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Nowadays, IoT technology is used in various application domains, including the healthcare, where sensors and IoT enabled medical
devices exchange data without human interaction to securely transmit collected sensitive healthcare data towards healthcare
professionals to be reviewed and take proper actions if needed. The IoT devices are usually resource-constrained in terms of
energy consumption, storage capacity, computational capability, and communication range. In healthcare applications, many
miniaturized devices are exploited for healthcare data collection and transmission. Thus, there is a need for secure data
aggregation while preserving the data integrity and privacy of the patient. For that, the security, privacy, and aggregation of
health data are very important aspects to be considered. This paper proposes a novel secure data aggregation scheme called “An
Efficient and Privacy-Preserving Data Aggregation Scheme with authentication for IoT-Based Healthcare applications”
(EPPDA). EPPDA is based to verification and authorization phase to verify the legitimacy of the nodes that need to join the
process of aggregation. EPPDA, also, uses additive homomorphic encryption to protect data privacy and combines it with
homomorphic MAC to check the data integrity. The major advantage of homomorphic encryption is allowing complex
mathematical operations to be performed on encrypted data without knowing the contents of the original plain data. The
proposed system is developed using MySignals HW V2 platform. Security analysis and experimental results show that our
proposed scheme guarantees data privacy, messages authenticity, and integrity, with lightweight communication overhead and
computation.

1. Introduction

The IoT is a paradigm that is rapidly gaining ground in the
modern wireless telecommunications scenarios. The basic
idea behind this concept is that the ubiquitous presence
around us of a variety of things or objects—such as RFID,
sensors, actuators, cell phones, which able to interact with
each other to achieve common goals through unique
addressing schemes [1]. The IoT can promote the develop-
ment of applications in many different fields (e.g., smart
buildings, automation, industrial automation, medical aids,
mobile healthcare, intelligent energy management, and traffic

management) [2]. These applications can be used to generate
big data to provide new services to citizens, businesses, and
public administrations to make smart decisions [3]. More
in-depth understanding of IoT with its applications, chal-
lenges, and open research issues is discussed in [1–7]. Many
benefits are provided by IoT technologies to the healthcare
field, and the resulting applications can be grouped mainly
in the tracking of objects and people (staff and patients);
identification and authentication of persons; automatic data
collection and detection [8]. Figure 1 shows the typical struc-
ture of the healthcare surveillance system using IoT. The sen-
sors are deployed in the human body to monitor parameters
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like temperature, heart rate, and blood pressure. The values
read from the sensors are transmitted to the server where
physicians can access this data. Therefore, healthcare remote
monitoring solutions could potentially reduce medical costs
across the country [9].

IoT-based healthcare systems are extremely vulnerable to
be attacked for several reasons. First, system components are
mostly unattended, and thus, it is easy to attack them physi-
cally. Second, most communications are wireless, which
makes eavesdropping more vulnerable than wired scenarios
[10]. Finally, most IoT components are characterized by
low capacities in terms of energy and computing resources;
therefore, these cannot implement complex schemes sup-
porting security. According to Health Insurance Portability
and Accountability (HIPAA) [11], it is mandatory to protect
all sensitive medical data relating to a patient’s health. Data
aggregation is a process of collecting data and aggregating it
from the sensor node, which can be considered as one of
the essential procedures for not only removing redundant
data but also saving energy [12, 13]. However, data aggrega-
tion scheme faces many security challenges, which should be
carefully addressed [10–20]. Sensor nodes are often deployed
in hostile environments with low bandwidth and unsecured
communication channels [21]. This can lead to malicious
modification of data and tampering with data, resulting in
the violation of a user’s privacy [22, 23].

To solve the problems mentioned above, this paper pro-
poses a novel secure data aggregation scheme based on
homomorphic primitives, called Secure and Privacy Preserv-
ing Data Aggregation (EPPDA) designed to reduce the
requirements of existing security protocols. EPPDA is based
on the verification and authorization phase to verify the legit-
imacy of the nodes want to join the process of aggregation. In
our proposed work, we distinguish different types of health

data with different characteristics, including Emergency
Data, Vital Health Data and Regular Health Data. The emer-
gency data considers as the highest priority data, where it
should be successfully delivered to theMedical Server as soon
as required. The vital health data are the requested data by
doctors for continuous monitors a patient’s condition. The
regular data are not for emergency data and do not presents
urgent delivery requirements. The Medical Server receives
periodical updates.

To the best of our knowledge, the literature shows that
detection of attacks can only be performed after reception
of aggregate. Thus, this detection is inefficient and too late;
besides, it may result in significant loss in terms of computa-
tion and communication costs as well as the privacy of
patients’ information. Therefore, this proposal uses a signa-
ture scheme based on Chebyshev polynomials. By this pro-
cess, sensor devices, aggregator, and medical server are
mutually authenticated before the actual health data trans-
mission. The confidentiality of data is mandatory in data
aggregation within healthcare-based IoT. It ensures that the
data cannot be accessed by unauthorized person while they
flow in the network. The homomorphic encryption algo-
rithm which can protect end-to-end data confidentiality will
be applied in this protocol. The proposed EPPDA uses addi-
tive homomorphic encryption to protect data privacy and
combines it with homomorphic MAC to check the data
integrity. Security analysis and performance evaluation based
on experimental results of the proposed work is presented.

The remainder of this paper is organized as follows: The
related works are investigated in Section 2. Network model
and design goals are presented in Section 3. In Section 4,
we described in detail the solution, followed by the security
analysis and performance evaluation in Sections 5 and 6,
respectively. Finally, Section 7 concluded this paper.
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Figure 1: IoT-based healthcare monitoring architecture.
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2. Related Work

Security is one of the important factors that must be consid-
ered when developing IoT-based healthcare systems [5, 6].
This section describes the popular research projects on secure
data aggregation of IoT-based healthcare applications. Then,
we used this review to highlight the research gaps and report
own research motivations. Table 1 shows all techniques that
been discussed above and summarized it in.

Authors in [15] present a health data aggregation
scheme, namely, a priority-based health data aggregation
with privacy preservation for cloud assisted WBANs
(PHDA). It is used to improve the efficiency of aggregation
between different types of health data. Based on different data
priorities, adjustable transfer strategies that can be selected to
transmit user’s health data to cloud servers at reasonable
communication costs. In addition, PHDA can resist tam-
pering attacks and achieve a desirable delivery rate with
reasonable communication costs and reduced delivery time
for data in different priorities. But at the same time, it
reduces the communication overload. Indeed, their system
was not tolerant of failure in the event of failure of users
or cloud servers, nor is it resistant to different types of
attacks.

In [16], an efficient and privacy-friendly data aggregation
known as Fault Tolerance Multifunctional Health and Pri-
vacy Preserving Data Aggregation for Cloud Assisted
WBANs (PPM-HAD) is introduced. The PPM-HAD is
aimed at addressing the need for a fault-tolerant cloud frame-
work to manage sensitive user health data in a large-scale net-
work. The aggregation of temporal and spatial statistical data
on health is taken into account. In other words, the PPM-
HDA mechanism preserves not only differential confidenti-
ality for additive aggregations, such as summation and vari-
ance aggregations, but also nonadditive aggregations, such
as min/max, median, percentile, and histogram. The additive
aggregation feature uses the Boneh-Goh Nissim Encryption
System, which is a public key encryption scheme used to pro-
tect user privacy. The PPM-HDA scheme ensures that the
remaining uncompromising cloud servers can decrypt the
aggregated data, which is collected by the healthcare sensors.
The prefix membership check scheme is used to reduce com-
putational overhead by changing the question of whether a
data item belongs to a range of data or not to a few check
questions whether a numeric value is equal or not.

Another approach proposed by Othman et al. in [17] was
named Lightweight Secure Data Aggregation Scheme in
Healthcare using IoT (LSDA). This new scheme is character-
ized by the use of homomorphic encryption. In addition,
each aggregator should check all the packets received from
its member nodes, which can filter out the false packets in
the network, and thus, the nodes can save power in the trans-
mission phase. The LSDA scheme has three phases: encryp-
tion, authentication and aggregation, and decryption and
verification. By using this LSDA, many advantages can be
obtained, such as reduced power consumption as well as
improved bandwidth utilization and data privacy. Indeed,
the limit of the approach is that it does not consider different
types of health data.

In [18], Othman et al. present an end-to-end secure data
aggregation scheme, namely, Robust and Efficient Secure
Data Aggregation Scheme in Healthcare Using IoT
(RESDA). The main objective of the proposed scheme is
the security of the data aggregation to be achieved without
introducing significant overheads on the sensors limited by
the battery. The proposed approach uses homomorphic pri-
vacy encryption. The proposed RESDA program meets sev-
eral security requirements, including confidentiality,
authenticity, and integrity. The results of the performance
appraisal demonstrated the feasibility and advantages of the
proposed system as well as the performance gains. Indeed,
the limit of the approach is that it does not take into account
different types of health data.

Liu et al. [19] proposed a new contribution, namely, a
Reliable and Energy-Efficient Communication System based
on trust for remote monitoring of patients in body-zone
wireless networks (ERCS). Is a trust-based communication
scheme to ensure the reliability and confidentiality of the
WBAN. To ensure reliability, a cooperative communication
approach is used, while for the preservation of confidential-
ity, a cryptographic mechanism is used. The cooperative
strategy was adopted to create trust between the biosensors
in order to make the network more reliable. Additionally,
the trust was generated at the remote medical server by
applying the trust certificate. The performance evaluation
has shown that the proposed system outperforms previously
offered advanced systems in terms of confidence, energy effi-
ciency, and reliability.

Researchers in [20] proposed a novel contribution,
namely, an efficient and provable secure Certificate-Based
Combined Signature, Encryption and Signcryption Scheme
for Internet of Things in Mobile Health System (CBCSES).
The novelty of this scheme lies in the fact that it offers the
functions of digital signature and encryption simultaneously
and individually. To show the effectiveness of the proposed
scheme, detailed security analyzes, i.e., indistinguishable
under chosen adaptive ciphertext attacks and tamper-proof
under selected adaptive message attacks, and comparisons
with relevant existing schemes are performed. The results
obtained confirm the superiority of the scheme in terms of
computation and communication costs with enhanced
security.

3. System Model and Design Objectives

In this section, we formalize the system model, the adversary
model, and the design goals of the EPPDA scheme.

3.1. Network Model. The proposed architecture is shown in
Figure 2, where it can be utilized in a hospital and by even
a located remotely patient. The architecture model of our
proposed scheme comprises three architectural components,
namely, a Medical Sensors Nodes, an Aggregator, and aMed-
ical Server.

(i) Medical Sensor Nodes: The patients are equipped
through wearable devices that were forming a Wire-
less Medical Sensors (MSs). These sensors are on
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Table 1: Summary of techniques.

Technique
and
reference

Focus area(s) of the paper Strengths Weakness

PHDA [15]
(i) Priority-based health data aggregation.
(ii) Paillier cryptographic technique

(i) Low energy consumption
(ii) Ensure data privacy and integrity

(i) Asymmetric cryptosystem
is computationally
expensive

PPM-HAD
[16]

(i) Privacy-preserving and multifunctional health
data aggregation

(i) High fault tolerant
(ii) Ensure data privacy and integrity

(i) Not verified in a real-life
environment

(ii) High traffic load

LSDA [17]
(i) Secure data aggregation in healthcare using IoT
(ii) Homomorphic encryption and MAC.
(iii) Packet checking at aggregator

(i) Evaluation results using an
experimental network of medical
sensors

(ii) Robust communication
(iii) Efficient communication between

doctors and patients

(i) ECEG is power hungry
cryptography

(ii) Low fault tolerant
(iii) Can be vulnerable to

impersonation attack

RESDA [18]
(i) Secure data aggregation in healthcare using IoT
(ii) Homomorphic encryption and MAC
(iii) No packet checking at aggregator

(i) Evaluation results using an
experimental network of medical
sensors

(ii) Providing strong privacy guarantees

(i) ECEG is power hungry
cryptography

(ii) Easy target for high-end
attacks

ERCS [19]
(i) Trust-based communication scheme to ensure

reliability and privacy of WBAN
(ii) Cooperative communication approach

(i) Increases service delivery ratio,
reliability, and trust with reduced
average delay

(ii) Guaranteeing the confidentiality of
sensitive medical data

(i) High traffic load
(ii) Not verified in a real-life

environment
(iii) Energy consumption

CBCSES
[20]

(i) Efficient and provable secure scheme for IoT in
Mobile health system

(ii) Certificate-based combined signature,
encryption and signcryption

(i) Securing the patients’ sensitive data
(ii) Providing efficient performance in

terms of energy consumption,
frequency and cost.

(i) Not verified in a real-life
environment

(ii) Communication cost is
high.

(iii) Not considering
heterogeneity of sensors

Proposed
EPPDA

(i) Secure and energy-efficient data aggregation in
healthcare using IoT with malicious node
detection.

(ii) Homomorphic encryption and MAC
(iii) Packet checking at aggregator
(iv) Priority-based health data aggregation

(i) Evaluation results using an
experimental network of medical
sensors

(ii) Ensure data privacy and integrity
(iii) Efficient communication between

doctors and patients
(iv) Malicious node detection
(v) Considering heterogeneity of

sensors

(i) Can have high storage
overhead to store large
number of keys

Medical sensors

Aggregator

Doctor

Medical server

Figure 2: The proposed architecture for IoT-based healthcare.
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human body to monitor body functions and the sur-
rounding environment. Each sensor node is inte-
grated with biosensors which are body
temperature, electromyography, electrocardiogra-
phy, blood pressure, pulsi-oximeter, and electroen-
cephalography. The Medical Sensors are
responsible for reporting the sensed health data to
the Aggregator.

(ii) Aggregator: Is a special sensor node with a superior
certain ability to calculation and communication
range. Aggregation nodes, as the name suggests, will
aggregate the data using aggregation functions. The
Aggregator collects the individual health data and
check the legitimacy of the Medical Sensors wishing
to communicate with it to prevent the adversary
nodes from joining the network, then compute the
aggregation on them. The patient’s mobile device is
used as the Aggregator. The Aggregator works as a
router between the Medical Sensor nodes and the
Medical Server.

(iii) Medical Server: The Medical Server includes health-
care providers (e.g., doctors, physicians, nurses, and
researchers). It possesses almost infinite storage
capability and the computation of the resources.
The Medical Server has the computation abilities to
execute the calculations over the stored data includ-
ing disease learning and prediction. We consider a
scenario where the medical server can be accessed
by the trusted authorities and the concerned doc-
tor/emergency medical team. On receiving the
patient’s health data, the doctor can get real-time sit-
uational awareness.

3.2. Adversary Model of the EPPDA Scheme. An algorithm is
considered to provide security of data aggregation to provide
confidentiality, integrity, and authenticity as the basic
requirements that can be targeted by attackers.

(i) Category A: Attacks against Confidentiality.
Attackers always attempt to access keys by launching
one of the following attacks such as known plaintext
attack, chosen ciphertext attack, and chosen plain-
text attack. Once the attacker gains control over the
key, the aggregated data can be decrypted.

(ii) Category B: Attack on Integrity. Attackers success-
fully compromises one or more aggregator or sensor
nodes, which may lead to either drop some data or
change aggregated result with the intention of prop-
agating false aggregate to the Medical Server (e.g.,
replay attack).

(iii) Category C: Attack on Authenticity. There are two
types of attacks that can form threat against authen-
ticity: (i) attacker pretends to be Medical Server and
injects query into the network; (ii) attacker pretends
to be a genuine sensor node or aggregator and injects
false data into the network.

3.3. Design Objectives of the EPPDA Scheme. The following
design goals are to be achieved.

(i) High Efficiency: The proposed aggregation scheme
should be efficient, where the computational costs
at IoT devices should be as less as possible, while
the communication overheads should also be mini-
mal in order to conserve energy and prolong the net-
works lifetime.

(ii) Security: The proposed aggregation scheme should
resist against the false data injection attack from
external attackers, where the proposed system must
filter false data locally at the Aggregator. In the
IoT-Based Healthcare Applications, the security ser-
vices are obligatory desired to prevent the unautho-
rized nodes to access to the sensitive data, which
leads to data confidentiality. Further, data integrity
and authentication are considered to prevent attacks
that target the integrity of sensitive data and to
detect impersonation.

(iii) Robustness: A security mechanism must guarantee
the availability of packet even with the presence of
some compromised or defective nodes.

4. Proposed EPPDA Solution

In this section, we present the EPPDA protocol for secure
data aggregation in healthcare-based IoT, which mainly con-
sists of the following five parts: (1) setup and key generation
phase; (2) encryption-sign data; (3) verification and authori-
zation phase; (4) data aggregation phase with priority; and
(5) decryption and verification phase. The flowchart for the
proposed solution process is shown in Figure 3.

4.1. Setup and Key Generation Phase. For each patient, put-
ting an admitted-on sensor-based monitoring can rely on
the recommendation of the doctor. According to the patient’s
health data needs, the medical personnel places the medical
sensors on the patient’s body. Each patient must be registered
into the Medical Server prior attaching any sensors. When
the hardware configuration ends, the Medical Server sends
a demand key information from each sensor. Then, after
receiving the request by the Aggregator, the Medical Sensor
nodes process the request and send the key parameter as a
broadcast message toward the Aggregator.

For each Medical Sensor, the ID and the private key are
generated and sent to the Aggregator, which can be denoted
as IDMS and MSPvkey, respectively. The private key of the sen-
sor node is created using the Diffie-Hellman key exchange
[24]. While the Aggregator receives the sensor node ID and
the private key and stores it. On the other hand, the Aggrega-
tor generates the IDAgg and AggPvkey, before transferring the
generated info to the Medical Server. Then, the Medical
Server receives the ID and private key of Aggregator and
stores it. Table 2 shows symbol description of the proposed
EPPDA solution, whereas Figure 4 presents the key exchange
model of the setup and key generation phase of the proposed
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EPPDA. The pseudocode of the setup and key generation
phase can be seen in Algorithm 1.

4.2. Encryption and Signing Phase. The health data comes
from various devices, which in turn leads to large volume of
data records [15]. In general, we differentiate different types
of health data with different characteristics, including emer-
gency situation, vital health data, and regular health data.
The Medical Sensors sensing the physiological parameters
(e.g., blood pressure, glucose level), where for each parame-
ter, the normal range is recorded in a table. For most emer-
gency situations, some alerts will be generated if a patient is
in danger. For example, the blood pressure readings suddenly
exceed 180/120mmHg, which may be signs of organ damage
that requires immediate medical attention. Hence, an alert
message should be sent to a doctor immediately. The emer-

gency situations are the highest priority data; thus, it should
be successfully delivered to the Medical Server as soon as
need be. The vital health data are the requested data by doc-
tors for continuous monitors of a patient’s condition. There
are many diseases that can be diagnosed and controlled
through regular monitoring of these medical data, where reg-
ular data are not for emergency situation and do not need
urgent delivery requirements. The Medical Server receives
periodical updates, in order to validate the data. If a patient’s
data falls within the reference interval, no emergency alert
will be sent to doctors. However, in case of any abnormalities
of the data, the Medical Server sends a notification to doctors
for actions to be taken.

The confidentiality of data is mandatory in data aggrega-
tion in healthcare-based IoT. It ensures that the data cannot
be accessed by unauthorized person while they flow in the
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Figure 3: Concrete sequence flow diagram of the EPPDA.
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network. The homomorphic encryption algorithm which can
protect end-to-end data confidentiality will be applied in this
protocol. The major advantage of homomorphic encryption
is allowing complex mathematical operations to be per-
formed on encrypted data without knowing the contents of
the original plain data [25]. As calculations are performed
on encrypted texts, the data privacy and confidentiality are
protected [26]. Therefore, we can ensure that the content
exchanged between Medical Sensors and Medical Server is
protected against any modification by malicious or unautho-
rized users. Moreover, to allow the Medical Server determin-
ing the evil data, we use a homomorphic Message
Authentication Code (MAC) scheme, to provide data integ-
rity. MAC ensures that received message is from the authen-
ticated source and it is not tempered by any third-party
during transmission [26]. The proposed solution can guaran-
tee data freshness in time and value. In each exchange of
encrypted data between of the proposed network devices,
we send a nonce N , which is an implicit sequence number
that is used only once for data freshness. Algorithm 2
describes the algorithm that executed by the Medical Sensor
for encryption and signing the collected data.

In the literature, attack detection can only be performed
after receiving aggregate, which is considered as an inefficient
detection, due to lateness of detection, significant loss in
terms of computation and communication costs, and privacy
information of patients [27, 28]. Hence, this proposed solu-
tion uses a scheme that allows early detection of any attack,

which aims to verify the legitimacy communication between
of the proposed network devices. In this regard, the proposed
solution also presents a verification and authorization phase
using a signature scheme based on Chebyshev polynomials
[29–31]. The first verification is between Medical Sensors
and Aggregator, and for this, a signature is created by the
Medical Sensor. In the first order, the Medical Sensor creates
two different messages as, S1 and S2 and the Chebyshev poly-
nomial factor. The message S1 is generated by encrypting the
private key of the Medical Sensor, then get modulated with
the random number RN1. Message S1 is expressed as

S1 = E MSPvkey
� �

mod RN1: ð1Þ

Message S2 is computed as follows. The sensor node IDMS

is concatenated with the Chebyshev polynomial, which is
concatenated with the message S1. The hashing function is
applied to the concatenated factor to generate the message
S2.

S2 = h IDMS//M//S1ð Þ, ð2Þ

where M denotes Chebyshev polynomial and h denotes the
hashing function. The Chebyshev polynomial factor M gen-
erated at the Medical Sensor is expressed as

M = 8b4 − 8b2 + 1: ð3Þ

The EX-OR operation is applied with the private key of
the Medical Sensor and the hashing function of the node
IDMS to generate the factor b, where the term b is computed
as

b =MSPvkey ⊕ h IDMSð Þ: ð4Þ

Finally, the signature α is generated using the messages S1
and S2, respectively. Therefore, the signature generated at the
Medical Sensor is denoted as

α = S1, S2ð Þ: ð5Þ

The signature α generated by the Medical Sensors is for-
warded and stored in the Aggregator to perform the verifica-
tion phase. The messages that is stored in the Aggregator is
denoted as S∗1 and S∗2 , respectively. Figure 5 shows the differ-
ent stages of the encryption and signing phase in the pro-
posed EPPDA. The pseudocode of the generated signature
α stage can be seen in Algorithm 3.

Send

Send

Aggregator

Medical server

IDMS, MSPvkey

IDAgg, MSPvkey

IDMS
⁎, MSPvkey

⁎

IDAgg
⁎, MSPvkey

⁎

Figure 4: Setup and key generation phase of the proposed solution.

Generate sensor ID: IDMS

Generate private key of Medical Sensor: MSPvkey
Send the IDMS and MSPvkey to Aggregator
Generate ID of Aggregator: IDAgg

Generate private key of Aggregator: AggPvkey
Send the IDAgg and AggPvkey to Medical Server

Algorithm 1: Setup and key generation phase.

Table 2: Symbol description of the proposed EPPDA solution.

Symbol Description

IDMS Medical sensor ID

mi Health data

IDAgg Aggregator ID

MSPvkey Private key of medical sensor

AggPvkey Private key of aggregator

∗ Stored

S1, S2 Messages exchange

RN1, RN 2 Random numbers

PKMS Public key of medical server

SKMS

Secret key shared between the
medical sensor and medical server.
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4.3. Verification and Authorization Phase. Authentication is
a process of verifying the legitimacy of the nodes wanting
to join the process of aggregation. This local authentication
phase is aimed at verifying the legitimacy of the Medical Sen-
sors wishing to communicate with the Aggregator. The Med-
ical Sensor and Aggregator establish interaction for local
verification to prevent the adversary nodes from joining the
network. The Aggregator calculates S∗1 and S∗2 , and check
the legality of the Medical Sensors; if it passes the verification,
the Aggregator authenticates the legality of the Medical Sen-
sors, and receives the related health data successfully. Con-
versely, if the Medical Sensors is malicious and
unauthorized, the Aggregator rejects the Medical Sensors
from joining his network. The Aggregator receives the signa-
ture generated by the Medical Sensors and stores it to per-
form the verification process. The messages S1 and S2 that
are stored in the Aggregator are specified as

S∗1 = E MS∗Pvkey mod RN1

� �

,

S∗2 = h ID∗
MS//M

∗//S∗1ð Þ:

ð6Þ

The Chebyshev polynomial will be sent to the Aggregator
and get stored for further processing. Thus, the Chebyshev
polynomial that is received by the Aggregator is specified as

M∗ = 8b4 − 8b2 + 1: ð7Þ

Here, the term m is expressed as

b =MS∗Pvkey ⊕ h ID∗
MSð Þ: ð8Þ

If the signature received by the Aggregator and the signa-
ture generated by the Medical Sensor are equal, S1 = S∗1 and
S2 = S∗2 , then the signatures are well verified. After the verifi-
cation of the legitimacy of the Medical Sensors is completed,
the Aggregator sends a demand to the Medical Server to
request the Aggregation authorization. So, the Aggregator

generates the message S3, which can be specified as

S3 = h IDAgg//RN2

� �

⊕AggPvkey: ð9Þ

The message S3 generated at Aggregator is sent to the
Medical Server and stored as S∗3 . The message S∗3 is expressed
as

S∗3 = h ID∗
Agg//RN

∗
2

� �

⊕AggPvkey: ð10Þ

Once the Medical Server receives S3, the S
∗
3 gets verified

with the message S3. If S3 = S∗3 then, the Medical Server gen-
erates an Aggregation Authorization messages SAA for
Aggregator. Conversely, if the Aggregator is malicious and
unauthorized, the Medical Server rejects the Aggregator from
joining his network. By this process, the sensor devices, gate-
way device, and medical server are mutually authenticated
before the actual heath data transmission. Next, the Medical
Server sends the message SAA to Aggregator. Then, the
Aggregation phase is activated. Figure 6 shows the system
model of the verification phase, while the pseudocode of the
verification phase can be seen in Algorithm 4.

4.4. Data Aggregation Phase with Priority. After receiving the
Aggregation an authorization message from the Medical
Server, the Aggregator runs the Data Aggregation phase. In
the proposed EPPDA solution, the data aggregation phase
is based on priority of data. In our proposed solution, the
ciphertexts for each data priorities cannot be combined.
Whereas only the ciphertext from the same data priority
can be combined. The pseudocode of the Data Aggregation
phase can be seen in Algorithm 5.

4.5. Decryption and Verification Phase. In this phase, after
receiving all data packets (e.g., aggregated data), the medical
server invokes the decryption and verification processes. The
medical server decrypts the aggregated ciphertext and checks
the end-to-end integrity. If the verification holds, the aggre-
gated data will be accepted, otherwise rejected. Then, the data
can be accessed by different entities, including hospital,

Input: PKMS, SKMS, mi, Nonce
Output :Ci, MACi

(1) Map mi into point of the elliptic curve Pi
(i) If Emergency Situation, the Medical Sensor calculate and send to the Aggregator:

(a) Compute: CES
i = ððPi + SKMS ∗ PKMSÞkIDMSkN ikTimekLocationÞ

(b) Compute: MACES
i =HMAC ðCES

i , SKMSÞ
(ii) If Vital Health data, the Medical Sensor calculate and send to the Aggregator:

(a) Compute: CVD
i = ððPi + SKMS ∗ PKMSÞkIDMSkN ikTimeÞ

(b) Compute: MACVD
i =HMAC ðCVD

i , SKMSÞ
(iii) If Regular Health data, the Medical Sensor calculate and send to the Aggregator:

(a) Compute : CRD
i = ððPi + SKMS ∗ PKMSÞkIDMSkN ikTimeÞ

(b) Compute : MACRD
i = HMAC ðCRD

i , SKMSÞ

(2) Send (CES
i , MACES

i ), (CVD
i , MACVD

i ), and (CRD
i , MACRD

i ) to Aggregator

Algorithm 2: Encrypt and Signing the collected data.
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doctors, insurance companies. The pseudocode of the Data
Decryption and Verification phase can be seen in
Algorithm 6.

5. Security Analysis

This section discusses the security strength of our proposed
EPPDA scheme, which is aimed at achieving confidentiality,
authenticity, and end-to-end privacy on patient’s medical
health data.

(i) End-to-End Data Confidentiality: To protect the data
patient’s privacy, the data should be transmitted
securely. The data confidentiality is the most impor-
tant factor to be considered when designing the
healthcare security architecture using the IoT. In the
proposed EPPDA scheme, the collected sensor’s data
are encrypted using the homomorphic encryption
algorithm. Thus, the Aggregator or attacker has no
access to the data even if the Aggregator is compro-
mised physically or virtually since the major advan-
tage of homomorphic encryption is allowing
operations to be performed on encrypted data with-
out knowing the contents of the original data. In the
following, we analyse how our scheme is secured

against attacks launched by an adversary of category
A.

(a) Eavesdrop Attack: In our scheme, the sensing data
are encrypted under the public key of the Medical
Server during the transmission process. After
receiving packets from its member nodes, an
Aggregator does not decrypt messages but only
aggregates them. Only the Medical Server can
decrypt messages to obtain the sensing data. Even
though an adversary eavesdrops on a transmitted
packet, he has no way to decrypt the ciphertext
without the private key of the base station. Hence,
the privacy is maintained end-to-end.

To conclude, our proposed scheme provides a good level
of confidentiality for patient’s health data (e.g., protects users’
privacy of data patient’s). The security proofs of the homo-
morphic encryption are provided in [25, 26].

(ii) End-to-End Data Integrity: To guarantee the integ-
rity of the health data, our scheme allows the Medical
Server to check whether the aggregation is done cor-
rectly since the data can be perceived at any time. We
claim that the proposed scheme provides data integ-
rity and originality. As previously described and to
maintain data integrity, each Medical Sensor com-
putes the HMAC for its encrypted measurement
and sends the result to the Aggregator. The Aggrega-
tor calculates the aggregates on encrypted data with-
out knowing the contents of the original data. The
security proof of HMAC is provided in [26]. Hence,
an adversary will be unable to generate a valid
HMAC unless he/she knows the secret key that is
shared between the Medical Sensors and the Medical
Server. Even if the attacker successfully modifies the

Send �, Ci and MACi

S1 = E (MSPvkey)mod RN1

M = 8b4–8b2+1

Medical sensor

Aggregator

� = (S1, S2)

S2 = h (IDMS//M//S1)

m = MSPvkey⊕ h (IDMS)

Compute Ci and MACi

Figure 5: Encryption and signing stages of the proposed solution.

Created the S1 and S2
S1 = EðMSPvkeyÞ mod RN1

S2 = hðIDMS//M//S1Þ
Generate the signature α = ðS1, S2Þ
The Medical Sensors Send α to Aggregator

Algorithm 3: Generate the signature α.
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SAA

Send S3

M
⁎
 = 8b

4–8b
2+1

Aggregator

Medical server

S
⁎

1
 = E (MS

⁎

Pvkey)mod RN1

S
⁎

2
 = h (ID

⁎

MS
//M⁎//S

⁎

1
)

b = MS
⁎

Pvkey
⊕h (ID

⁎

MS
)

IF S1 = S
⁎
1 and S2 = S

⁎
2

S3 = h (IDAgg//RN2) ⊕ AggPvkey

S
⁎
3 = h (ID

⁎
Agg//RN

⁎
2) ⊕ AggPvkey

IF S3 = S
⁎
3

Figure 6: Verification phase of the proposed solution.

Message S1 and S1 are stored in the Aggregator
The Aggregator calculate:
S∗1 = EðMS∗PvkeyÞ mod RN1

S∗2 = hðID∗
MS//M

∗//S∗1 Þ
If S1 = S∗1 and S2 = S∗2 , signature is verified
The Aggregator generates the message S3
S3 = hðIDAgg//RN2Þ ⊕AggPvkey
The Aggregator send S3 to Medical Server and stored
The Medical Server calculate:
S∗3 = hðID∗

Agg//RN
∗
2 Þ ⊕AggPvkey

If S3 = S∗3
The Medical Server generate the Aggregation Authorization message SAA
The Medical Server send SAA to Aggregator

Algorithm 4: Verification and Authorization phase.

Input: (CES
i , MACES

i ), (CVD
i , MACVD

i ), and (CRD
i , MACRD

i )
If Emergency Situation, the Aggregator calcute and send to the Medical Server:

For L ciphertexts (CES
1 . . . CES

i ): Compute CES
Agg =∑

j
i=1⋯:LC

ES
i

For L MACs (MACES
1 . . . MACES

i ): Compute MACES
Agg = ⊕MACES

i

If Vital Health data, the Aggregator calculate and send to the Medical Server:

For L ciphertexts (CVD
1 . . . CVD

i ): Compute CVD
Agg =∑

j
i=1⋯:LC

VD
i

For L MACs (MACVD
1 . . . MACVD

i ): Compute MACVD
Agg = ⊕MACVD

i

If Regular Health data, the Aggregator calculate and send to the Medical Server:

For L ciphertexts (CRD
1 . . . CRD

i ): Compute CRD
Agg =∑

j
i=1⋯:LC

RD
i

For L MACs (MACRD
1 . . . MACRD

i ): Compute MACRD
Agg = ⊕MACRD

i

Output: (CES
Agg, MACES

Agg), (C
VD
Agg, MACVD

Agg), and (CRD
Agg, MACRD

Agg)

Algorithm 5: Data Aggregation phase with Priority.
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information or launches replay attacks, the Medical
Server can verify the correctness of the received data.
In the following, we analyse how our scheme is
secured against attacks launched by an adversary of
category B.

(a) Malleability: An adversary can alter a ciphertext
by injecting false data, but it will not be detected
due to the homomorphic property. In our
scheme, we use a homomorphic MAC scheme
to verify the integrity of the data. If the encrypted
data is tampered, the integrity verification will
fail; thus, the Medical Server will refuse the
received packet.

(b) Replay Attack: An adversary can impersonate
any node through replaying old packets recorded
from past communications; therefore, we add
current timestamps to messages being signed to
resist replay attacks. Thus, the Medical Server
can ensure data freshness by checking the valid-
ity of the timestamps.

(c) Injection Attack: With public key cryptography,
any adversary can generate a reasonable cipher-
text and inject it into the network to deceive the
Medical Server. In our scheme, each sender com-
putes a MAC using the symmetric key shared
with the Medical Server, so the receiver will reject
these injected packets in the verification of MAC
step if an adversary injects its false data.

To conclude, our proposed scheme provides a good level
of integrity for patient’s health data.

(iii) Identity Anonymity and Authenticity: To verify the
legitimacy communication between the network
component devices, we propose an authentication
phase in each layers of proposed network model.
We analyse how our scheme is secured against
attacks launched by an adversary of category C. In
the proposed scheme, the authentication of the com-
municating parties depends on the verification of
proposed signature. In the authentication phase,
the hash Chebyshev polynomials are jointly applied
to achieve mutual authentication. The initial authen-
tication is between the Medical Sensors and the

Aggregator, where the Aggregator authenticates the
Medical Sensors using the shared signatures. If the
signature stored by the Aggregator and the signature
generated by the Medical Sensor are equal, S1 = S∗1
and S2 = S∗2 , then the signatures are well verified. In
case of a successful authentication, the Aggregator
receives the related health data successfully. Con-
versely, if the Medical Sensor is in successful authen-
tication, the Aggregator rejects the health data and
not accept the Medical Sensors wants to join its net-
work. On the other hand, the second authentication
is between the Aggregator and the Medical Server.
The Medical Server verifies the legitimacy of the
Aggregator. The Aggregator is authenticated when
the S∗3 value stored in the Medical Server matches
with the received S3. If S3 = S∗3 , then the successful
authentication. Conversely, if the Aggregator is
malicious and unauthorized, the Medical Server
rejects the Aggregator from joining its network.
However, our identity authenticity mechanism can
identify the identity fraud behaviour. We can see
that the proposed scheme realizes the mutual
authentication of between the communication
parties. By this process, the sensor devices, the gate-
way device, and medical server are mutually authen-
ticated before the actual heath data transmission.

(iv) Unauthorized Aggregation: In the proposed scheme
and to protect from unauthorized aggregation, the
Medical Sensor and Aggregator establish interaction
for local verification to prevent the adversary nodes
from joining the network and in order to prevent
any unauthorized third parties from performing
illicit alterations. The Aggregator calculates S∗1 and
S∗2 , and check the legality of the Medical Sensors. If
it passes the verification, the Aggregator authenti-
cates the legality of the Medical Sensors, and receives
the related health data successfully. Conversely, if
the Medical Sensor is malicious and unauthorized,
the Aggregator rejects the Medical Sensors from
joining its network.

(v) Data Freshness: To ensure the data freshness of the
message originator, the number of the nonce and
the time of sensing data are added to each data trans-
missions. An attacker who attempts to send valid
packets already transmitted, called replay attack,
cannot disrupt the network, because even if it is

Input:(CES
Agg, MACES

Agg), (C
VD
Agg, MACVD

Agg), and (CRD
Agg, MACRD

Agg)

Output :m
i

For each pair ((CES or VDorRD
Agg g, (MACES or VDorRD

Agg g) do

Compute MACagg
′ of Cagg using SKMS

If MACagg
′ = Cagg then

Decrypt Cagg

else
Reject (Cagg, MACagg)

Algorithm 6: Decryption and Verification Phase.
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valid, it is not fresh, and the use of nonce prevents
that attack, so the scheme ensures the data freshness.

6. Performance Analyses and
Experimental Results

The EPPDA scheme is evaluated by providing an overview of
the hardware platform, before presenting the performance
results of our proposed EPPDA scheme.

6.1. Hardware Components. The vital sign sensing unit of this
system is the MySignals HW V2 platform, which is a devel-
opment platform for medical devices and health applications,
as Figure 7 displays [32]. It monitors patients’ health by
deploying different medical sensors on patients’ body to get
vital data of patients for subsequent analysis that is done by
physicians [33]. The MySignals HW V2 platform is one of
the most comprehensive versions on the market, as it sup-
ports more than 20 biomedical sensors to measure biometric

parameters such as ECG signals, blood pressure, blood oxy-
gen, pulse, respiratory rate, and body temperature. The
MySignals HWV2 platform relies on the Atmega 328 (Ardu-
ino UNO) microcontroller to manage various sensors and
allows tablets and smartphones to communicate with it [34].

In contrast to the medical sensor, the Aggregator should
be a device that has access to unlimited power and resources.
The tablet acts as the Aggregator role and communicates
with the MySignals HW V2 platform via WiFi to collect the
vital signs. Figure 8 shows the MySignals platform with var-
ious sensor ports. This platform can be also integrated with
a WiFi serial transceiver module ESP8266, where all the data
gathered by MySignals is encrypted and sent to the Aggrega-
tor through WiFi. Therefore, the Medical server is developed
with the purpose of receiving, storing, and distributing the
medical data from patients. In healthcare application, the
medical information usually needs to be distributed among
medical doctors and display, archival, and analysis devices.
In the proposed solution, the Medical server is a laptop.

Snore
sensor

Alert patient
button

Spirometer

Glucometer
sensor

Spoz
Pulsioximeter

Blood pressure
sensor

GSR
sensor

Air�ow
sensor

ECG
sensor

EMG
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Temperature
sensor

Body positon
sensor

Sound
generator

Figure 7: MySignals HW V2 platform [33].

ESP8266

Sensor node

Figure 8: MySignals with sensor nodes and WiFi module.
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These laptops have relatively powerful processing, memory,
and transmission capacity; thus, there is no power constraint,
which in turn lead to long battery life. Further, it can be dis-
played in an easy-to-read format for fast assessment and
action. The Medical Server is composed of presentation tier,
web tier, and database tier. The medical information of the
patient that is stored the Medical Server will be accessible
by specific people who have the authorization to access such
as patient himself, doctor, and patient’s family member. The
aggregated data between the system components can be
encrypted by our proposed EPPDA scheme to protect it from
any malicious acts of the hackers [35].

6.2. Experiment and Performance Evaluation. This section
analyses the efficiency of the proposed EPPDA scheme by
evaluating the end-to-end delay, computation overhead,
communication overhead, and energy consumption, follow-
ing by presenting the comparative analysis of our proposed
system with the existing systems LSDA [17] and RESDA
[18].

6.2.1. End-to-End Delay. The end-to-end delay considers as
the total time consumed between the data packet sending
by the Medical Sensors and the time when the packet arrives
at the Medical Server, and can be mathematically expressed
as

Av:End to EndDelay =
Start time ij

� �

‐End time ij

� �� �

N
, ð11Þ

where ij is the time when sending/receiving of packet j at
node i starts/stops and N is the total number of nodes.
Figure 9 demonstrates the results of end-to-end delay for
our proposed scheme with a comparison with other solutions
in the literature. We notice that the EPPDA protocol had an
enough end-to-end delay in comparison of other solutions.

The experimental results revealed that the end-to-end delay
of the proposed EPPDA show decreases with 17%, 28%,
and 34% under varying time intervals in compassion to
LSDA and RESDA, respectively. Thus, the end-to-end delay
of proposed EPPDA is the best compared to the existing pro-
tocols especially when the Medical Sensors count increases. It
consists of two reasons for the reduction of end-to-end delay
in EPPDA:

(i) In the proposed solution, the Medical Sensors wants
join the process of aggregation are verified, if the
Medical Sensors is in-successful authentication, the
Aggregator rejects their data in order to prevent the
adversary nodes inject the false traffic; thus, avoid
energy consumption unnecessary due to transmitting
them.

(ii) In the medical server of the proposed solution, the
packet of each Medical Sensor is verified individually.
In this way, if the verification fails to pass for one
packet, only this packet is discarded. Unlike other
schemes, once the verification fails, all packets,
including valid packets will be abandoned, which
means all data need to be retransmitted.

6.2.2. Computational Cost. The computation cost of the pro-
posed EPPDA scheme can be calculated as three levels: (i) at
the Medical Sensors; (ii) at the Aggregator; and (iii) at the
medical server, respectively. In the Medical Sensor, we calcu-
late the computational cost of data encryption, generation of
MAC, and generation of signature used for the verifying the
legitimacy of the Medical Sensor at the Aggregator. The
same, at the Aggregator, we calculate the computation cost
of verifying the legitimacy of the Medical Sensors, the gener-
ation of aggregate ciphertext, generation of aggregate MAC,
and generation of signature used of the verifying the
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Figure 9: The end-to-end delay for LSDA, RESDA, and EPPDA.
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legitimacy of the Aggregator and medical server. At the med-
ical server, we calculate computational cost of verifying the
legitimacy of the Aggregator and verification of aggregate
MAC.

In the computational overhead, we designate symbol SM
as the cost of one Scalar Multiplication, PA is the cost of one
Point Addition, E is the cost of one modular Exponentiation,
and H is the cost of one Hash operation.

In our proposed scheme, when the medical sensor crypt
his health data, he needs one Scalar Multiplication and two
modular Exponentiation. Consequently, the computation
involves (1SM+2PA) operations. Also, for generating the
MAC, the sensor needs 1 hashing operation and 1 exponen-
tiation operation. Subsequently, the computation involves
(1SM+1H) operations. Moreover, each sensor generates the
signature of verification which requires 1 hashing operation.
The computational overhead of each medical sensor is
(2SM+2PA+2H) in total for every health data.

After receiving all the ciphertext and corresponding sig-
natures, the Aggregator first verify the legitimacy of the Med-

ical Sensors, which involves 1 hashing operation. After the
verification of the legitimacy of each Medical Sensor, the
Aggregator generates an aggregated cipher text Cagg, which

involves Scalar Multiplication. Moreover, it generates an
aggregated MACagg, which involves Scalar Multiplication.
Moreover, the Aggregator generates the signature of verifica-
tion which requires 1 hashing operation for authentication
between the Aggregator and the Medical Server. The compu-
tational overhead at Aggregator is (ðn ∗ 2SMÞ + 2H).

At the medical server, the computational cost of verifying
the legitimacy of the Aggregator involves 1 hashing opera-
tion. Moreover, when the medical server receives the aggre-
gated results, it needs 1 hashing operation for verifying the
aggregate MAC, and it needs one Scalar Multiplication and
two modular Exponentiation for computing decryption of
aggregated ciphertext. The computational overhead at
Aggregator is (SM +2H). The computation complexities of
the major entities in the system are shown in Table 3.

In Figure 10, we present the computational cost of the
proposed EPPDA scheme with a comparison to other

Table 3: Computation complexity of the proposed EPPDA scheme.

Entity name Involving operations Computation complexity

Medical sensors
(1) Crypt his health data
(2) Generate the MAC
(3) Generates the signature of verification the medical sensor at the aggregator

2SM + 2PA + 2H

Aggregator

(1) Verify the legitimacy of the medical sensors

(2) Generates an aggregated cipher text Cagg

(3) Generates an aggregated MACagg

(4) Generates the signature of verification the aggregator at the medical server

( n ∗ 2SMð Þ + 2H)

Medical server
(1) Verify the legitimacy of the aggregator
(2) Aggregated data integrity verification
(3) Data decryption
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solutions. It can be observed that our proposed scheme
achieves a significant reduction in the total computation cost
compared with LSDA and RESDA. To illustrate more, when
the number of Medical Sensors is 10, the total computation
cost of our proposed scheme is 0.6ms, which means 20%
and 35% less than LSDA and RESDA, respectively.

6.2.3. Communication Overhead. The communication over-
head in the proposed EPPDA scheme is divided into two
levels, namely, the communication overhead between the
Medical Sensors and the Aggregator. While the second level
is the communication overhead between the Aggregator

and the Medical Server. The communication overhead is
measured as the total data transmitted in the networks.

In the Medical Sensors-to-Aggregator communication,
each Medical Sensor sign their health data and transmit the
data to the Aggregator. According to [18], a ciphertext gener-
ated by the OU algorithm is 160 bits. Moreover, we consider
a 4-byte homomorphic MAC for calculation in accordance to
[33], while the signature of verification is also 4 bytes. There-
fore, in our scheme, the size of one packet transmitted to
Aggregator from each Medical Sensor is 224 bits. In the
Aggregator-to-Medical Server communication, the length of
ciphertext C j is 160 bits, the communication overhead of
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Cagg is equals 160 ∗ n, when their n sensors are evolved into

the process. In our scheme, we consider a 4-byte MAC, 4
bytes MACagg, 4 bytes for the signature of verification.
Therefore, the size of one transmitted packet in our scheme
is ð160 ∗ nÞ + 32 + 32 bits. In Figure 11, we present the com-
munication overhead of the proposed EPPDA scheme with a
comparison to other solutions.

6.2.4. Energy Consumption. Energy consumption is the cen-
tral issue in application based on IoT. The Computational
and communication cost are two aspects that have a direct
impact on energy consumption, which subsequently leading
to shorten the life of sensor nodes. Thus, the energy con-
sumption is calculated for cryptographic operations as fol-
lows:

E mJð Þ =U Vð Þ × I mAð Þ × t msð Þ, ð12Þ

where U represents the supply voltage, I represent the cur-
rent draw of the hardware, and t represents the time. Accord-
ing to the datasheet available in [28], with MySignals HWV2
platform, the voltage is 3V, and the wireless transceiver
draws a current of 20mA for receiving and 17.7mA for radio
transmissions. The current draw for CPU is about 1.8mA,
and in low power mode, the current draw is 0.0545mA.
The wireless communication currents (20mA for listening
and 17.7mA for radio transmission) are much more impor-
tant than the CPU current (1.8mA); that is why communica-
tions are more expensive in terms of energy consumption
than the computational primitives. In MySignals HW V2
platform, the timer produces 32,768 ticks per second. The
Communication Cost is computed with the following equa-
tion, where Tx and Tr are, respectively, the Transmission
time and the Receiving time.

CommCost mJð Þ =
Tx × 17:7mAð Þ + T r × 20mAð Þ½ �

32768
× 3V:

ð13Þ

The Computational Energy Cost of sensor nodes is a key
constituent of the overall operational energy costs in IoT. The
Computational Cost is computed according to the following

equation where Tcpu is the time elapsed in CPU operations:

ComptCost mJð Þ =
Tcpu

32768
× 1:8mA × 3V: ð14Þ

The total power consumption by the sensor node for
EPPDA scheme is estimated with the following equation:

TotalEnergy mJð Þ = EnergyComm + EnergyCompt: ð15Þ

Figure 12 shows the energy consumption by EPPDA is
lower than that of two other schemes. The reason is that
the ECIPAP and SDA-HP schemes generate too many
unnecessary messages for providing integrity and privacy in
data aggregation. This gain can be explained by the fact that
far fewer computational loads are engaged in our algorithm,
because of the use of homomorphic encryption and the Med-
ical Sensors wanting to join the process of aggregation are
verified, thus, avoid energy consumption unnecessary due
to transmitting them.

6.3. Comparison of Secure Data Aggregation Protocols. This
section compares the proposed protocol with existing secure
data aggregation protocols. The comparison is based on the
security requirements and the performance evaluation. From
Table 4, it is evident that the proposed EPPDA scheme sat-
isfies most of the security properties unlike other related data
aggregation schemes in IoT-based healthcare applications. In
addition, through performance evaluation, we have also
demonstrated the proposed EPPDA satisfies the communica-
tion and computation overheads requirements.

7. Conclusions

The recent developments in the area of IoT shows a great
promise for providing solutions for healthcare. Yet, protect-
ing data privacy and integrity during data aggregation at
the same time is a common challenge in IoT-based health-
care systems. This paper presents a novel secure aggregation
scheme that provide provably secure message integrity with
different trade-off between computation cost, communica-
tion payload, and security assumptions. The proposed
EPPDA is based on the verification and authorization phase

Table 4: Comparison between EPPDA and other solutions in the IoT-based healthcare.

Solutions
Security features Efficiency

Confidentiality Integrity Authentication Freshness Scalability
Computational

cost
Communication

cost
Communication

overhead

PHDA [15] Yes No Yes Yes No Very high High Large

PPM-HAD
[16]

Yes Yes No No No High High Very high

LSDA [17] No Yes Yes No No Very high Very high Fair

RESDA [18] Yes Yes Yes Yes No Medium Medium Fair

ERCS [19] Yes Yes No No ⊗ Very Medium Medium

CBCSES
[20]

Yes No Yes Yes No Low Very high Large

EPPDA Yes Yes Yes Yes Yes Small Very low Very small
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to verifying the legitimacy of the nodes wanting to join the
process of aggregation. The proposed scheme, also, uses on
an additive homomorphic encryption algorithm that allows
aggregation on encrypted data that combined with homo-
morphic MAC. The security analysis and performance eval-
uation show that our scheme is able to resist against various
attacks such as compromise node attacks and unauthorized
aggregation. A comparison of the communication overhead
with respect to the existing protocols exhibits the viability
efficiency of the proposed protocol on resource-constrained
devices. Further research can be considered to study the pos-
sibility of applying this algorithm in different types of medi-
cal sensors and then assess whether or not there are better
outcome results can be obtained.
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