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Abstract

We present a new method for estimating the 6D pose of

rigid objects with available 3D models from a single RGB

input image. The method is applicable to a broad range of

objects, including challenging ones with global or partial

symmetries. An object is represented by compact surface

fragments which allow handling symmetries in a systematic

manner. Correspondences between densely sampled pixels

and the fragments are predicted using an encoder-decoder

network. At each pixel, the network predicts: (i) the prob-

ability of each object’s presence, (ii) the probability of the

fragments given the object’s presence, and (iii) the precise

3D location on each fragment. A data-dependent number of

corresponding 3D locations is selected per pixel, and poses

of possibly multiple object instances are estimated using a

robust and efficient variant of the PnP-RANSAC algorithm.

In the BOP Challenge 2019, the method outperforms all

RGB and most RGB-D and D methods on the T-LESS and

LM-O datasets. On the YCB-V dataset, it is superior to all

competitors, with a large margin over the second-best RGB

method. Source code is at: cmp.felk.cvut.cz/epos.

1. Introduction

Model-based estimation of 6D pose, i.e. the 3D trans-

lation and 3D rotation, of rigid objects from a single im-

age is a classical computer vision problem, with the first

methods dating back to the work of Roberts from 1963 [54].

A common approach to the problem is to establish a set of

2D-3D correspondences between the input image and the

object model and robustly estimate the pose by the PnP-

RANSAC algorithm [14, 36]. Traditional methods [9] es-

tablish the correspondences using local image features, such

as SIFT [41], and have demonstrated robustness against oc-

clusion and clutter in the case of objects with distinct and

non-repeatable shape or texture. Recent methods, which

are mostly based on convolutional neural networks, produce

dense correspondences [4, 48, 69] or predict 2D image lo-

cations of pre-selected 3D keypoints [52, 61, 50].

Figure 1. A 2D image location corresponds to a single 3D loca-

tion on the object model in the case of distinct object parts (left),

but to multiple 3D locations in the case of global or partial object

symmetries (right). Representing an object by surface fragments

allows predicting possibly multiple correspondences per pixel.

Establishing 2D-3D correspondences is challenging for

objects with global or partial symmetries [44] in shape or

texture. The visible part of such objects, which is deter-

mined by self-occlusions and occlusions by other objects,

may have multiple fits to the object model. Consequently,

the corresponding 2D and 3D locations form a many-to-

many relationship, i.e. a 2D image location may correspond

to multiple 3D locations on the model surface (Fig. 1), and

vice versa. This degrades the performance of methods as-

suming a one-to-one relationship. Additionally, methods re-

lying on local image features have a poor performance on

texture-less objects, because the feature detectors often fail

to provide a sufficient number of reliable locations and the

descriptors are no longer discriminative enough [62, 28].

This work proposes a method for estimating 6D pose of

possibly multiple instances of possibly multiple rigid ob-

jects with available 3D models from a single RGB input

image. The method is applicable to a broad range of objects

– besides those with distinct and non-repeatable shape or
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texture (a shoe, box of corn flakes, etc. [41, 9]), the method

handles texture-less objects and objects with global or par-

tial symmetries (a bowl, cup, etc. [24, 12, 20]).

The key idea is to represent an object by a controllable

number of compact surface fragments. This representation

allows handling symmetries in a systematic manner and en-

sures a consistent number and uniform coverage of candi-

date 3D locations on objects of any type. Correspondences

between densely sampled pixels and the surface fragments

are predicted using an encoder-decoder convolutional neu-

ral network. At each pixel, the network predicts (i) the prob-

ability of each object’s presence, (ii) the probability of the

fragments given the object’s presence, and (iii) the precise

3D location on each fragment (Fig. 2). By modeling the

probability of fragments conditionally, the uncertainty due

to object symmetries is decoupled from the uncertainty of

the object’s presence and is used to guide the selection of a

data-dependent number of 3D locations at each pixel.

Poses of possibly multiple object instances are estimated

from the predicted many-to-many 2D-3D correspondences

by a robust and efficient variant of the PnP-RANSAC algo-

rithm [36] integrated in the Progressive-X scheme [3]. Pose

hypotheses are proposed by GC-RANSAC [2] which uti-

lizes the spatial coherence of correspondences – close corre-

spondences (in 2D and 3D) likely belong to the same pose.

Efficiency is achieved by the PROSAC sampler [8] that pri-

oritizes correspondences with a high predicted probability.

The proposed method is compared with the participants

of the BOP Challenge 2019 [23, 26]. The method out-

performs all RGB methods and most RGB-D and D meth-

ods on the T-LESS [24] and LM-O [4] datasets, which in-

clude texture-less and symmetric objects captured in clut-

tered scenes under various levels of occlusion. On the YCB-

V [68] dataset, which includes textured and texture-less ob-

jects, the method is superior to all competitors, with a sig-

nificant 27% absolute improvement over the second-best

RGB method. These results are achieved without any post-

refinement of the estimated poses, such as [43, 38, 69, 52].

This work makes the following contributions:

1. A 6D object pose estimation method applicable to a

broad range of objects, including objects with symme-

tries, achieving the state-of-the-art RGB-only results

on the standard T-LESS, YCB-V and LM-O datasets.

2. Object representation by surface fragments allowing

to handle symmetries in a systematic manner and en-

suring a consistent number and uniform coverage of

candidate 3D locations on any object.

3. Many-to-many 2D-3D correspondences established by

predicting a data-dependent number of precise 3D lo-

cations at each pixel.

4. A robust and efficient estimator for recovering poses of

multiple object instances, with a demonstrated benefit

over standard PnP-RANSAC variants.

Figure 2. EPOS pipeline. During training, an encoder-decoder

network is provided a per-pixel annotation in the form of an object

label, a fragment label, and 3D fragment coordinates. During in-

ference, 3D locations on possibly multiple fragments are predicted

at each pixel, which allows to capture object symmetries. Many-

to-many 2D-3D correspondences are established by linking pixels

with the predicted 3D locations, and a robust and efficient variant

of the PnP-RANSAC algorithm is used to estimate the 6D poses.

2. Related Work

Classical Methods. In the early attempt, Roberts [54] as-

sumed that objects can be constructed from transformations

of known simple 3D models which were fit to edges ex-

tracted from a grayscale input image. The first practical

approaches were relying on local image features [41, 9] or

template matching [5], and assumed a grayscale or RGB

input image. Later, with the introduction of the consumer-

grade Kinect-like sensors, the attention of the research field

was steered towards estimating the object pose from RGB-

D images. Methods based on RGB-D template match-

ing [20, 28], point-pair features [13, 21, 66], 3D local fea-

tures [17], and learning-based methods [4, 60, 35] demon-

strated a superior performance over RGB-only counterparts.

CNN-Based Methods. Recent methods are based on con-

volutional neural networks (CNN’s) and focus primarily on

estimating the object pose from RGB images. A popular ap-

proach is to establish 2D-3D correspondences by predicting

the 2D projections of a fixed set of 3D keypoints, which are

pre-selected for each object model, and solve for the object

pose using PnP-RANSAC [52, 49, 47, 61, 65, 15, 29, 50].

Methods establishing the correspondences in the opposite

direction, i.e. by predicting the 3D object coordinates [4]

for a densely sampled set of pixels, have been also pro-

posed [32, 46, 69, 48, 39]. As discussed below, none of the
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existing correspondence-based methods can reliably handle

pose ambiguity due to object symmetries.

Another approach is to localize the objects with 2D

bounding boxes, and for each box predict the pose by re-

gression [68, 37, 42] or by classification into discrete view-

points [33, 10, 59]. However, in the case of occlusion, es-

timating accurate 2D bounding boxes covering the whole

object (including the invisible parts) is problematic [33].

Despite promising results, the recent CNN-based RGB

methods are inferior to the classical RGB-D and D meth-

ods, as reported in [23, 26]. Using the depth image as an

additional input of the CNN is a promising research direc-

tion [37, 58, 67], but with a limited range of applications.

Handling Object Symmetries. The many-to-many re-

lationship of corresponding 2D and 3D locations, which

arises in the case of object symmetries (Sec. 1), degrades the

performance of correspondence-based methods which as-

sume a one-to-one relationship. In particular, classification-

based methods predict for each pixel up to one correspond-

ing 3D location [4, 46], or for each 3D keypoint up to one

2D location which is typically given by the maximum re-

sponse in a predicted heatmap [49, 47, 15]. This may re-

sult in a set of correspondences which carries only a limited

support for each of the possible poses. On the other hand,

regression-based methods [61, 69, 50] need to compromise

among the possible corresponding locations and tend to re-

turn the average, which is often not a valid solution. For

example, the average of all points on a sphere is the center

of the sphere, which is not a valid surface location.

The problem of pose ambiguity due to object symme-

tries has been approached by several methods. Rad and

Lepetit [52] assume that the global object symmetries are

known and propose a pose normalization applicable to the

case when the projection of the axis of symmetry is close

to vertical. Pitteri et al. [51] introduce a pose normalization

that is not limited to this special case. Kehl et al. [33] train

a classifier for only a subset of viewpoints defined by global

object symmetries. Corona et al. [10] show that predicting

the order of rotational symmetry can improve the accuracy

of pose estimation. Xiang et al. [68] optimize a loss func-

tion that is invariant to global object symmetries. Park et

al. [48] guide pose regression by calculating the loss w.r.t.

to the closest symmetric pose. However, all of these ap-

proaches cover only pose ambiguities due to global object

symmetries. Ambiguities due to partial object symmetries

(i.e. when the visible object part has multiple possible fits

to the entire object surface) are not covered.

As EPOS, the methods by Manhardt et al. [42] and Li et

al. [37] can handle pose ambiguities due to both global and

partial object symmetries without requiring any a priori in-

formation about the symmetries. The first [42] predicts mul-

tiple poses for each object instance to estimate the distri-

bution of possible poses induced by symmetries. The sec-

ond [37] deals with the possibly non-unimodal pose distri-

bution by a classification and regression scheme applied to

the rotation and translation space. Nevertheless, both meth-

ods rely on estimating accurate 2D bounding boxes which

is problematic when the objects are occluded [33].

Object Representation. To increase the robustness of 6D

object pose tracking against occlusion, Crivellaro et al. [11]

represent an object by a set of parts and estimate the 6D

pose of each part by predicting the 2D projections of pre-

selected 3D keypoints. Brachmann et al. [4] and Nigam et

al. [46] split the 3D bounding box of the object model into

uniform bins and predict up to one corresponding bin per

pixel. They represent each bin with its center which yields

correspondences with limited precision.

For human pose estimation, Güler et al. [1] segment the

3D surface of the human body into semantically-defined

parts. At each pixel, they predict a label of the correspond-

ing part and the UV texture coordinates defining the precise

location on the part. In contrast, to effectively capture the

partial object symmetries, we represent an object by a set of

compact surface fragments of near-uniform size and predict

possibly multiple labels of the corresponding fragments per

pixel. Besides, we regress the precise location in local 3D

coordinates of the fragment instead of the UV coordinates.

Using the UV coordinates requires a well-defined topology

of the mesh model, which may need manual intervention,

and is problematic for objects with a complicated surface

such as a coil or an engine [12].

Model Fitting. Many of the recent correspondence-based

methods, e.g. [48, 69, 52, 61], estimate the pose using the

vanilla PnP-RANSAC algorithm [14, 36] implemented in

the OpenCV function solvePnPRansac. We show that

a noticeable improvement can be achieved by replacing the

vanilla with a modern robust estimator.

3. EPOS: The Proposed Method

This section provides a detailed description of the pro-

posed model-based method for 6D object pose estimation.

The 3D object models are the only necessary training input

of the method. Besides a synthesis of automatically anno-

tated training images [27], the models are useful for appli-

cations such as robotic grasping or augmented reality.

3.1. Surface Fragments

A mesh model defined by a set of 3D vertices, Vi, and

a set of triangular faces, Ti, is assumed available for each

object with index i ∈ I = {1, . . . ,m}. The set of all 3D

points on the model surface, Si, is split into n fragments

with indices J = {1, . . . , n}. Surface fragment j of object

i is defined as Sij = {x |x ∈ Si ∧ d(x, gij) < d(x, gik)},

∀k ∈ J, k 6= j, where d(.) is the Euclidean distance of two

3D points and {gij}
n
j=1

are pre-selected fragment centers.
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The fragment centers are found by the furthest point

sampling algorithm which iteratively selects the vertex from

Vi that is furthest from the already selected vertices. The al-

gorithm starts with the centroid of the object model which

is then discarded from the final set of centers.

3.2. Prediction of 2D­3D Correspondences

Decoupling Uncertainty Due to Symmetries. The proba-

bility of surface fragment j of object i being visible at pixel

u = (u, v) is modeled as:

Pr(f=j, o=i |u) = Pr(f=j | o=i,u) Pr(o=i |u),

where o and f are random variables representing the ob-

ject and fragment respectively. The probability can be low

because (1) object i is not visible at pixel u, or (2) u corre-

sponds to multiple fragments due to global or partial sym-

metries of object i. To disentangle the two cases, we predict

ai(u) = Pr(o=i |u) and bij(u) = Pr(f=j | o=i,u) sep-

arately, instead of directly predicting Pr(f=j, o=i |u).

Regressing Precise 3D Locations. Surface fragment j of

object i is associated with a regressor, rij : R
2 → R

3,

which at pixel u predicts the corresponding 3D location:

rij(u) = (x−gij)/hij . The predicted location is expressed

in 3D fragment coordinates, i.e. in a 3D coordinate frame

with the origin at the fragment center gij . Scalar hij nor-

malizes the regression range and is defined as the length of

the longest side of the 3D bounding box of the fragment.

Dense Prediction. A single deep convolutional neural net-

work with an encoder-decoder structure, DeepLabv3+ [6],

is adopted to densely predict ak(u), bij(u) and rij(u),
∀i ∈ I , ∀j ∈ J , ∀k ∈ I ∪ {0}, where 0 is reserved for

the background class. For m objects, each represented by

n surface fragments, the network has 4mn+m+1 output

channels (m+1 for probabilities of the objects and the back-

ground, mn for probabilities of the surface fragments, and

3mn for the 3D fragment coordinates).

Network Training. The network is trained by minimizing

the following loss averaged over all pixels u:

L(u) =E
(

ā(u),a(u)
)

+
∑

i∈I
āi(u)

[

λ1E
(

b̄i(u), bi(u)
)

+

∑

j∈J
b̄ij(u)λ2H

(

r̄ij(u), rij(u)
)

]

,

where E is the softmax cross entropy loss and H is the Hu-

ber loss [30]. Vector a(u) consists of all predicted proba-

bilities ai(u), and vector bi(u) of all predicted probabilities

bij(u) for object i. The ground-truth one-hot vectors ā(u)
and b̄i(u) indicate which object (or the background) and

which fragment is visible at u. Elements of these ground-

truth vectors are denoted as āi(u) and b̄ij(u). Vector b̄i(u)

is defined only if object i is present at u. The ground-truth

3D fragment coordinates are denoted as r̄ij(u). Weights λ1

and λ2 are used to balance the loss terms.

The network is trained on images annotated with ground-

truth 6D object poses. Vectors ā(u), b̄i(u), and r̄ij(u) are

obtained by rendering the 3D object models in the ground-

truth poses with a custom OpenGL shader. Pixels outside

the visibility masks of the objects are considered to be the

background. The masks are calculated as in [25].

Learning Object Symmetries. Identifying all possible cor-

respondences for training the network is not trivial. One

would need to identify the visible object parts in each train-

ing image and find their fits to the object models. Instead,

we provide the network with only a single corresponding

fragment per pixel during training and let the network learn

the object symmetries implicitly. Minimizing the softmax

cross entropy loss E
(

b̄i(u), bi(u)
)

corresponds exactly

to minimizing the Kullback-Leibler divergence of distribu-

tions b̄i(u) and bi(u) [16]. Hence, if the ground-truth one-

hot distribution b̄i(u) indicates a different fragment at pix-

els with similar appearance, the network is expected to learn

at such pixels the same probability bij(u) for all the indi-

cated fragments. This assumes that the object poses are dis-

tributed uniformly in the training images, which is easy to

ensure with synthetic training images.

Establishing Correspondences. Pixel u is linked with a

3D location, xij(u) = hijrij(u) + gij , on every fragment

for which ai(u) > τa and bij(u)/maxnk=1
(bik(u)) > τb.

Threshold τb is relative to the maximum to collect locations

from all indistinguishable fragments that are expected to

have similarly high probability bij(u). For example, the

probability distribution on a sphere is expected to be uni-

form, i.e. bij(u) = 1/n, ∀j ∈ J . On a bowl, the probability

is expected to be constant around the axis of symmetry.

The set of correspondences established for instances of

object i is denoted as Ci = {(u,xij(u), sij(u))}, where

sij(u) = ai(u)bij(u) is the confidence of a correspon-

dence. The set forms a many-to-many relationship between

the 2D image locations and the predicted 3D locations.

3.3. Robust and Efficient 6D Pose Fitting

Sources of Outliers. With respect to a single object pose

hypothesis, set Ci of the many-to-many 2D-3D correspon-

dences includes three types of outliers. First, it includes

outliers due to erroneous prediction of the 3D locations.

Second, for each 2D/3D location there is up to one corre-

spondence which is compatible with the pose hypothesis;

the other correspondences act as outliers. Third, correspon-

dences originating from different instances of object i are

also incompatible with the pose hypothesis. Set Ci may be

therefore contaminated with a high proportion of outliers

and a robust estimator is needed to achieve stable results.

11706



Multi-Instance Fitting. To estimate poses of possibly mul-

tiple instances of object i from correspondences Ci, we use

a robust and efficient variant of the PnP-RANSAC algo-

rithm [14, 36] integrated in the Progressive-X scheme [3]1.

In this scheme, pose hypotheses are proposed sequentially

and added to a set of maintained hypotheses by the PEARL

optimization [31], which minimizes the energy calculated

over all hypotheses and correspondences. PEARL utilizes

the spatial coherence of correspondences – the closer they

are (in 2D and 3D), the more likely they belong to the same

pose of the same object instance. To reason about the spa-

tial coherence, a neighborhood graph is constructed by de-

scribing each correspondence by a 5D vector consisting of

the 2D and 3D coordinates (in pixels and centimeters), and

linking two 5D descriptors if their Euclidean distance is be-

low threshold τd. The inlier-outlier threshold, denoted as τr,

is set manually and defined on the re-projection error [36].

Hypothesis Proposal. The pose hypotheses are proposed

by GC-RANSAC [2]2, a locally optimized RANSAC which

selects the inliers by the s-t graph-cut optimization. GC-

RANSAC utilizes the spatial coherence via the same neigh-

borhood graph as PEARL. The pose is estimated from a

sampled triplet of correspondences by the P3P solver [34],

and refined from all inliers by the EPnP solver [36] followed

by the Levenberg-Marquardt optimization [45]. The triplets

are sampled by PROSAC [8], which first focuses on corre-

spondences with high confidence sij (Sec. 3.2) and progres-

sively blends to a uniform sampling.

Hypothesis Verification. Inside GC-RANSAC, the quality

of a pose hypothesis, denoted as P̂, is calculated as:

q = 1/|Ui|
∑

u∈Ui

maxc∈Ciu
max

(

0, 1− e2
(

P̂, c
)

/τ2r

)

,

where Ui is a set of pixels at which correspondences Ci are

established, Ciu ⊂ Ci is a subset established at pixel u,

e
(

P̂, c
)

is the re-projection error [36], and τr is the inlier-

outlier threshold. At each pixel, quality q considers only the

most accurate correspondence as only up to one correspon-

dence may be compatible with the hypothesis; the others

provide alternative explanations and should not influence

the quality. GC-RANSAC runs for up to τi iterations until

quality q of an hypothesis reaches threshold τq . The hypoth-

esis with the highest q is the outcome of each proposal stage

and is integrated into the set of maintained hypotheses.

Degeneracy Testing. Sampled triplets which form 2D tri-

angles with the area below τt or have collinear 3D locations

are rejected. Moreover, pose hypotheses behind the camera

or with the determinant of the rotation matrix equal to −1
(i.e. an improper rotation matrix [18]) are discarded.

1https://github.com/danini/progressive-x
2https://github.com/danini/graph-cut-ransac

Figure 3. Example EPOS results on T-LESS (top), YCB-V (mid-

dle) and LM-O (bottom). On the right are renderings of the 3D ob-

ject models in poses estimated from the RGB images on the left.

All eight LM-O objects, including two truncated ones, are detected

in the bottom example. More examples are on the project website.

4. Experiments

This section compares the performance of EPOS with

other model-based methods for 6D object pose estimation

and presents ablation experiments.

4.1. Experimental Setup

Evaluation Protocol. We follow the evaluation protocol of

the BOP Challenge 2019 [23, 26] (BOP19 for short). The

task is to estimate the 6D poses of a varying number of in-

stances of a varying number of objects in a single image,

with the number of instances provided with each image.

The error of an estimated pose P̂ w.r.t. the ground-truth

pose P̄ is calculated by three pose-error functions. The first,

Visible Surface Discrepancy, treats indistinguishable poses

as equivalent by considering only the visible object part:

eVSD = avg
p∈V̂ ∪V̄

{

0 if p ∈ V̂ ∩ V̄ ∧ |D̂(p)− D̄(p)| < τ

1 otherwise,

where D̂ and D̄ are distance maps obtained by rendering

the object model in the estimated and the ground-truth pose

respectively. The distance maps are compared with distance

map DI of test image I in order to obtain visibility masks
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V̂ and V̄ , i.e. sets of pixels where the object model is visible

in image I . The distance map DI is available for all images

included in BOP. Parameter τ is a misalignment tolerance.

The second pose-error function, Maximum Symmetry-

Aware Surface Distance, measures the surface deviation in

3D and is therefore relevant for robotic applications:

eMSSD = minT∈Ti
maxx∈Vi

‖P̂x − P̄Tx‖2,

where Ti is a set of symmetry transformations of object i
(provided in BOP19), and Vi is a set of model vertices.

The third pose-error function, Maximum Symmetry-

Aware Projection Distance, measures the perceivable devi-

ation. It is relevant for augmented reality applications and

suitable for the evaluation of RGB methods, for which esti-

mating the Z translational component is more challenging:

eMSPD = minT∈Ti
maxx∈Vi

‖proj(P̂x)− proj(P̄Tx)‖2,

where proj(.) denotes the 2D projection operation and the

meaning of the other symbols is as in eMSSD.

An estimated pose is considered correct w.r.t. pose-error

function e if e < θe, where e ∈ {eVSD, eMSSD, eMSPD} and

θe is the threshold of correctness. The fraction of annotated

object instances, for which a correct pose is estimated, is

referred to as recall. The Average Recall w.r.t. function e
(ARe) is defined as the average of the recall rates calculated

for multiple settings of threshold θe, and also for multiple

settings of the misalignment tolerance τ in the case of eVSD.

The overall performance of a method is measured by the

Average Recall: AR = (ARVSD + ARMSSD + ARMSPD) / 3.

As EPOS uses only RGB, besides AR we report ARMSPD.

Datasets. The experiments are conducted on three datasets:

T-LESS [24], YCB-V [68], LM-O [4]. The datasets include

color 3D object models and RGB-D images of VGA reso-

lution with ground-truth 6D object poses (EPOS uses only

the RGB channels). The same subsets of test images as in

BOP19 were used. LM-O contains 200 test images with

the ground truth for eight, mostly texture-less objects from

LM [20] captured in a clutered scene under various levels

of occlusion. YCB-V includes 21 objects, which are both

textured and texture-less, and 900 test images showing the

objects with occasional occlusions and limited clutter. T-

LESS contains 30 objects with no significant texture or dis-

criminative color, and with symmetries and mutual similar-

ities in shape and/or size. It includes 1000 test images from

20 scenes with varying complexity, including challenging

scenes with multiple instances of several objects and with a

high amount of clutter and occlusion.

Training Images. The network is trained on several types

of synthetic images. For T-LESS, we use 30K physically-

based rendered (PBR) images from SyntheT-LESS [51],

50K images of objects rendered with OpenGL on random

photographs from NYU Depth V2 [57] (similarly to [22]),

and 38K real images from [24] showing objects on black

background, where we replaced the background with ran-

dom photographs. For YCB-V, we use the provided 113K

real and 80K synthetic images. For LM-O, we use 67K PBR

images from [27] (scenes 1 and 2), and 50K images of ob-

jects rendered with OpenGL on random photographs. No

real images of the objects are used for training on LM-O.

Optimization. We use the DeepLabv3+ encoder-decoder

network [6] with Xception-65 [7] as the backbone. The net-

work is pre-trained on Microsoft COCO [40] and fine-tuned

on the training images described above for 2M iterations.

The batch size is set to 1, initial learning rate to 0.0001, pa-

rameters of batch normalization are not fine-tuned and other

hyper-parameters are set as in [6].

To overcome the domain gap between the synthetic train-

ing and real test images, we apply the simple technique

from [22] and freeze the “early flow” part of Xception-65.

For LM-O, we additionally freeze the “middle flow” since

there are no real training images in this dataset. The train-

ing images are augmented by randomly adjusting bright-

ness, contrast, hue, and saturation, and by applying random

Gaussian noise and blur, similarly to [22].

Method Parameters. The rates of atrous spatial pyramid

pooling in the DeepLabv3+ network are set to 12, 24, and

36, and the output stride to 8 px. The spatial resolution of

the output channels is doubled by the bilinear interpolation,

i.e. locations u for which the predictions are made are at

the centers of 4× 4 px regions in the input image. A single

network per dataset is trained, each object is represented by

n = 64 fragments (unless stated otherwise), and the other

parameters are set as follows: λ1 = 1, λ2 = 100, τa = 0.1,

τb = 0.5, τd = 20, τr = 4 px, τi = 400, τq = 0.5, τt = 100 px.

4.2. Main Results

Accuracy. Tab. 1 compares the performance of EPOS with

the participants of the BOP Challenge 2019 [23, 26]. EPOS

outperforms all RGB methods on all three datasets by a

large margin in both AR and ARMSPD scores. On the YCB-

V dataset, it achieves 27% absolute improvement in both

scores over the second-best RGB method and also outper-

forms all RGB-D and D methods. On the T-LESS and LM-

O datasets, which include symmetric and texture-less ob-

jects, EPOS achieves the overall best ARMSPD score.

As the BOP rules require the method parameters to be

fixed across datasets, Tab. 1 reports scores achieved with

objects from all datasets represented by 64 fragments. As

reported in Tab. 2, increasing the number of fragments from

64 to 256 yields in some cases additional improvements but

around double image processing time. Note that we do not

perform any post-refinement of the estimated poses, such as

[43, 38, 69, 52], which could improve the accuracy further.
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6D object pose estimation method Image
T-LESS [24] YCB-V [68] LM-O [4]

Time
AR ARMSPD AR ARMSPD AR ARMSPD

EPOS RGB 47.6 63.5 69.6 78.3 44.3 65.9 0.75

Zhigang-CDPN-ICCV19 [39] RGB 12.4 17.0 42.2 51.2 37.4 55.8 0.67

Sundermeyer-IJCV19 [59] RGB 30.4 50.4 37.7 41.0 14.6 25.4 0.19

Pix2Pose-BOP-ICCV19 [48] RGB 27.5 40.3 29.0 40.7 7.7 16.5 0.81

DPOD-ICCV19 (synthetic) [69] RGB 8.1 13.9 22.2 25.6 16.9 27.8 0.24

Pix2Pose-BOP w/ICP-ICCV19 [48] RGB-D – – 67.5 63.0 – – –

Drost-CVPR10-Edges [13] RGB-D 50.0 51.8 37.5 27.5 51.5 56.9 144.10

Félix&Neves-ICRA17-IET19 [55, 53] RGB-D 21.2 21.3 51.0 38.4 39.4 43.0 52.97

Sundermeyer-IJCV19+ICP [59] RGB-D 48.7 51.4 50.5 47.5 23.7 28.5 1.10

Vidal-Sensors18 [66] D 53.8 57.4 45.0 34.7 58.2 64.7 4.93

Drost-CVPR10-3D-Only [13] D 44.4 48.0 34.4 26.3 52.7 58.1 10.47

Drost-CVPR10-3D-Only-Faster [13] D 40.5 43.6 33.0 24.4 49.2 54.2 2.20

Table 1. BOP Challenge 2019 [23, 26] results on datasets T-LESS, YCB-V and LM-O, with objects represented by 64 surface fragments.

Top scores for image types are bold, the best overall are blue. The time [s] is the average image processing time averaged over the datasets.

Speed. With an unoptimized implementation, EPOS takes

0.75 s per image on average (with a 6-core Intel i7-8700K

CPU, 64GB RAM, and Nvidia P100 GPU). As the other

RGB methods, which are all based on convolutional neural

networks, EPOS is noticeably faster than the RGB-D and D

methods (Tab. 1), which are slower typically due to an ICP

post-processing step [56]. The RGB methods of [59, 69] are

3–4 times faster but significantly less accurate than EPOS.

Depending on the application requirements, the trade-off

between the accuracy and speed of EPOS can be controlled

by, e.g., the number of surface fragments, the network size,

the image resolution, the density of pixels at which the cor-

respondences are predicted, or the maximum allowed num-

ber of GC-RANSAC iterations.

4.3. Ablation Experiments

Surface Fragments. The performance scores of EPOS for

different numbers of surface fragments are shown in the up-

per half of Tab. 2. With a single fragment, the method per-

forms direct regression of the so-called 3D object coordi-

nates [4], similarly to [32, 48, 39]. The accuracy increases

with the number of fragments and reaches the peak at 64
or 256 fragments. On all three datasets, the peaks of both

AR and ARMSPD scores are 18–33% higher than the scores

achieved with the direct regression of the 3D object coordi-

nates. This significant improvement demonstrates the effec-

tiveness of fragments on various types of objects, including

textured, texture-less, and symmetric objects.

On T-LESS, the accuracy drops when the number of

fragments is increased from 64 to 256. We suspect this is

because the fragments become too small (T-LESS includes

smaller objects) and training of the network becomes chal-

lenging due to a lower number of examples per fragment.

The average number of correspondences increases with

the number of fragments, i.e. each pixel gets linked with

more fragments (columns Corr. in Tab. 2). At the same time,

the average number of fitting iterations tends to decrease

(columns Iter.). This shows that the pose fitting method can

benefit from knowing more possible correspondences per

pixel – GC-RANSAC finds a pose hypothesis with quality q
(Sec. 3.3) reaching threshold τq in less iterations. However,

although the average number of iterations decreases, the av-

erage image processing time tends to increase (at higher

numbers of fragments) due to a higher computational cost of

the network inference and of each fitting iteration. Setting

the number of fragments to 64 provides a practical trade-off

between the speed and accuracy.

Regression of 3D Fragment Coordinates. The upper half

of Tab. 2 shows scores achieved with regressing the precise

3D locations, while the lower half shows scores achieved

with the same network models but using the fragment cen-

ters (Sec. 3.1) instead of the regressed locations. Without

the regression, the scores increase with the number of frag-

ments as the deviation of the fragment centers from the true

corresponding 3D locations decreases. However, the accu-

racy is often noticeably lower than with the regression. With

a single fragment and without the regression, all pixels are

linked to the same fragment center and all samples of three

correspondences are immediately rejected because they fail

the non-collinearity test, hence the low processing time.

Even though the regressed 3D locations are not guaran-

teed to lie on the model surface, their average distance from

the surface is less than 1mm (with 64 and 256 fragments),

which is negligible compared to the object sizes. No im-

provement was observed when the regressed locations were

replaced by the closest points on the object model.
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n
T-LESS [24] YCB-V [68] LM-O [4]

AR ARMSPD Corr. Iter. Time AR ARMSPD Corr. Iter. Time AR ARMSPD Corr. Iter. Time

With regression of 3D fragment coordinates

1 17.2 30.7 911 347 0.97 41.7 52.6 1079 183 0.56 26.8 47.5 237 111 0.53

4 39.5 57.1 1196 273 0.95 54.4 66.1 1129 110 0.52 33.5 56.0 267 58 0.51

16 45.4 62.7 1301 246 0.96 63.2 72.7 1174 71 0.51 39.3 61.3 275 54 0.50

64 47.6 63.5 1612 236 1.18 69.6 78.3 1266 56 0.57 44.3 65.9 330 53 0.49

256 45.6 59.7 3382 230 2.99 71.4 79.8 1497 56 0.94 46.0 65.4 457 70 0.60

Without regression of 3D fragment coordinates

1 0.0 0.0 911 400 0.23 0.0 0.0 1079 400 0.17 0.0 0.0 237 400 0.24

4 3.2 8.8 1196 399 0.89 3.0 7.4 1129 400 0.53 5.2 15.2 267 390 0.50

16 13.9 37.5 1301 396 1.02 16.1 36.4 1174 400 0.61 17.1 47.7 275 359 0.55

64 29.4 55.0 1612 380 1.35 41.5 66.6 1266 383 0.73 31.0 62.3 330 171 0.55

256 43.0 58.2 3382 299 2.95 64.5 77.7 1497 206 0.88 43.2 64.9 457 72 0.58

Table 2. Number of fragments and regression. Performance scores for different numbers of surface fragments (n) with and without

regression of the 3D fragment coordinates (the fragment centers are used in the case of no regression). The table also reports the average

number of correspondences established per object model in an image, the average number of GC-RANSAC iterations to fit a single pose

(both are rounded to integers), and the average image processing time [s].

RANSAC variant Non-minimal solver
T-LESS [24] YCB-V [68] LM-O [4]

Time
AR ARMSPD AR ARMSPD AR ARMSPD

OpenCV RANSAC EPnP [36] 35.5 47.9 67.2 76.6 41.2 63.5 0.16

MSAC [64] EPnP [36] + LM [45] 44.3 61.0 63.8 73.7 39.7 61.7 0.49

GC-RANSAC [2] DLS-PnP [19] 44.3 59.5 67.5 76.1 35.6 53.9 0.53

GC-RANSAC [2] EPnP [36] 46.9 62.6 69.2 77.9 42.6 63.6 0.39

GC-RANSAC [2] EPnP [36] + LM [45] 47.6 63.5 69.6 78.3 44.3 65.9 0.52

Table 3. RANSAC variants and non-minimal solvers. The P3P solver [34] is used to estimate the pose from a minimal sample of 2D-3D

correspondences. The non-minimal solvers are applied when estimating the pose from a larger-than-minimal sample. The reported time [s]

is the average time to fit poses of all object instances in an image averaged over the datasets.

Robust Pose Fitting. Tab. 3 evaluates several methods

for robust pose estimation from the 2D-3D correspon-

dences: RANSAC [14] from OpenCV, MSAC [63], and

GC-RANSAC [2]. The methods were evaluated within the

Progressive-X scheme (Sec. 3.3), with the P3P solver [34]

to estimate the pose from a minimal sample, i.e. three cor-

respondences, and with several solvers to estimate the pose

from a non-minimal sample. In OpenCV RANSAC and

MSAC, the non-minimal solver refines the pose from all in-

liers. In GC-RANSAC, it is additionally used in the graph-

cut-based local optimization which is applied when a new

so-far-the-best pose is found. We tested OpenCV RANSAC

with all available non-minimal solvers and achieved the

best scores with EPnP [36]. The top-performing estima-

tion method on all datasets is GC-RANSAC with EPnP fol-

lowed by the Levenberg-Marquardt optimization [45] as the

non-minimal solver. Note the gap in accuracy, especially on

T-LESS, between this method and OpenCV RANSAC.

5. Conclusion

We have proposed a new model-based method for 6D ob-

ject pose estimation from a single RGB image. The key idea

is to represent an object by compact surface fragments, pre-

dict possibly multiple corresponding 3D locations at each

pixel, and solve for the pose using a robust and efficient

variant of the PnP-RANSAC algorithm. The experimental

evaluation has demonstrated the method to be applicable to

a broad range of objects, including challenging objects with

symmetries. A study of object-specific numbers of frag-

ments, which may depend on factors such as the physical

object size, shape or the range of distances of the object

from the camera, is left for future work. The project web-

site with source code is at: cmp.felk.cvut.cz/epos.

This research was supported by Research Center for Informatics (project
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Michel, Martin Sundermeyer, Jiřı́ Matas, and Carsten Rother.

BOP Challenge 2019. https://bop.felk.cvut.cz/

challenges/bop-challenge-2019/. 2, 3, 5, 6, 7
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[28] Tomáš Hodaň, Xenophon Zabulis, Manolis Lourakis, Štěpán
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