
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

EPOCHS: INTEGRATED COMMERCIAL OFF-THE-SHELF SOFTWARE FOR
AGENT-BASED ELECTRIC POWER AND COMMUNICATION SIMULATION

Kenneth M. Hopkinson
Kenneth P. Birman

Computer Science Department

Cornell University
Ithaca, NY 14853, U.S.A.

 Renan Giovanini
Denis V. Coury

Department of Electrical Engineering
School of Engineering at São Carlos

University of São Paulo
São Carlos, SP 13566-590, BRAZIL

Xiaoru Wang
James S. Thorp

School of Electrical Engineering

Cornell University
Ithaca, NY 14853, U.S.A.

ABSTRACT

This paper reports on the development of the Electric
Power and Communication Synchronizing Simulator
(EPOCHS), a distributed simulation environment. Existing
electric power simulation tools accurately model power
systems of the past, which were controlled as large re-
gional power pools without significant communication
elements. However, as power systems increasingly turn to
protection and control systems that make use of computer
networks, these simulators are less and less capable of pre-
dicting the likely behavior of the resulting power grids.
Similarly, the tools used to evaluate new communication
protocols and systems have been developed without atten-
tion to the roles they might play in power scenarios.
EPOCHS utilizes multiple research and commercial off-
the-shelf (COTS) systems to bridge the gap. EPOCHS is
also notable for allowing users to transparently encapsulate
complex system behavior that bridges multiple domains
through the use of a simple agent-based framework.

1 INTRODUCTION

This paper presents the Electric Power and Communica-
tion Synchronizing Simulator (EPOCHS), a combined
simulation system, or federation, that links the
PSCAD/EMTDC electromagnetic transient simulator, the
PSLF electromechanical transient simulation engine, and
the Network Simulator 2 (NS2) communication simulator.
Each simulator is viewed as best within its class for some

category of uses. For example, PSCAD provides extremely
detailed simulations of power systems containing up to
several hundred buses, and has been extensively validated
through experiments comparing the behavior of PSCAD
simulations with the behavior of real power systems. PSLF
is used by electric utilities to simulate real-world situations
and has undergone extensive validation. NS2 is the most
widely used and trusted simulator for the Internet, and in-
cludes particularly good simulations of standard protocols
like TCP and of standard Internet topologies, such as tran-
sit-stub configurations. On the other hand, none of these
simulation systems were designed for interoperability, pos-
ing a challenge that our work addresses.

We live in an increasingly interconnected world where
multiple domains such as water, power, and network com-
munication can each affect the other. Yet, few stand-alone
simulators exist that capture these inter-domain worlds.
Constructing a combined simulation engine is potentially
time-consuming and expensive. This is particularly true
when simulations have both continuous and discrete-event
components. An alternative is to link multiple simulations
into a distributed environment (federation). Using this ap-
proach to combine multiple simulators for use in inter-
domain situations is becoming more common, and there
are even proposals to standardize such architectures, nota-
bly the Department of Defense‘s (DOD’s) High Level Ar-
chitecture (Kuhl, et al. 1999). Commercial off-the-shelf
simulation (COTS) systems are popular in many fields due
to their rich feature sets, ease of use, and cost effective-
ness. However, source code is only rarely available, and

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

this stands as an obstacle to federation. In the scenario
tackled by EPOCHS, source code was available for NS2
but not PSCAD or PSLF.

Prior research on federating COTS simulation soft-
ware includes work on supply chain manufacturing and
manufacturing simulation in the GRIDS project (Taylor, et
al. 2001), (Tucci and Revetria 2001)’s HLA compliance
project, and Strabburger’s SLX federation (Strabburger
1999). In addition, NIST has developed the Distributed
Manufacturing System (DMS) Adapter, a mechanism for
distributed simulation similar to that provided by the HLA,
but with a more manageable level of complexity that is tar-
geted towards the manufacturing community (McLean and
Riddick). In the following year, a supply chain simulation
was created based on a combination of the HLA and the
NIST DMS adapter making use of the Arena, ProModel,
and VB Application commercial software systems
(Venkateswaran, et al.). Despite these success stories, the
documented use of commercial simulation systems in fed-
erations is still relatively rare. A common concern is that
once a group of simulators has been federated, “casual”
modelers may find the added complexity of the new simu-
lation platform difficult to manage.

The technology underlying our work illustrates how
non-intrusive techniques can be used to federate simulation
engines using only the built-in Application Programming
Interfaces (APIs). In addition, our agent-based framework
hides the complexity involved in the combined simulation
system, making it easy for users to design new power sce-
narios involving communication. We believe that
EPOCHS illustrates a style of federation that could be ap-
plied to many settings, such as air traffic control, banking,
medical systems, military command and control systems,
and other forms of mixed-mode critical infrastructure.

This paper is divided into six sections. In section 2, we
review background material and present the system’s ar-
chitecture. The methods used to federate the commercial
and high quality research simulation components are dis-
cussed in section 3. In section 4, we outline our agent
framework. We go on to describe a case study that has
been developed and run on the EPOCHS platform in sec-
tion 5. The paper concludes in section 6.

2 EPOCHS

2.1 Motivation

The restructuring of the electric power system, the creation
of competitive markets, and the introduction of new regula-
tory mechanisms are now well-established trends. Under-
standing how the restructured power grid will operate, and
how to monitor and control it, are necessary preconditions to
achieving reliability and fairness under the conditions that
may arise in the field. Yet, electric power simulators today
do not model the network communication patterns seen in
modern protection and control systems.
Traditional protection systems base decisions on local
measurements, and employ conventional control systems
that operate over rather slow, predictable communication
systems. It has not been necessary to simulate communica-
tion in order to accurately model these electric power sys-
tems. However, over the last decade, power systems have
begun to operate close to their transmission, generation,
and stability limits. Protection and control systems are be-
ing placed under a correspondingly greater strain. Power
engineers have begun to conclude that the use of commu-
nication networks based on Internet standards is a natural
choice to improve both.

It is natural to assume that systems with more data,
and operating over faster communications networks, will
be more effective than their predecessors. Yet, the Internet
was not designed for safety- and time-critical applications,
and layering the needed mechanisms over Internet proto-
cols such as TCP/IP is a non-trivial undertaking. New
kinds of simulation and evaluation tools are needed that
bridge the gap, providing high-quality simulations of elec-
tric power scenarios while simultaneously modeling the
behavior of computer communications protocols in realis-
tic networks confronted with realistic scenarios, including
load surges, outages, and other forms of dynamic stress.
Our work demonstrates that when this is done, potentially
serious problems can be identified and resolved in the
laboratory, avoiding potentially costly or damaging mis-
haps in the field.

2.2 Overview

EPOCHS links simulators using a Runtime Infrastructure
(RTI) to allow modelers to investigate electric power sce-
narios that involve network communication. One goal of
EPOCHS is to minimize the intrusiveness of the simulation
platform for users unfamiliar with its components.
EPOCHS does this by allowing complex behavior to be
embedded within agents that can read and modify simula-
tion variables by interacting with a module called the
Agent Headquarters, or AgentHQ, which hides the details
in the other simulation components. In the case of electric
power systems involving network communication, this
agent framework is natural, since hardware support for
software agents exists in the power system today.

From a modeler’s perspective, EPOCHS seamlessly
links its three off-the-shelf simulation systems, enabling
them to investigate power protection and control scenarios
which combine communication with real-time sensing of
the state of a power grid and real-time response. For exam-
ple, suppose that a new protection protocol is deployed in a
power system, and is known to operate correctly provided
that the input data used by the control algorithm is accu-
rate. EPOCHS will let us understand how that protocol
might behave over TCP if other users move large data files
through shared network links and routers – behaviors

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

known to trigger delays and congestion control in the TCP
protocol. Similarly, we are able to use EPOCHS to com-
pare different options for running the same protection pro-
tocol (e.g. over TCP, over UDP, over various QoS mecha-
nisms), and to understand how failures might impact power
systems protection and control.

Although we have only just begun to use EPOCHS for
these purposes, we are finding that the most obvious com-
binations of control policies with TCP could malfunction
under conditions that are quite likely to occur in a power
system network. This suggests the need for new control al-
gorithms, for consideration of TCP variants that provide
Quality of Service (QoS) properties guaranteeing sufficient
bandwidth to critical applications, and may ultimately ar-
gue against the use of standard TCP-based communication
protocols that lack QoS in protection and control systems.

2.3 Architecture

Recent work centering on combining, or federating, simu-
lation systems has focused on the use of the High Level
Architecture (HLA). HLA is used to combine individual
simulations, known as federates, together into combined
simulators known as federations. The “glue” holding these
combinations together is a central component known as a
Runtime Infrastructure (RTI). The RTI routes all messages
between simulation components and is responsible for
making sure that simulation time is appropriately synchro-
nized. HLA’s drawback is that it can be difficult to modify
existing simulations to conform to its specification. Many
fields make heavy use of off-the-shelf commercial soft-
ware and do not have source code access. Additionally,
HLA can be an inefficient means of combining federates.
The system is based on a publish-subscribe mechanism
where any federate subscribing to another will receive all
of its updated information, whether it is needed or not.

We created a federated simulation system that works
in the spirit of the HLA, but that uses our own interface for
easier implementation. EPOCHS’ architecture is shown in
Figure 1.

NS2

RTI

 AgentHQ

PSLF PSCAD/
EMTD

Agent

Agent
Agent

Figure 1: The Relationship Between EPOCHS’s Five
Components
Descriptions of the EPOCHS components follow.
PSCAD/EMTDC: PSCAD/EMTDC is used for elec-

tromagnetic transient simulation. EMTDC is a well-known
electric power simulator. One of its main strengths is its abil-
ity to accurately simulate power system electromagnetic
transients. That is, EMTDC models short-duration time-
domain electric power responses. PSCAD is a graphical in-
terface that is used to simplify the development of EMTDC
scenarios. PSCAD is produced by the Manitoba HVDC Re-
search Centre (Manitoba HVDC Research Centre 1998).

EMTDC simulates power system scenarios in con-
tinuous time by solving a series of differential equations in
a time-stepped manner. It has very detailed electrical mod-
els making it well-suited to electromagnetic transient in-
vestigations.

PSLF: PSLF is used for electromechanical transient
simulation. PSLF can simulate power systems with tens of
thousands of nodes and is widely used by electric utilities
to model electromechanical stability scenarios (General
Electric 2003). It models large systems in less detail than
that available in PSCAD making it better-suited for long-
running scenarios. It simulates power systems in continu-
ous time by solving differential equations in a time-stepped
manner that is similar to that employed by PSCAD.

NS2: Network Simulator 2 (NS2) is an event-driven
communication network simulator created through a joint
effort between the University of California at Berkeley,
Lawrence Berkeley Labs, the University of Southern Cali-
fornia, and Xerox PARC. NS2 is a high-quality simulator
that allows the creation of a wide variety of communications
scenarios. Although there are many network and protocol
simulators, NS2 is the most widely used simulator for evalu-
ating the behavior of TCP, the TCP variants that have been
proposed by researchers, and the behavior of routed UDP in
large networks (Breslau, et al. 2000). NS2 is able to simulate
the behavior of these protocols under various forms of stress,
such as might be caused by competition for network re-
sources when multiple applications share a network and
communicate over the same routers and communication
links, the impact of failures including router failures, link
failures, or denial of service attacks. It can also capture the
normal dynamics resulting from relaying messages with
real-time data rates through many layers of routers. We note
that the proposed Utility Communications Architecture
(UCA) is based on TCP (Adamiak and Premeriani 1999).

AgentHQ: AgentHQ is a module that presents a uni-
fied environment to agents and acts as a proxy when agents
interact with other EPOCHS components. Through it, the
agents can get and set power system values and send and
receive messages to one another. AgentHQ is a discrete-
event system. Events are processed as they occur and
routed to the affected agents.

RTI: The Runtime Infrastructure (RTI) acts as the
“glue” between all other components. It is responsible for
simulation synchronization and for routing communication

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

between EPOCHS components. A firm requirement placed
on any simulation system is that no event can be processed
with a time stamp earlier than one that has already been
completed. This is easy to enforce in sequential simulators,
but issues arise when making use of distributed simulation
systems. Many methods exist for dealing with this matter in
the parallel and distributed simulation research community
(Fujimoto 2000). We employ a time-stepped model, one the
simplest techniques for component synchronization, in our
current system when running EPOCHS scenarios. Time
steps are user-selectable and can be chosen depending on the
granularity of a given case. Simulations can use a short time
between synchronization points to compensate for the errors
introduced by the decoupled simulation approach or can use
larger time steps for faster execution.

2.4 Component Interaction

The synchronization between the various simulation com-
ponents follows a simple algorithm. All systems are halted
at time 0. At the beginning of any time step, the RTI waits
for synchronization messages from both the power system
simulator and NS2. Then, the RTI yields control to the
AgentHQ. The AgentHQ passes the control on to the
agents one by one until all have had a chance to execute.
During this cycle, the agents are capable of sending com-
munication messages and getting/setting power system
variables. Once all agents have completed their tasks, the
AgentHQ returns control back to the RTI. Finally, the RTI
notifies both NS2 and the power system simulator that the
current time step is done. At this point, the two simulation
engines run for an additional time step. Special attention
must be paid to NS2. Messages may be received in be-
tween two synchronization points within NS2. If a message
arrives, NS2 will immediately pass it along to the RTI
bound for the AgentHQ. The AgentHQ will, in turn, pass
the message on to the appropriate agent. The agent can
process the message and send another in response. If the
message requires that power system state be read or
changed then that agent keeps the message in a queue until
the next synchronization point occurs.

2.5 Simulation Scripts

Each agent simulation takes three parts. The structure of
the power system and its electrical parts must be laid out in
a PSCAD/EMTDC or PSLF compatible file. The layout of
the communications subsystem and the transport protocols
used needs to be specified in an NS2 file. Finally, agent
types and locations are added to the NS2 simulation script
for use by the agent manager. Note that if the agent com-
ponent were decoupled from NS2, a third simulation file
would be required by EPOCHS. Script file generators are
used to shield users from the details involved in defining
these scripts to as large a degree as is practicable. How-
•
•
•
•

ever, this remains an inherent drawback in combining mul-
tiple federates together due to the inevitable differences be-
tween individual simulation models.

2.6 Implementation and Optimization

In the current implementation, NS2, the RTI, the
AgentHQ, and its corresponding Agents are all combined
inside a single executable. Each component is logically
separated within the source code and the RTI is still im-
plemented as a protocol stub inside NS2. This combination
boosts the performance of the simulation federation.

Although we have used EPOCHS to investigate a
number of power system situations, none uses PSLF and
PSCAD/EMTDC simultaneously, and we have not encoun-
tered any problems for which this would be useful. Ac-
cordingly, the system is optimized under the assumption
that only one power systems simulator is in use at a time.

3 FEDERATING COTS COMPONENTS

PSLF and PSCAD/EMTDC are commercial products and
their source code is not available. NS2 is a research sys-
tem, and its source code is available. However, it would
require a great deal of effort to understand the more than
150,000 lines of source code sufficiently well to modify it
to interface with an RTI. As an alternative, we used inter-
nal API’s to federate each of these components. Strab-
burger listed four standard methods for making a simula-
tion compliant with an RTI approach to simulation
federation in (Strabburger 1999).
 They are, from most to least desirable:

Reimplement the tool with the proper extensions
Extend the simulation with intermediate code
Use an external programming interface
Couple via a gateway program.

In the first approach, simulation developers modify a
simulator’s internal source code so that it can interface
with the RTI. In the second approach, if the simulator in
question generates intermediate source code in a higher
level language then the developer can include source mod-
ules of her own design to add RTI support. Some tools in-
clude the option of calling arbitrary functions either in
user-specified source code or in dynamic link libraries. The
third option takes advantage of this facility to add RTI
support. Finally, if none of the previous options are avail-
able, but the simulation engine in question includes facili-
ties for external communication via files, pipes, network
communication, or some similar means then the developer
can use that method to communicate with an external
gateway program that will process commands and pass
their results along to the RTI. The federation of the three
commercial and research systems serves as an interesting
case study because each of them used a different technique
from Strabbugers’ list.

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

Our synchronization approach allows us to use a con-
venient alternative to modifying the core source code.
PSCAD/EMTDC, PSLF, and NS2 allow user-defined ex-
tensions. That is, a PSCAD/EMTDC scenario can include
user-defined libraries that add equipment definitions using
the C programming language that were not present in the
original software. PSLF similarly allows user-defined
equipment models using its proprietary interpreted EPCL
language. NS2 has well-defined procedures for adding new
communication protocols in C++ to the base simulation
software. We have created equipment stubs whose sole
purpose is to interact with EPOCHS’s RTI at each syn-
chronization point. Both PSCAD/EMTDC and PSLF use a
user-modifiable length between each of their time steps.
Both systems allow users to modify the time step length at
each interaction, however we chose to keep time steps con-
sistent for easy interaction in our first EPOCHS release.

This process is simplified by the fact that
PSCAD/EMTDC, PSLF, and NS2 are all single-threaded
systems, so each system is effectively halted whenever a
synchronization event takes place. Additional effort would
be required if that were not the case.
 The federation techniques employed in EPOCHS are
described below.

NS2: The network communication component uses an
approximation of the second approach of component-level
integration. A new transport protocol was added to NS2 to
serve as its link to the RTI. A periodic call was added to
the simulation script invoking the new protocol in order to
halt execution and interact with the RTI once per time step.
The length of the step can take on any value as long as it is
the same as that used in the power system simulator. NS2
normally lacks the ability to automatically track message
contents when using TCP/IP. We use the TCPApp applica-
tion in order to keep track of this state on our behalf. UDP,
by contrast, does have the ability to transmit data and we
took advantage of it adding our own layer of abstraction
through a module we named UDPApp. These choices give
us the flexibility to select any communication protocol at
any time by sending data through NS2 function calls.

PSCAD/EMTDC: PSCAD/EMTDC uses the third
federation method. PSCAD/EMTDC generates FORTRAN
source code based on scenarios created in its graphical en-
vironment. Users can extend its functionality by making
calls to source code written either in the C or FORTRAN
languages and this code is compiled in with the generated
code. Calls to this extended source code can be embedded
into PSCAD scenarios, but unfortunately the stub that in-
terfaces with EPOCHS must be customized to each sce-
nario since it must access each internal variable by name.
PSCAD/EMTDC is a continuous-time system. We use a
library in our simulations that adds a call to our user-
defined component once per time step. The
PSCAD/EMTDC component begins by reading in all user-
accessible equipment values that might be requested. Next,
the electrical component contacts the RTI and notifies it
that the beginning of the time step has been reached.
Agents can request equipment values or can set power val-
ues when they execute. At the end of an agent execution
cycle, a finish message is sent from the RTI to the electri-
cal components and the power component set any values
that have changed in their simulations. The components
relinquish control afterwards and execution continues.

PSLF: In PSLF, we use an approximation to the
fourth federation method. PSLF includes its own native
language called EPCL that is roughly similar to C. Using
this language, we were able to create our stub enabling us
to interact with the RTI using files. The use of files was
necessary because no other method was supported by the
language. It would have been possible to go through a
gateway program to translate these files into TCP/IP
transmissions if we wished to communicate with modules
in other systems, but we chose to run all simulations on the
same machine making this step unnecessary.

PSLF halts execution periodically and waits for requests
from the RTI. Incoming requests to get or set electrical
simulation values are processed and the results are returned
to the RTI. When all requests have been fulfilled, a final
message is sent to PSLF allowing it to continue execution.

4 AGENT FRAMEWORK

4.1 Agent Definition

“Agents” are used extensively both in and out of the artifi-
cial intelligence research community, but there is no uni-
versally accepted definition for the term. Agents nearly al-
ways have the properties of autonomy (the ability to take
independent action) and interaction (the capacity to sense
the surrounding environment and make changes to it). In
addition, an agent may exhibit the properties of mobility,
intelligence, adaptivity, and communication. In this paper,
the term agent will be used to refer to computer programs
that are autonomous, interactive, and have the ability to
communicate over a network. Agents may optionally also
have any of the other attributes defined above.

4.2 Related Work

A wide range of simulations have made use of agents.
There are two main classes of agent-based simulators. The
first uses agents to act as a mechanism for combining
simulation engines. The flexibility agents provide can be
used to more efficiently link simulation components to-
gether, such as by using filters to reduce inter-simulation
traffic. An example of this can be found in (Wilson, et al.
2000). The second class of simulations use agents to model
entities within a simulated world. (Lee, et al. 2001) em-
ploys a mix of continuous and discrete-time simulators in
an air-traffic control simulation using object-oriented

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

agents to represent, among other things, air-traffic control-
lers, aircraft, and air traffic generators. Our work is similar
in spirit to Lee’s approach.

4.3 Agents in Electric Power Protection
and Control Systems

The electric power grid has traditionally been made up of a
large number of protection and control devices that act on
local information to respond to problems. This method
works well in some cases, but there are many situations in
which information not readily available from local sensors
or local databases would be needed to plan, to protect the
grid, or to control it efficiently. Lacking such data, the grid
must be operated in a very conservative and potentially in-
efficient manner, and might not be able to support desired
behaviors. Agents have begun to be recognized as a natural
way to introduce extensibility into the grid without drasti-
cally changing the usual power systems architecture, and
are therefore gaining acceptance in the electric power re-
search community. Their autonomous nature, ability to
share information and coordinate actions, and the potential
to be easily upgraded or controlled from a remote location
are appealing to grid operators and protocol designers.

The protection and control scenarios that interest us
use geographically distributed agents located in a number
of Intelligent Electronic Devices (IEDs) as shown in Figure
2. An IED is a hardware environment that has the neces-
sary computational, communication, and other I/O capa-
bilities needed to support a software agent. An IED can be
loaded with agents that can perform control and/or protec-
tion functions. These agent-based IEDs work in an
autonomous manner, interacting both with their environ-
ment and with one-other. For example, a digital relay could
be implemented as an agent with its own thread of local
control, but that also monitors conditions elsewhere in the
network so as to act in response to their non-local events.
This agent would communicate with other agents either via
Local Area Networks (LANs) or via Wide Area Networks
(WANs). These IEDs are relatively rare at present, but
many are already available and we expect their use to in-
crease over time.

Ethernet LAN
 Host Computer

Protection
IED

Protection
IED

Control
IED

Control
IED

Utility
WAN

Substation

Router

Power Plant - Control Center - Substation

SCADA System

Control
Center

Power Plant

Figure 2: Placements of the Agent-Based IEDs within the
Utility Intranet Infrastructure

The agent-based IED’s structure is shown in Figure 3.
Agents within an IED perceive their environment through
local sensors and act upon it through the IED’s actuators.
Examples of sensor inputs might include local measure-
ments of current, voltage, and breaker status. Actuator out-
puts might include signals to initiate breaker trips, trans-
former tap setting adjustments, and capacitor bank
selection. Agents might even interface with legacy systems
such as Supervisory Control and Data Acquisition
(SCADA) systems. The host computer shown in Figure 2
could act as a bridge between the old and new systems in
this type of situation. Internally, agents might be composed
of many layers of functionality and control or may be con-
tained in a single layer depending on the designer’s speci-
fications and implementation. As shown in Figure 2, agents
have the ability to communicate through a LAN in order to
interact with other agents directly located on that same
LAN, or can pass information along to the Utility WAN,
i.e. the Utility Intranet, ultimately communicating with
more remote IEDs.

Agent

Communication

Control and
Protection
Schemes S

ub
st

at
io

n
LA

N

Sensor
Input

Actuator
Output

Environment

Figure 3: The Structure of an
Agent-Based IED

The increasing use of agents in IEDs makes an agent-

based framework a natural choice. Protection and control
engineers can create agents for use in real situations and
test them with minor modification in the EPOCHS envi-
ronment. Of course, agents can also mimic the behavior of
more traditional systems. EPOCHS’s early adopters have
found the agent concept to be an intuitive one.

4.4 The Structure of a Utility
Communication Network

Networked computing systems have become ubiquitous, and
we believe that this trend will soon become more wide-
spread within electric utility systems. Technology is con-
stantly changing, but we can make some educated guesses
about what utility communication systems will look like.

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

First, the network systems will almost certainly be built from
standard commercial off-the-shelf components. To do oth-
erwise would be expensive both in initial cost outlay and in
system maintenance. This means that these networks will be
based on Internet standards even if the systems remained in-
dependent of the global network conglomeration. We can
already see signs that such changes are coming in recent
standardization efforts such as the TCP-based Utility Com-
munications Architecture (UCA).

4.5 Agent-based Simulation Framework

Our framework is intended to minimize the differences
needed between simulated systems and their real-world
counterparts, as well as to ease implementation for
EPOCHS’ users. The basic functionality is shown in Fig-
ure 4. Functions have been broken down into two main
categories. Events occur in the AgentHQ subsystem and
notification is passed on to the appropriate agents. Agents
interact with their surroundings by using method calls to
get and set the state of their environment and to exchange
messages with other agents.

Interface Agent
{
methods:
 double get_round_time();
 void send_comm_msg(comm_type, group,
 src, dst, pkt_size,
 msg);
 void send_power_msg();
 void recv_power_msg();
events:
 void request();
 void action();
 void recv_comm_msg(comm_type, group,
 src, dst, pkt_size,
 send_time, round_num,
 msg);
 void recv_power_msg(msg);
};

Figure 4: The Agent Interface

AgentHQ is triggered at each synchronization point
and acts as a proxy between the agents, the network com-
munications simulation, and the electric power simulators.
At that time, the AgentHQ calls each of the agent’s re-
quest and action methods giving them an opportunity to
calculate their set of operations for the next time step.

The agents remain dormant until they receive an event
notification. Power system agents mimic those in real pro-
tection and control systems by polling the current envi-
ronment at regular intervals. When the beginning of an in-
terval is reached, each agent is given a chance to request
its power system state information through the use of the
send_power_msg method and receive the results through
the recv_power_msg event notification. All agents’ initial
requests are sent and the replies are received in one block.
This is an optimization to help compensate for the use of
files to exchange information between the AgentHQ and
the electric power simulation systems. When all agents
have been given a chance to run, the AgentHQ will give
allow each to react to their current state in the action
method where they can send communication messages us-
ing the send_comm_msg method, or can make additional
power system get and set requests using the
send_power_msg method. In addition to these regular acti-
vation intervals, individual agents may receive communi-
cation messages through the recv_comm_msg event at any
time and can take additional actions in their response.

5 CASE STUDY – A SPECIAL
PROTECTION SYSTEM

Power system generators are run synchronously. When one
or more generators lose synchrony, the resulting transient
instability can lead to costly blackouts. Stability problems
are often caused by disturbances such as the loss of genera-
tion, loads, or tie lines. These disturbances stimulate power
system electromechanical dynamics, resulting in deviations
in frequencies, voltages, and generator phase angles. Spe-
cial Protection Schemes (SPS) are devices that are most
commonly designed to counteract instances of power sys-
tem instability. Most SPS schemes do so by using a com-
bination of generation rejection and load shedding
(Anderson and LeReverend 1996).

Traditional SPS systems are based either on purely lo-
cal measurements to detect transiently unstable situations,
a source of unreliability, or on communication that is too
slow to allow them to respond to many types of faults. We
created an agent-based SPS system that used wide-area
measurements in a novel frequency prediction and control
algorithm. Results showed that the system was successfully
able to keep a system transiently stable and maintain its
frequency above a preset threshold through rapid genera-
tion rejection. The precise load shedding required was cal-
culated and acted upon in a single step. This would not be
possible without the use of wide-area measurements. These
results showed the accuracy and usefulness of the method
when communication channels were lightly loaded.

Degraded SPS performance was observed when the
communications network was subjected to increased com-
munication traffic, as would surely arise in a setting where
many kinds of applications share the utility communication
infrastructure. Frequency levels decline as time passes after
a fault, making it important that measurements from close
to the time that a fault occurs are used in the SPS algo-
rithm. Under heavy network traffic conditions, Internet
routers are designed to drop data packets to signal overload
to TCP endpoints. The protocols, sensing that congestion
has occurred, will then slow down. These built-in design
features of the network disrupt the SPS algorithm. Our
findings suggest that the decision to base the UCA on TCP
is potentially risky. In future work, we hope to evaluate

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

•

•

•

variants of TCP providing QoS guarantees (a great many
have been proposed), while also exploring UDP-based
communication protocols of our own design.

By using the EPOCHS agent-based framework, both
traditional and agent-based systems were able to run in an
environment that isolates the modeler from the details of
coordinating the various COTS and research components.
EPOCHS’s users could work in our framework, with few
reminders that these components were present under the
surface. The authors believe that this simplified develop-
ment, yielded a more robust solution, and reduced model-
ing time relative to other approaches. The use of EPOCHS
allowed designers to focus on issues involved in creating
power protection and control systems that take delay, un-
predictable message delivery times, and the possibility of
message loss due to congested network conditions into ac-
count. This was an eye-opening experience in some cases.
The experimental results received would have been diffi-
cult to reproduce using other tools and helped validate the
concepts behind the EPOCHS project.

The complete set of results for the special protection
system is outlined in greater detail within the chapter enti-
tled, “Agent Technology Applied to the Protection of
Power Systems” in (Thorp, et al. To Appear in 2003). Two
additional protection systems and their experimental results
running on the EPOCHS platform are also included.

6 CONCLUSION

In this paper we have described EPOCHS, a simulation en-
gine that combines PSCAD/EMTDC, PSLF, and NS2
functionalities together with an agent component. The pa-
per has three main contributions.

The simulator is the first to combine realistic net-
work communications with electric power com-
ponents.
EPOCHS serves as a case study illustrating meth-
ods for bridging unrelated simulation engines
without making use of source-code modification
to any of the systems in question.
We make use of a simple yet powerful agent
framework that is easy to use for simulation
modelers.

We feel that techniques like those used in EPOCHS will
become more common over time as commercial/open-
source software continues to improve in terms of cost,
availability, and feature set.

ACKNOWLEDGMENTS

The authors were supported, in part, by DARPA under
AFRL grant RADC F30602-99-1-0532 and by AFOSR
under MURI grant F49620-02-1-0233. They were also
supported by FAPESP (Fundação de Amparo à Pesquisa
do Estado de São Paulo, Brazil) and CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior, Brazil).

REFERENCES

Adamiak M., W. Premeriani. 1999. Data Communications
in a Deregulated Environment. IEEE Computer Appli-
cations in Power 12 (3): 36-39.

Anderson P. M., B. K. LeReverend. 1996. Industry Experi-
ence with Special Protection Schemes. IEEE Transac-
tions on Power Systems 11 (3): 1166-1179.

Breslau L., D. Estrin, K. Fall, S. Floyd, J. Heidermann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
H. Yu. 2000. Advances in Network Simulation. IEEE
Computer 33 (5): 59-67.

Fujimoto R. M. 2000. Parallel and Distributed Simulation
Systems. New York, NY: Wiley-Interscience.

General Electric. 2003. PSLF Manual. Available online via
<http://www.gepower.com/dhtml/corporate/en_us/asse
ts/software_solns/prod/pslf.jsp> [accessed March 12,
2003].

Kuhl F., R. Weatherly, J. Dahmann. 1999. Creating Com-
puter Simulation Systems: An Introduction to the High
Level Architecture. Upper Saddle River, NJ: Prentice
Hall.

Lee S., A. Pritchett, D. Goldman. 2001. Hybrid Agent-
based Simulation for Analyzing the National Airspace
System. In Proceedings of the Winter Simulation Con-
ference, ed. M. Rohrer, D. Medeiros, B. A. Peters, and
J. Smith, 1029-1037, Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

Manitoba HVDC Research Centre. 1998. PSCAD/EMTDC
Manual Getting Started. Winnipeg, Manitoba, Canada.

McLean C., F. Riddick. 2000. The IMS Mission Architec-
ture for Distributed Manufacturing Simulation. In
Proceedings of the Winter Simulation Conference, ed.
P. A. Fishwick, K. Kang, J. A. Joines, and R. R. Bar-
ton, 1539-1548, Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Strabburger S. 1999. On the HLA-based Coupling of
Simulation Tools. In European Simulation Multicon-
ference, 45-51.

Taylor S. J. E., R. Sudra, T. Janahan, G. Tan, J. Ladbrook.
2001. Towards COTS Distributed Simulation Using
GRIDS. In Proceedings of the Winter Simulation Con-
ference, ed. M. Rohrer, D. Medeiros, B. A. Peters, and
J. Smith, 1372-1379, Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

Thorp J. S., X. Wang, K. M. Hopkinson, D. V. Coury, R.
Giovanini. To Appear in 2003. Agent Technology Ap-
plied to the Protection of Power Systems in Autono-
mous Systems and Intelligent Agents in Power System
Control and Operation. Editor Christian Rehtanz. Ba-
den, Schweiz: Springer-Verlag.

http://www.gepower.com/DHTML/CORPORATE/EN_US/ASSETS/SOFTWARE_SOLNS/PROD/PSLF.JSP
http://www.gepower.com/DHTML/CORPORATE/EN_US/ASSETS/SOFTWARE_SOLNS/PROD/PSLF.JSP
http://www.gepower.com/DHTML/CORPORATE/EN_US/ASSETS/SOFTWARE_SOLNS/PROD/PSLF.JSP
http://www.gepower.com/DHTML/CORPORATE/EN_US/ASSETS/SOFTWARE_SOLNS/PROD/PSLF.JSP

Hopkinson, Birman, Giovanini, Coury, Wang, and Thorp

Tucci M., R. Revetria. 2001. Different Approaches in

Making Simulation Languages Compliant with HLA
Specifications. In Proceedings of the Summer Com-
puter Simulation Conference, 622-628.

Venkateswaran J., M. Y. K. Jafferali, Y. Son. 2001. Dis-
tributed Simulation: An Enabling Technology for the
Evaluation of Virtual Enterprises. In Proceedings of
the Winter Simulation Conference, ed. M. Rohrer, D.
Medeiros, B. A. Peters, and J. Smith, 856-862, Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.

Wilson L. F., D. Burroughs, J. Sucharitaves, A. Kumar.
2000. An Agent-based Framework for Linking Distrib-
uted Simulations. In Proceedings of the Winter Simula-
tion Conference, ed. P. A. Fishwick, K. Kang, J. A.
Joines, and R. R. Barton, 1713-1721, Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers.

AUTHOR BIOGRAPHIES

KENNETH M. HOPKINSON received his B.S. degree in
Computer Science from Rensselaer Polytechnic Institute in
1997. He went on to receive his M.S. degree from Cornell
University in 2002. Since that time, Ken has been working
towards his Ph.D. degree in Computer Science at Cornell
University. His areas of interest include distributed com-
puter systems, simulation, and network communications
protocols. Ken is currently investigating communications
issues arising in the electric power grid.
<hopkik@cs.cornell.edu>

KENNETH P. BIRMAN is a Professor of Computer Sci-
ence at Cornell University. A Fellow of the ACM, Birman
has published extensively on reliable, secure distributed
computing since joining Cornell in 1982. He developed the
Isis Toolkit, which controls communication in the New
York Stock and Swiss Exchanges, the French air traffic
control system, and he oversaw development of Cornell’s
Horus, Ensemble and Spinglass systems. He was Editor in
Chief of ACM Transactions on Computer Systems from
1994-1999. <ken@cs.cornell.edu>.

RENAN GIOVANINI received a B.Sc. degree in Electri-
cal Engineering and M.Sc. degree from the EESC - Uni-
versity of São Paulo, Brazil in 1998 and 2000, respectively.
He is presently a Ph.D. student at EESC - University of
São Paulo, Brazil. His main research interests are power
systems protection and Artificial Intelligence.
<renan@sc.usp.br>.

DENIS V. COURY was born in Brazil, in 1960. He re-
ceived a B.Sc. degree in Electrical Engineering from the
Federal University of Uberlandia, Brazil in 1983, a M.Sc.
degree from the University of São Paulo, Brazil in 1986
and a Ph.D. degree from Bath University, England in 1992.
He joined the Department of Electrical Engineering, Uni-
versity of São Paulo, São Carlos, Brazil in 1986, where he
is an Associate Professor in Power Systems. His research
interests center on Power System Protection and Control
using techniques that include Expert Systems and Neural
Networks. <coury@sel.eesc.sc.usp.br>.

XIAORU WANG received a Ph.D. in Electrical Engineer-
ing from Southwest Jiaotong University (SWJTU), China,
in June 1998. She is a Professor at SWJTU and is a visiting
Professor at the School of Electrical Engineering at Cornell
University. Her areas of interest include power system pro-
tection and substation automation systems with a focus on
the application of wavelets and agent technology.
<xw44@cornell.edu>.

JAMES S. THORP is the Charles N. Mellowes Professor
in Engineering and Director of the School of Electrical En-
gineering at Cornell University. In 1976, he was a faculty
intern at the AEP Service Corporation. He was an associate
editor for IEEE Transactions on Circuits and Systems from
1985 to 1987. He is a member of the National Academy of
Engineering, a Fellow of IEEE and a member of the IEEE
Power System Relaying Committee, CIGRE, Eta Kappa
Nu, Tau Beta Pi and Sigma Xi. <jst6@cornell.edu>.

mailto:stephen.chick@insead.edu
mailto:<ken@cs.cornell.edu>
mailto:<renan@sc.usp.br>
mailto:<coury@sel.eesc.sc.usp.br>
mailto:<xw44@cornell.edu>
mailto:<jst6@cornell.edu>
mailto:stephen.chick@insead.edu
mailto:ken@cs.cornell.edu
mailto:renan@sc.usp.br
mailto:coury@sel.eesc.sc.usp.br
mailto:xw44@cornell.edu
mailto:jst6@cornell.edu

