.e. p, q ≡ 7 (mod 8) and primes).

• Hash function H : {0, 1}k+k0 −→ Z/nZ.
• Encryption E :

(y1, y2) := Epk(x, r) := (H(x||r)2k+1 mod n, x⊕R).
where message x ∈ {0, 1}k, r ←R {0, 1}k0, andR := LSB[H(x||r)2] ||LSB[H(x||r)22 ]|| · · · ||
LSB[H(x||r)2k ].
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• Decryption D:

Dsk(y1, y2) :=
{
[y2 ⊕ R̄]k if y1 = H(y2 ⊕ R̄)2k+1 mod n
ε (null) otherwise

where R̄ := LSB[y2
−k
1 ]|| · · · ||LSB[y2−11 ].

Lemma 5.3 In the random oracle model, the Enhanced Blum-Goldwasser encryption scheme
is secure in the sense of NM-CCA2 (or IND-CCA2) if the factoring problem is intractable.

6 Conclusion

This paper presented a simple and efficient conversion from a semantically secure public-key
encryption scheme against passive adversaries to a non-malleable (or semantically secure)
public-key encryption scheme against chosen-ciphertext attacks (active adversaries) in the
random oracle model. Our conversion incurs minimum cost, i.e., only one random (hash)
function operation. We also showed that our security reduction is (almost) optimally effi-
cient, or exact security. Finally this paper presented some practical examples, the enhanced
ElGamal, Blum-Goldwasser and Okamoto-Uchiyama schemes.
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