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ABSTRACT 

This paper reports on the development of the Electric 
Power and Communication Synchronizing Simulator 
(EPOCHS), a distributed simulation environment. Existing 
electric power simulation tools accurately model power 
systems of the past, which were controlled as large re-
gional power pools without significant communication 
elements. However, as power systems increasingly turn to 
protection and control systems that make use of computer 
networks, these simulators are less and less capable of pre-
dicting the likely behavior of the resulting power grids. 
Similarly, the tools used to evaluate new communication 
protocols and systems have been developed without atten-
tion to the roles they might play in power scenarios. 
EPOCHS utilizes multiple research and commercial off-
the-shelf (COTS) systems to bridge the gap. EPOCHS is 
also notable for allowing users to transparently encapsulate 
complex system behavior that bridges multiple domains 
through the use of a simple agent-based framework. 

1 INTRODUCTION 

This paper presents the Electric Power and Communica-
tion Synchronizing Simulator (EPOCHS), a combined 
simulation system, or federation, that links the 
PSCAD/EMTDC electromagnetic transient simulator, the 
PSLF electromechanical transient simulation engine, and 
the Network Simulator 2 (NS2) communication simulator. 
Each simulator is viewed as best within its class for some 
 
category of uses. For example, PSCAD provides extremely 
detailed simulations of power systems containing up to 
several hundred buses, and has been extensively validated 
through experiments comparing the behavior of PSCAD 
simulations with the behavior of real power systems. PSLF 
is used by electric utilities to simulate real-world situations 
and has undergone extensive validation. NS2 is the most 
widely used and trusted simulator for the Internet, and in-
cludes particularly good simulations of standard protocols 
like TCP and of standard Internet topologies, such as tran-
sit-stub configurations. On the other hand, none of these 
simulation systems were designed for interoperability, pos-
ing a challenge that our work addresses. 

We live in an increasingly interconnected world where 
multiple domains such as water, power, and network com-
munication can each affect the other. Yet, few stand-alone 
simulators exist that capture these inter-domain worlds. 
Constructing a combined simulation engine is potentially 
time-consuming and expensive. This is particularly true 
when simulations have both continuous and discrete-event 
components. An alternative is to link multiple simulations 
into a distributed environment (federation). Using this ap-
proach to combine multiple simulators for use in inter-
domain situations is becoming more common, and there 
are even proposals to standardize such architectures, nota-
bly the Department of Defense‘s (DOD’s) High Level Ar-
chitecture (Kuhl, et al. 1999). Commercial off-the-shelf 
simulation (COTS) systems are popular in many fields due 
to their rich feature sets, ease of use, and cost effective-
ness. However, source code is only rarely available, and 
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this stands as an obstacle to federation. In the scenario 
tackled by EPOCHS, source code was available for NS2 
but not PSCAD or PSLF. 

Prior research on federating COTS simulation soft-
ware includes work on supply chain manufacturing and 
manufacturing simulation in the GRIDS project (Taylor, et 
al. 2001), (Tucci and Revetria 2001)’s HLA compliance 
project, and Strabburger’s SLX federation (Strabburger 
1999). In addition, NIST has developed the Distributed 
Manufacturing System (DMS) Adapter, a mechanism for 
distributed simulation similar to that provided by the HLA, 
but with a more manageable level of complexity that is tar-
geted towards the manufacturing community (McLean and 
Riddick). In the following year, a supply chain simulation 
was created based on a combination of the HLA and the 
NIST DMS adapter making use of the Arena, ProModel, 
and VB Application commercial software systems 
(Venkateswaran, et al.). Despite these success stories, the 
documented use of commercial simulation systems in fed-
erations is still relatively rare. A common concern is that 
once a group of simulators has been federated, “casual” 
modelers may find the added complexity of the new simu-
lation platform difficult to manage. 

The technology underlying our work illustrates how 
non-intrusive techniques can be used to federate simulation 
engines using only the built-in Application Programming 
Interfaces (APIs). In addition, our agent-based framework 
hides the complexity involved in the combined simulation 
system, making it easy for users to design new power sce-
narios involving communication. We believe that 
EPOCHS illustrates a style of federation that could be ap-
plied to many settings, such as air traffic control, banking, 
medical systems, military command and control systems, 
and other forms of mixed-mode critical infrastructure. 

This paper is divided into six sections. In section 2, we 
review background material and present the system’s ar-
chitecture. The methods used to federate the commercial 
and high quality research simulation components are dis-
cussed in section 3. In section 4, we outline our agent 
framework. We go on to describe a case study that has 
been developed and run on the EPOCHS platform in sec-
tion 5. The paper concludes in section 6. 

2 EPOCHS 

2.1 Motivation 

The restructuring of the electric power system, the creation 
of competitive markets, and the introduction of new regula-
tory mechanisms are now well-established trends. Under-
standing how the restructured power grid will operate, and 
how to monitor and control it, are necessary preconditions to 
achieving reliability and fairness under the conditions that 
may arise in the field. Yet, electric power simulators today 
do not model the network communication patterns seen in 
modern protection and control systems.  
Traditional protection systems base decisions on local 
measurements, and employ conventional control systems 
that operate over rather slow, predictable communication 
systems. It has not been necessary to simulate communica-
tion in order to accurately model these electric power sys-
tems. However, over the last decade, power systems have 
begun to operate close to their transmission, generation, 
and stability limits. Protection and control systems are be-
ing placed under a correspondingly greater strain. Power 
engineers have begun to conclude that the use of commu-
nication networks based on Internet standards is a natural 
choice to improve both.  

It is natural to assume that systems with more data, 
and operating over faster communications networks, will 
be more effective than their predecessors. Yet, the Internet 
was not designed for safety- and time-critical applications, 
and layering the needed mechanisms over Internet proto-
cols such as TCP/IP is a non-trivial undertaking. New 
kinds of simulation and evaluation tools are needed that 
bridge the gap, providing high-quality simulations of elec-
tric power scenarios while simultaneously modeling the 
behavior of computer communications protocols in realis-
tic networks confronted with realistic scenarios, including 
load surges, outages, and other forms of dynamic stress. 
Our work demonstrates that when this is done, potentially 
serious problems can be identified and resolved in the 
laboratory, avoiding potentially costly or damaging mis-
haps in the field. 

2.2 Overview 

EPOCHS links simulators using a Runtime Infrastructure 
(RTI) to allow modelers to investigate electric power sce-
narios that involve network communication. One goal of 
EPOCHS is to minimize the intrusiveness of the simulation 
platform for users unfamiliar with its components. 
EPOCHS does this by allowing complex behavior to be 
embedded within agents that can read and modify simula-
tion variables by interacting with a module called the 
Agent Headquarters, or AgentHQ, which hides the details 
in the other simulation components. In the case of electric 
power systems involving network communication, this 
agent framework is natural, since hardware support for 
software agents exists in the power system today. 

From a modeler’s perspective, EPOCHS seamlessly 
links its three off-the-shelf simulation systems, enabling 
them to investigate power protection and control scenarios 
which combine communication with real-time sensing of 
the state of a power grid and real-time response. For exam-
ple, suppose that a new protection protocol is deployed in a 
power system, and is known to operate correctly provided 
that the input data used by the control algorithm is accu-
rate. EPOCHS will let us understand how that protocol 
might behave over TCP if other users move large data files 
through shared network links and routers – behaviors 
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known to trigger delays and congestion control in the TCP 
protocol. Similarly, we are able to use EPOCHS to com-
pare different options for running the same protection pro-
tocol (e.g. over TCP, over UDP, over various QoS mecha-
nisms), and to understand how failures might impact power 
systems protection and control. 

Although we have only just begun to use EPOCHS for 
these purposes, we are finding that the most obvious com-
binations of control policies with TCP could malfunction 
under conditions that are quite likely to occur in a power 
system network. This suggests the need for new control al-
gorithms, for consideration of TCP variants that provide 
Quality of Service (QoS) properties guaranteeing sufficient 
bandwidth to critical applications, and may ultimately ar-
gue against the use of standard TCP-based communication 
protocols that lack QoS in protection and control systems. 

2.3 Architecture 

Recent work centering on combining, or federating, simu-
lation systems has focused on the use of the High Level 
Architecture (HLA). HLA is used to combine individual 
simulations, known as federates, together into combined 
simulators known as federations. The “glue” holding these 
combinations together is a central component known as a 
Runtime Infrastructure (RTI). The RTI routes all messages 
between simulation components and is responsible for 
making sure that simulation time is appropriately synchro-
nized. HLA’s drawback is that it can be difficult to modify 
existing simulations to conform to its specification. Many 
fields make heavy use of off-the-shelf commercial soft-
ware and do not have source code access. Additionally, 
HLA can be an inefficient means of combining federates. 
The system is based on a publish-subscribe mechanism 
where any federate subscribing to another will receive all 
of its updated information, whether it is needed or not.  

We created a federated simulation system that works 
in the spirit of the HLA, but that uses our own interface for 
easier implementation. EPOCHS’ architecture is shown in 
Figure 1.  

NS2

RTI

   AgentHQ

PSLF PSCAD/
EMTD

Agent

Agent
Agent

 
 
 

Figure 1: The Relationship Between EPOCHS’s Five
Components 
Descriptions of the EPOCHS components follow. 
PSCAD/EMTDC: PSCAD/EMTDC is used for elec-

tromagnetic transient simulation. EMTDC is a well-known 
electric power simulator. One of its main strengths is its abil-
ity to accurately simulate power system electromagnetic 
transients. That is, EMTDC models short-duration time-
domain electric power responses. PSCAD is a graphical in-
terface that is used to simplify the development of EMTDC 
scenarios. PSCAD is produced by the Manitoba HVDC Re-
search Centre (Manitoba HVDC Research Centre 1998). 

EMTDC simulates power system scenarios in con-
tinuous time by solving a series of differential equations in 
a time-stepped manner. It has very detailed electrical mod-
els making it well-suited to electromagnetic transient in-
vestigations.  

PSLF: PSLF is used for electromechanical transient 
simulation. PSLF can simulate power systems with tens of 
thousands of nodes and is widely used by electric utilities 
to model electromechanical stability scenarios (General 
Electric 2003). It models large systems in less detail than 
that available in PSCAD making it better-suited for long-
running scenarios. It simulates power systems in continu-
ous time by solving differential equations in a time-stepped 
manner that is similar to that employed by PSCAD.  

NS2: Network Simulator 2 (NS2) is an event-driven 
communication network simulator created through a joint 
effort between the University of California at Berkeley, 
Lawrence Berkeley Labs, the University of Southern Cali-
fornia, and Xerox PARC. NS2 is a high-quality simulator 
that allows the creation of a wide variety of communications 
scenarios. Although there are many network and protocol 
simulators, NS2 is the most widely used simulator for evalu-
ating the behavior of TCP, the TCP variants that have been 
proposed by researchers, and the behavior of routed UDP in 
large networks (Breslau, et al. 2000). NS2 is able to simulate 
the behavior of these protocols under various forms of stress, 
such as might be caused by competition for network re-
sources when multiple applications share a network and 
communicate over the same routers and communication 
links, the impact of failures including router failures, link 
failures, or denial of service attacks. It can also capture the 
normal dynamics resulting from relaying messages with 
real-time data rates through many layers of routers. We note 
that the proposed Utility Communications Architecture 
(UCA) is based on TCP (Adamiak and Premeriani 1999).  

AgentHQ: AgentHQ is a module that presents a uni-
fied environment to agents and acts as a proxy when agents 
interact with other EPOCHS components. Through it, the 
agents can get and set power system values and send and 
receive messages to one another. AgentHQ is a discrete-
event system. Events are processed as they occur and 
routed to the affected agents. 

RTI: The Runtime Infrastructure (RTI) acts as the 
“glue” between all other components. It is responsible for 
simulation synchronization and for routing communication 
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between EPOCHS components. A firm requirement placed 
on any simulation system is that no event can be processed 
with a time stamp earlier than one that has already been 
completed. This is easy to enforce in sequential simulators, 
but issues arise when making use of distributed simulation 
systems. Many methods exist for dealing with this matter in 
the parallel and distributed simulation research community 
(Fujimoto 2000). We employ a time-stepped model, one the 
simplest techniques for component synchronization, in our 
current system when running EPOCHS scenarios. Time 
steps are user-selectable and can be chosen depending on the 
granularity of a given case. Simulations can use a short time 
between synchronization points to compensate for the errors 
introduced by the decoupled simulation approach or can use 
larger time steps for faster execution.  

2.4 Component Interaction 

The synchronization between the various simulation com-
ponents follows a simple algorithm. All systems are halted 
at time 0. At the beginning of any time step, the RTI waits 
for synchronization messages from both the power system 
simulator and NS2. Then, the RTI yields control to the 
AgentHQ. The AgentHQ passes the control on to the 
agents one by one until all have had a chance to execute. 
During this cycle, the agents are capable of sending com-
munication messages and getting/setting power system 
variables. Once all agents have completed their tasks, the 
AgentHQ returns control back to the RTI. Finally, the RTI 
notifies both NS2 and the power system simulator that the 
current time step is done. At this point, the two simulation 
engines run for an additional time step. Special attention 
must be paid to NS2. Messages may be received in be-
tween two synchronization points within NS2. If a message 
arrives, NS2 will immediately pass it along to the RTI 
bound for the AgentHQ. The AgentHQ will, in turn, pass 
the message on to the appropriate agent. The agent can 
process the message and send another in response. If the 
message requires that power system state be read or 
changed then that agent keeps the message in a queue until 
the next synchronization point occurs. 

2.5 Simulation Scripts 

Each agent simulation takes three parts. The structure of 
the power system and its electrical parts must be laid out in 
a PSCAD/EMTDC or PSLF compatible file. The layout of 
the communications subsystem and the transport protocols 
used needs to be specified in an NS2 file. Finally, agent 
types and locations are added to the NS2 simulation script 
for use by the agent manager. Note that if the agent com-
ponent were decoupled from NS2, a third simulation file 
would be required by EPOCHS. Script file generators are 
used to shield users from the details involved in defining 
these scripts to as large a degree as is practicable. How-
• 
• 
• 
• 

ever, this remains an inherent drawback in combining mul-
tiple federates together due to the inevitable differences be-
tween individual simulation models. 

2.6 Implementation and Optimization 

In the current implementation, NS2, the RTI, the 
AgentHQ, and its corresponding Agents are all combined 
inside a single executable. Each component is logically 
separated within the source code and the RTI is still im-
plemented as a protocol stub inside NS2. This combination 
boosts the performance of the simulation federation. 

Although we have used EPOCHS to investigate a 
number of power system situations, none uses PSLF and 
PSCAD/EMTDC simultaneously, and we have not encoun-
tered any problems for which this would be useful. Ac-
cordingly, the system is optimized under the assumption 
that only one power systems simulator is in use at a time. 

3 FEDERATING COTS COMPONENTS 

PSLF and PSCAD/EMTDC are commercial products and 
their source code is not available. NS2 is a research sys-
tem, and its source code is available. However, it would 
require a great deal of effort to understand the more than 
150,000 lines of source code sufficiently well to modify it 
to interface with an RTI. As an alternative, we used inter-
nal API’s to federate each of these components. Strab-
burger listed four standard methods for making a simula-
tion compliant with an RTI approach to simulation 
federation in (Strabburger 1999).  
 They are, from most to least desirable: 

Reimplement the tool with the proper extensions 
Extend the simulation with intermediate code 
Use an external programming interface  
Couple via a gateway program. 

In the first approach, simulation developers modify a 
simulator’s internal source code so that it can interface 
with the RTI. In the second approach, if the simulator in 
question generates intermediate source code in a higher 
level language then the developer can include source mod-
ules of her own design to add RTI support. Some tools in-
clude the option of calling arbitrary functions either in 
user-specified source code or in dynamic link libraries. The 
third option takes advantage of this facility to add RTI 
support. Finally, if none of the previous options are avail-
able, but the simulation engine in question includes facili-
ties for external communication via files, pipes, network 
communication, or some similar means then the developer 
can use that method to communicate with an external 
gateway program that will process commands and pass 
their results along to the RTI. The federation of the three 
commercial and research systems serves as an interesting 
case study because each of them used a different technique 
from Strabbugers’ list. 
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Our synchronization approach allows us to use a con-
venient alternative to modifying the core source code. 
PSCAD/EMTDC, PSLF, and NS2 allow user-defined ex-
tensions. That is, a PSCAD/EMTDC scenario can include 
user-defined libraries that add equipment definitions using 
the C programming language that were not present in the 
original software. PSLF similarly allows user-defined 
equipment models using its proprietary interpreted EPCL 
language. NS2 has well-defined procedures for adding new 
communication protocols in C++ to the base simulation 
software. We have created equipment stubs whose sole 
purpose is to interact with EPOCHS’s RTI at each syn-
chronization point. Both PSCAD/EMTDC and PSLF use a 
user-modifiable length between each of their time steps. 
Both systems allow users to modify the time step length at 
each interaction, however we chose to keep time steps con-
sistent for easy interaction in our first EPOCHS release.  

This process is simplified by the fact that 
PSCAD/EMTDC, PSLF, and NS2 are all single-threaded 
systems, so each system is effectively halted whenever a 
synchronization event takes place. Additional effort would 
be required if that were not the case. 
 The federation techniques employed in EPOCHS are 
described below. 

NS2: The network communication component uses an 
approximation of the second approach of component-level 
integration. A new transport protocol was added to NS2 to 
serve as its link to the RTI. A periodic call was added to 
the simulation script invoking the new protocol in order to 
halt execution and interact with the RTI once per time step. 
The length of the step can take on any value as long as it is 
the same as that used in the power system simulator. NS2 
normally lacks the ability to automatically track message 
contents when using TCP/IP. We use the TCPApp applica-
tion in order to keep track of this state on our behalf. UDP, 
by contrast, does have the ability to transmit data and we 
took advantage of it adding our own layer of abstraction 
through a module we named UDPApp. These choices give 
us the flexibility to select any communication protocol at 
any time by sending data through NS2 function calls. 

PSCAD/EMTDC: PSCAD/EMTDC uses the third 
federation method. PSCAD/EMTDC generates FORTRAN 
source code based on scenarios created in its graphical en-
vironment. Users can extend its functionality by making 
calls to source code written either in the C or FORTRAN 
languages and this code is compiled in with the generated 
code. Calls to this extended source code can be embedded 
into PSCAD scenarios, but unfortunately the stub that in-
terfaces with EPOCHS must be customized to each sce-
nario since it must access each internal variable by name. 
PSCAD/EMTDC is a continuous-time system. We use a 
library in our simulations that adds a call to our user-
defined component once per time step. The 
PSCAD/EMTDC component begins by reading in all user-
accessible equipment values that might be requested. Next, 
the electrical component contacts the RTI and notifies it 
that the beginning of the time step has been reached. 
Agents can request equipment values or can set power val-
ues when they execute. At the end of an agent execution 
cycle, a finish message is sent from the RTI to the electri-
cal components and the power component set any values 
that have changed in their simulations. The components 
relinquish control afterwards and execution continues. 

PSLF: In PSLF, we use an approximation to the 
fourth federation method. PSLF includes its own native 
language called EPCL that is roughly similar to C. Using 
this language, we were able to create our stub enabling us 
to interact with the RTI using files. The use of files was 
necessary because no other method was supported by the 
language. It would have been possible to go through a 
gateway program to translate these files into TCP/IP 
transmissions if we wished to communicate with modules 
in other systems, but we chose to run all simulations on the 
same machine making this step unnecessary.  

PSLF halts execution periodically and waits for requests 
from the RTI. Incoming requests to get or set electrical 
simulation values are processed and the results are returned 
to the RTI. When all requests have been fulfilled, a final 
message is sent to PSLF allowing it to continue execution. 

4 AGENT FRAMEWORK 

4.1 Agent Definition 

“Agents” are used extensively both in and out of the artifi-
cial intelligence research community, but there is no uni-
versally accepted definition for the term. Agents nearly al-
ways have the properties of autonomy (the ability to take 
independent action) and interaction (the capacity to sense 
the surrounding environment and make changes to it). In 
addition, an agent may exhibit the properties of mobility, 
intelligence, adaptivity, and communication. In this paper, 
the term agent will be used to refer to computer programs 
that are autonomous, interactive, and have the ability to 
communicate over a network. Agents may optionally also 
have any of the other attributes defined above.  

4.2 Related Work 

A wide range of simulations have made use of agents. 
There are two main classes of agent-based simulators. The 
first uses agents to act as a mechanism for combining 
simulation engines. The flexibility agents provide can be 
used to more efficiently link simulation components to-
gether, such as by using filters to reduce inter-simulation 
traffic. An example of this can be found in (Wilson, et al. 
2000). The second class of simulations use agents to model 
entities within a simulated world. (Lee, et al. 2001) em-
ploys a mix of continuous and discrete-time simulators in 
an air-traffic control simulation using object-oriented 
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agents to represent, among other things, air-traffic control-
lers, aircraft, and air traffic generators. Our work is similar 
in spirit to Lee’s approach. 

4.3 Agents in Electric Power Protection  
and Control Systems 

The electric power grid has traditionally been made up of a 
large number of protection and control devices that act on 
local information to respond to problems. This method 
works well in some cases, but there are many situations in 
which information not readily available from local sensors 
or local databases would be needed to plan, to protect the 
grid, or to control it efficiently. Lacking such data, the grid 
must be operated in a very conservative and potentially in-
efficient manner, and might not be able to support desired 
behaviors. Agents have begun to be recognized as a natural 
way to introduce extensibility into the grid without drasti-
cally changing the usual power systems architecture, and 
are therefore gaining acceptance in the electric power re-
search community. Their autonomous nature, ability to 
share information and coordinate actions, and the potential 
to be easily upgraded or controlled from a remote location 
are appealing to grid operators and protocol designers.  

The protection and control scenarios that interest us 
use geographically distributed agents located in a number 
of Intelligent Electronic Devices (IEDs) as shown in Figure 
2. An IED is a hardware environment that has the neces-
sary computational, communication, and other I/O capa-
bilities needed to support a software agent. An IED can be 
loaded with agents that can perform control and/or protec-
tion functions. These agent-based IEDs work in an 
autonomous manner, interacting both with their environ-
ment and with one-other. For example, a digital relay could 
be implemented as an agent with its own thread of local 
control, but that also monitors conditions elsewhere in the 
network so as to act in response to their non-local events. 
This agent would communicate with other agents either via 
Local Area Networks (LANs) or via Wide Area Networks 
(WANs). These IEDs are relatively rare at present, but 
many are already available and we expect their use to in-
crease over time. 
 

Ethernet LAN
         Host  Computer

Protection
IED

Protection
IED

Control
IED

Control
IED

Utility
WAN

Substation

Router

Power Plant - Control Center - Substation

SCADA System

Control
Center

Power Plant
 

Figure 2: Placements of the Agent-Based IEDs within the 
Utility Intranet Infrastructure 
 

The agent-based IED’s structure is shown in Figure 3. 
Agents within an IED perceive their environment through 
local sensors and act upon it through the IED’s actuators. 
Examples of sensor inputs might include local measure-
ments of current, voltage, and breaker status. Actuator out-
puts might include signals to initiate breaker trips, trans-
former tap setting adjustments, and capacitor bank 
selection. Agents might even interface with legacy systems 
such as Supervisory Control and Data Acquisition 
(SCADA) systems. The host computer shown in Figure 2 
could act as a bridge between the old and new systems in 
this type of situation. Internally, agents might be composed 
of many layers of functionality and control or may be con-
tained in a single layer depending on the designer’s speci-
fications and implementation. As shown in Figure 2, agents 
have the ability to communicate through a LAN in order to 
interact with other agents directly located on that same 
LAN, or can pass information along to the Utility WAN, 
i.e. the Utility Intranet, ultimately communicating with 
more remote IEDs. 
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Figure 3: The Structure of an  
Agent-Based IED  

 
The increasing use of agents in IEDs makes an agent-

based framework a natural choice. Protection and control 
engineers can create agents for use in real situations and 
test them with minor modification in the EPOCHS envi-
ronment. Of course, agents can also mimic the behavior of 
more traditional systems. EPOCHS’s early adopters have 
found the agent concept to be an intuitive one. 

4.4 The Structure of a Utility  
Communication Network 

Networked computing systems have become ubiquitous, and 
we believe that this trend will soon become more wide-
spread within electric utility systems. Technology is con-
stantly changing, but we can make some educated guesses 
about what utility communication systems will look like. 
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First, the network systems will almost certainly be built from 
standard commercial off-the-shelf components. To do oth-
erwise would be expensive both in initial cost outlay and in 
system maintenance. This means that these networks will be 
based on Internet standards even if the systems remained in-
dependent of the global network conglomeration. We can 
already see signs that such changes are coming in recent 
standardization efforts such as the TCP-based Utility Com-
munications Architecture (UCA).  

4.5 Agent-based Simulation Framework 

Our framework is intended to minimize the differences 
needed between simulated systems and their real-world 
counterparts, as well as to ease implementation for 
EPOCHS’ users. The basic functionality is shown in Fig-
ure 4. Functions have been broken down into two main 
categories. Events occur in the AgentHQ subsystem and 
notification is passed on to the appropriate agents. Agents 
interact with their surroundings by using method calls to 
get and set the state of their environment and to exchange 
messages with other agents. 
 

Interface Agent 
{ 
methods: 
 double get_round_time(); 
 void send_comm_msg(comm_type, group,  
                       src, dst, pkt_size, 
                       msg); 
 void send_power_msg(); 
 void recv_power_msg(); 
events: 
 void request(); 
 void action(); 
 void recv_comm_msg(comm_type, group,   
                       src, dst, pkt_size,  
                       send_time, round_num,  
                       msg); 
 void recv_power_msg(msg); 
}; 

Figure 4: The Agent Interface 
 

AgentHQ is triggered at each synchronization point 
and acts as a proxy between the agents, the network com-
munications simulation, and the electric power simulators. 
At that time, the AgentHQ calls each of the agent’s re-
quest and action methods giving them an opportunity to 
calculate their set of operations for the next time step.  

The agents remain dormant until they receive an event 
notification. Power system agents mimic those in real pro-
tection and control systems by polling the current envi-
ronment at regular intervals. When the beginning of an in-
terval is reached, each agent is given a chance to request 
its power system state information through the use of the 
send_power_msg method and receive the results through 
the recv_power_msg event notification. All agents’ initial 
requests are sent and the replies are received in one block. 
This is an optimization to help compensate for the use of 
files to exchange information between the AgentHQ and 
the electric power simulation systems. When all agents 
have been given a chance to run, the AgentHQ will give 
allow each to react to their current state in the action 
method where they can send communication messages us-
ing the send_comm_msg method, or can make additional 
power system get and set requests using the 
send_power_msg method. In addition to these regular acti-
vation intervals, individual agents may receive communi-
cation messages through the recv_comm_msg event at any 
time and can take additional actions in their response. 

5 CASE STUDY – A SPECIAL  
PROTECTION SYSTEM  

Power system generators are run synchronously. When one 
or more generators lose synchrony, the resulting transient 
instability can lead to costly blackouts. Stability problems 
are often caused by disturbances such as the loss of genera-
tion, loads, or tie lines. These disturbances stimulate power 
system electromechanical dynamics, resulting in deviations 
in frequencies, voltages, and generator phase angles. Spe-
cial Protection Schemes (SPS) are devices that are most 
commonly designed to counteract instances of power sys-
tem instability. Most SPS schemes do so by using a com-
bination of generation rejection and load shedding 
(Anderson and LeReverend 1996).  

Traditional SPS systems are based either on purely lo-
cal measurements to detect transiently unstable situations, 
a source of unreliability, or on communication that is too 
slow to allow them to respond to many types of faults. We 
created an agent-based SPS system that used wide-area 
measurements in a novel frequency prediction and control 
algorithm. Results showed that the system was successfully 
able to keep a system transiently stable and maintain its 
frequency above a preset threshold through rapid genera-
tion rejection. The precise load shedding required was cal-
culated and acted upon in a single step. This would not be 
possible without the use of wide-area measurements. These 
results showed the accuracy and usefulness of the method 
when communication channels were lightly loaded.  

Degraded SPS performance was observed when the 
communications network was subjected to increased com-
munication traffic, as would surely arise in a setting where 
many kinds of applications share the utility communication 
infrastructure. Frequency levels decline as time passes after 
a fault, making it important that measurements from close 
to the time that a fault occurs are used in the SPS algo-
rithm. Under heavy network traffic conditions, Internet 
routers are designed to drop data packets to signal overload 
to TCP endpoints. The protocols, sensing that congestion 
has occurred, will then slow down. These built-in design 
features of the network disrupt the SPS algorithm. Our 
findings suggest that the decision to base the UCA on TCP 
is potentially risky. In future work, we hope to evaluate 
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variants of TCP providing QoS guarantees (a great many 
have been proposed), while also exploring UDP-based 
communication protocols of our own design. 

By using the EPOCHS agent-based framework, both 
traditional and agent-based systems were able to run in an 
environment that isolates the modeler from the details of 
coordinating the various COTS and research components. 
EPOCHS’s users could work in our framework, with few 
reminders that these components were present under the 
surface. The authors believe that this simplified develop-
ment, yielded a more robust solution, and reduced model-
ing time relative to other approaches. The use of EPOCHS 
allowed designers to focus on issues involved in creating 
power protection and control systems that take delay, un-
predictable message delivery times, and the possibility of 
message loss due to congested network conditions into ac-
count. This was an eye-opening experience in some cases. 
The experimental results received would have been diffi-
cult to reproduce using other tools and helped validate the 
concepts behind the EPOCHS project.  

The complete set of results for the special protection 
system is outlined in greater detail within the chapter enti-
tled, “Agent Technology Applied to the Protection of 
Power Systems” in (Thorp, et al. To Appear in 2003). Two 
additional protection systems and their experimental results 
running on the EPOCHS platform are also included. 

6 CONCLUSION 

In this paper we have described EPOCHS, a simulation en-
gine that combines PSCAD/EMTDC, PSLF, and NS2 
functionalities together with an agent component. The pa-
per has three main contributions. 

The simulator is the first to combine realistic net-
work communications with electric power com-
ponents. 
EPOCHS serves as a case study illustrating meth-
ods for bridging unrelated simulation engines 
without making use of source-code modification 
to any of the systems in question.  
We make use of a simple yet powerful agent 
framework that is easy to use for simulation 
modelers.  

We feel that techniques like those used in EPOCHS will 
become more common over time as commercial/open-
source software continues to improve in terms of cost, 
availability, and feature set. 
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