
Scientific Programming 17 (2009) 285–294 285

DOI 10.3233/SPR-2009-0289

IOS Press

ePRO-MP: A tool for profiling and

optimizing energy and performance of mobile

multiprocessor applications

Wonil Choi, Hyunhee Kim, Wook Song, Jiseok Song and Jihong Kim ∗

School of Computer Science and Engineering Seoul National University, Seoul, Korea

Abstract. For mobile multiprocessor applications, achieving high performance with low energy consumption is a challenging

task. In order to help programmers to meet these design requirements, system development tools play an important role. In

this paper, we describe one such development tool, ePRO-MP, which profiles and optimizes both performance and energy con-

sumption of multi-threaded applications running on top of Linux for ARM11 MPCore-based embedded systems. One of the key

features of ePRO-MP is that it can accurately estimate the energy consumption of multi-threaded applications without requir-

ing a power measurement equipment, using a regression-based energy model. We also describe another key benefit of ePRO-

MP, an automatic optimization function, using two example problems. Using the automatic optimization function, ePRO-MP

can achieve high performance and low power consumption without programmer intervention. Our experimental results show

that ePRO-MP can improve the performance and energy consumption by 6.1% and 4.1%, respectively, over a baseline version

for the co-running applications optimization example. For the producer-consumer application optimization example, ePRO-MP

improves the performance and energy consumption by 60.5% and 43.3%, respectively over a baseline version.

Keywords: Multi-processor, multi-threaded software, embedded software profiling tool, performance, energy, energy model

1. Introduction

Achieving both high-performance and low-energy

consumption is an important design goal for modern

mobile embedded applications. Since most mobile em-

bedded applications run on battery-operated mobile

devices, the low-energy consumption has been one of

the most important design constraints for many mobile

devices. At the same time, as mobile embedded appli-

cations become more complex, a high level of com-

puting power is necessary for adequate application op-

erations. In order to meet these design requirements,

programmers should understand the performance and

the energy consumption of their applications. Further-

more, when the applications do not satisfy the design

requirements, it should be easy to predict and iden-

tify performance and energy bottlenecks of the appli-

cations at the application level.

*Corresponding author: Jihong Kim, Room 315-2, Building 302,

Seoul National University, Shillim-dong, Kwanak-gu, Seoul 151-

742, Korea. Tel.: +82 2 880 1861; Fax: +82 2 871 4912; E-mail:

jihong@davinci.snu.ac.kr.

To help embedded developers to analyze their ap-
plications, many profiling tools have been developed
for embedded systems. For example, many existing
profiling tools estimate the performance characteris-
tics of applications using hardware performance coun-
ters available in most microprocessors [3,10,13]. For
energy profiling, most existing tools depend on extra
power measurement equipments [3,9,12] to measure
the power consumption of applications. Although us-
ing power measurement equipments can provide accu-
rate power consumption data, average embedded soft-
ware developers are reluctant to use power measure-
ment equipments. For many embedded programmers,
these equipments are not comfortable to use and they
are often too expensive to be widely used by an in-
dividual programmer. For energy profiling tools to be
widely employed by embedded programmers, the tools
should present a familiar user interface without using
any special equipment, thus relieving the programmers
from learning many different interfaces and equip-
ments.

With multicore/multiprocessor architectures emerg-
ing as a practical alternative to a traditional single-CPU
architecture, tools support for performance/energy pro-

1058-9244/09/$17.00 2009 – IOS Press and the authors. All rights reserved

286 W. Choi et al. / ePRO-MP

filing and optimization is getting more important in

building efficient mobile embedded applications. In or-

der to efficiently utilize multiple cores on mobile em-

bedded systems, programmers need to understand the

power and performance characteristics of their pro-

grams in multiple levels (such as the per thread, per

core, and per function levels). Since multiprocessor-

based systems typically operate on top of an operat-

ing system, performance/power analysis of embedded

applications is almost impossible without an adequate

tools support.

Furthermore, as pointed out in [2], in multiproces-

sor-based embedded systems, automatic optimization

support is becoming more important because an ef-

ficient implementation often requires to explore a

large design space. For example, when several multi-

threaded applications are executed simultaneously, de-

termining the optimal number of threads for each co-

running application is a challenging task. Therefore, an

automatic optimization function should be an integral

part of a performance/power profiling tool for mobile

multiprocessor applications.

In this paper, we present ePRO-MP, which pro-

files and optimizes both performance and energy con-

sumption of multi-threaded applications for ARM11

MPCore-based embedded systems, satisfying the tools

requirements discussed above. The main contributions

of our work can be summarized as follows. First,

ePRO-MP provides both performance profiling and en-

ergy profiling for multi-threaded applications running

on embedded multiprocessors. Using ePRO-MP, pro-

grammers can achieve not only high-performance but

also low-energy consumption when developing paral-

lel programs. In addition, developers can find bottle-

necks easily because ePRO-MP presents the analysis

results in the program, thread, and function levels. Sec-

ond, ePRO-MP is based on a model-based energy pro-

filing approach which does not require an extra power

measurement equipment, thus making ePRO-MP more

accessible for average embedded programmers to an-

alyze power/energy consumption of their programs.

Finally, ePRO-MP supports a limited automatic opti-

mization function. In this paper, we demonstrate that

ePRO-MP can be effective in determining the number

of co-running threads for two multi-threaded applica-

tions. In this case study, the energy consumption and

execution time are improved by 4.1% and 6.1%, over

a baseline version respectively. We also use ePRO-

MP’s automatic optimization function to optimize a

producer-consumer application using a matrix multi-

plication program (as a producer) and a matrix trans-

pose program (as a consumer). In this example, ePRO-

MP explores two kinds of problem space: one for de-

termining the number of threads for the producer and

consumer and the other one for determining the tile

size for the matrix multiplication job (when a simple

tiling technique is applied). The experimental results of

this case study show that the energy consumption and

the execution time are improved by 43.3% and 60.5%,

over a baseline version respectively.

The rest of this paper is organized as follows. In

Section 2, we survey previous profiling tools and en-

ergy profiling techniques. Section 3 describes the over-

all architecture of the ePRO-MP tool. The performance

profiling module and energy profiling module are de-

scribed in detail in Sections 4 and 5, respectively. Sec-

tion 6 reports our experiences of using the automatic

optimization function with two examples. Finally, Sec-

tion 7 concludes with a summary and directions for fu-

ture works.

2. Related work

There have been several investigations on perfor-

mance or energy profiling for multi-threaded applica-

tions. SCALEA [13] presented a performance analysis

tool for distributed and parallel applications. SCALEA

instruments user programs running on SMP clusters

and finds the performance bottlenecks. PAPI [7] pro-

vides the tool designer and application programmer

with a consistent interface and methodology for using

the hardware performance counter supported in most

major microprocessors. PerfSuite [10] provides tools,

utilities, and libraries for software performance analy-

sis without extensive source code changes. In this pa-

per, ePRO-MP uses PAPI and PerfSuite by modifying

it for ARM11 MPCore. On the other hand, Hsu [9] an-

alyzed the power consumption of parallel programs on

the Beowulf cluster. This measurement-based profiling

can reduce the CPU power consumption. These exist-

ing tools for distributed and parallel applications, how-

ever, focus on either performance profiling or energy

profiling. In mobile embedded application, however,

the performance and the energy consumption should

be considered together.

Existing energy profiling techniques can be di-

vided into three groups: simulation-based techniques,

measurement-based techniques, and regression-based

modeling techniques. SimplePower [15] and Wattch [4]

are examples of the simulation-based approach. En-

ergy profiling using simulators is time consuming as

W. Choi et al. / ePRO-MP 287

well as inaccurate. The measurement-based approach

(e.g., ePRO [3] and SES [12]) profiles the energy con-

sumption of a target application using a power mea-

surement equipment. Although the accuracy of en-

ergy profiling can be significantly improved under the

measurement-based approach, this approach is usu-

ally not widely adopted among software developers

because it requires an expensive power measurement

equipment.

In order to produce accurate profiling results with-

out using a power measurement equipment, regression-

based modeling techniques were proposed for en-

ergy profiling. Contreras [6] proposed a power predic-

tion model for Intel PXA255 processors using hard-

ware performance counters. Through a linear regres-

sion analysis, the power model is estimated using five

performance events captured from hardware perfor-

mance counters. While this approach produces an ac-

curate result, it was limited to a single processor sys-

tem.

ePRO-MP is distinct from existing tools in several

aspects (as will be discussed later). ePRO-MP provides

both performance profiling and energy profiling, which

help developers build multi-threaded high-performance

applications with low-energy consumption. Especially,

to avoid the limitations of measurement-based tech-

niques, our tool extends a regression-based modeling

technique for energy profiling to multiprocessor-based

embedded systems.

3. Overview of ePRO-MP

An overall architecture of ePRO-MP is shown in

Fig. 1. ePRO-MP components are divided into 2 parts:

softwares which are executed in a target system and

an analysis part which can be deployed in any other

machine (host system). In the current implementation,

our target system is ARM11 MPCore [1] where four

ARM11 cores are integrated on a single chip. For per-

formance monitoring, ARM11 MPCore supports vari-

ous types of hardware performance counters for each

core. By using the hardware performance counters of

each core, ePRO-MP estimates various performance

metrics such as the cache miss rate and IPC. In the tar-

get system, three logical modules are running: a target

application, an operating system, and a performance

profiling module. The target application is the program

to be profiled and in the current version, multi-threaded

parallel programs using the POSIX thread library are

assumed to be main target programs. For an OS, we

use Linux 2.6 for ARM11 MPCore which on the target

application is running. The Linux kernel was slightly

modified for performance profiling. However, it works

well when the kernel version is updated because only

a small part of the scheduler in the linux kernel should

be patched. The performance profiling module, which

collects performance data during runtime, is executed

with the target application. (We will describe this mod-

ule in detail in the next section.)

Once the target application completes its execution,

the collected performance data are transferred to a host

system for an analysis. The host side components of

Fig. 1. An architectural overview of ePRO-MP.

288 W. Choi et al. / ePRO-MP

ePRO-MP includes six main modules: performance

and energy analyzer modules, graphical user interface

module, synchronization analyzer module, and auto-

matic optimization module. The collected performance

data is analyzed by two analyzers, performance ana-

lyzer and energy analyzer. The performance analyzer

classifies and arranges the performance profiling re-

sults. On the other hand, the energy analyzer applies

the energy model, which is developed offline (by fol-

lowing the procedure described in Section 5), to the

performance profiling data to estimate the energy con-

sumption. Both performance and energy consumption

analysis results are presented in multiple levels (e.g.,

the thread level and function level) so that developers

can identify bottlenecks in target applications. The cur-

rent version of ePRO-MP adopts the GUI of the Eclipse

platform. Users can profile the performance and energy

consumption of a target application easily by selecting

a profiling menu of GUI. As a hint for optimization of

multi-threaded applications, the synchronization ana-

lyzer module profiles the waiting times among coor-

dinating threads. Finally, the automatic optimization

module uses the feedback from the profiling results for

various optimizations.

4. Performance profiling module

Performance profiling depends on hardware per-

formance counters available in microprocessors. The

counter values are collected by a performance moni-

toring program which runs with a target application.

In order to make a performance monitoring process

portable across different target systems, we used a lay-

ered organization for the performance profiling mod-

ule. Specifically, two layers were added: one is the

hardware control driver layer and the other one is the

interface layer between the monitoring program and

the hardware control driver.

The hardware control driver is the lowest layer of

the performance profiling module. To allow user level

programs to access the hardware counters, the oper-

ating system should provide a device driver to initial-

ize, start, stop, and read the hardware counters. For

the hardware control driver, we adopted Performance

Monitoring Counters Driver [11], perfctr. Since perfctr

was not supported in ARM11 MPCore, we ported the

existing perfctr to ARM11 MPCore.

The interface layer provides an interface between

hardware control driver and the performance monitor-

ing program. For this layer, we ported PAPI to our mul-

tiprocessor target system. The performance monitor-

ing program, which runs with the target application, is

based on Perfsuite. When using this performance mon-

itoring program, users do not have to instrument their

code. After running the target application with the per-

formance monitoring program, the profiling result files

are created in the XML format. There is an overhead

due to the performance monitoring program because it

should run with a target application. However, it is less

than 1%, which is negligible.

5. Energy profiling module

ePRO-MP employs the regression-based modeling

approach for energy profiling. Although regression-

based energy models for single processors have been

proposed before, there have not been investigations

on regression-based energy models for multiprocessor

embedded systems. We extend the regression-based

energy model for single processor systems by adding

the characteristics which multiprocessor systems have,

such as the number of cache coherence transactions

and the number of shared L2 cache accesses. In this

section, we describe an energy model development

procedure based on the linear regression analysis,

which uses the performance hardware counter. Follow-

ing the proposed methodology, we derive an energy

model for ARM11 MPCore. As shown in Fig. 2, our

methodology consists of four main steps. After the en-

ergy model is developed offline, it can be used in the

energy analysis with performance profiling data.

Random program generation: In order to build

an energy model that can accurately predict the en-

Fig. 2. A procedure for deriving an energy model.

W. Choi et al. / ePRO-MP 289

ergy consumption of an arbitrary program based on
hardware performance counters, we generate various
random test programs with different execution char-
acteristics (e.g., memory-intensive programs, CPU-
intensive programs). A random test program is gen-
erated by combining several basis program segments.
The basis program segments represent different pro-
gram execution behaviors. In the current version, there
are 30 basis program segments. In the current version
of ePRO-MP, about 200 random test programs were
generated to build an energy model.

Automatic run of random programs: In this step,
training data for regression analysis are produced by
executing the random programs generated by the ran-
dom program generator. Because we do not know an
exact regression model yet, all the hardware perfor-
mance counters are collected at this step. At the same
time, the energy consumption value is gathered from
a power measurement equipment. (Note that a power
measurement equipment is necessary only for this step.
Once the energy model is constructed, when ePRO-
MP is used by developers, there is no need for a power
measurement equipment.) Figure 3 shows the setup for
this step using NI DAQ-6016. We have used a script to
automate the measurement and collection tasks.

Model generation using regression analysis: Regres-
sion analysis is applied to the training data gathered
in the previous step. While multiprocessors can sup-
port various hardware performance counters, not all
the performance events are related with the energy
consumption of the processors. In order to construct
a linear regression model, we start with a very gen-
eral linear model that includes all the hardware perfor-
mance counters. Using the model adequacy test of re-
gression analysis, we eliminate those hardware perfor-
mance counters that are not significantly related to en-
ergy consumption. For the current implementation, five
performance events, the number of instructions (Instr),
the number of L1 data cache accesses (DL1Access), the
number of L2 cache accesses (L2Access), the number
of stall cycles due to data dependency (DataDep), and
the number of coherence transactions (cohTrans), are
selected for our power model. That is, the power model
for ARM11 MPCore is given as follows:

Power = A × (Instr/time)

+ B × (DL1Access/time)

+ C × (L2Access/time)

+ D × (DataDep/time)

+ E × (CohTrans/time) + Fconst. (1)

Fig. 3. A setup for power measurement and performance data collec-

tion.

Table 1

Coefficients values of our power model

Performance Coefficient Performance Coefficient

event event

Instr 2.56E−07 DataDep −3.97E−07

DL1Access 9.32E−07 CohTrans −1.99E−07

L2Access 2.76E−05 Const 7.89E+02

We have used SAS9 Enterprise Miner to derive the

energy model. Table 1 lists five coefficients values of

the power model 1. In order to compute the energy

consumption of a thread running on a single core, we

use 1
4 × Fconst as a constant term in Eq. (1), assuming

that all four ARM11 cores contribute equally to Fconst.

Other performance counter values are all collected per

core basis. Note that we cannot measure the power con-

sumption of each core because our current target sys-

tem, ARM11 MPCore, provides only a power probe to

measure the entire chip power consumption.

Model verification: The derived model should pre-

dict the energy consumption of arbitrary programs with

different characteristics. To evaluate our energy model,

we verified our power model using several benchmark

programs as well as the random test programs used in

the model generation step. Figure 4 shows the com-

parison results of the average measured power (by NI

power measurement equipment) and predicted power

(by our power model) for six SPLASH-2 benchmark

programs [14] and two sorting algorithms. As shown

in Fig. 4, our model is very accurate. The average pre-

diction error was less than 2% while the maximum pre-

diction error was 4.9% for the Quick sorting algorithm.

290 W. Choi et al. / ePRO-MP

Fig. 4. Comparison results of measured power and predicted power.

6. Profile-based automatic optimizer

As the number of cores and the number of threads
increase, supporting automatic optimization becomes
more important because an optimization problem
space becomes often too complex for average pro-
grammers to deal with efficiently. ePRO-MP sup-
ports a couple of automatic optimizations to relieve
the programmers’ burden of time-consuming opti-
mization problems. Targeting multi-threaded applica-
tions, we focus on two particular situations for auto-
matic optimizations. First, we consider when several
multi-threaded applications run simultaneously. (For
example, reading/editing multimedia messages while
browsing/processing digital pictures could be such a
case.) Since co-running applications and their threads
share system resources such as shared L2 cache and
memory, often competing with each other, determining
the number of threads optimally for each co-running
multi-threaded program has a large implication on the
overall system performance. One important require-
ment is to minimize the interference among competing
applications for the shared resources. Second, we con-
sider when a single multi-threaded application is ex-
pected to run alone. In this case, interactions/load bal-
ancing among co-running threads affect the overall ap-
plication performance significantly, especially at syn-
chronization points among the co-running threads. In
this paper, we focus on the producer-consumer rela-
tionship among the threads, which is one of the most
commonly used parallel implementation models used
in implementing multi-threaded applications.

In this section, we describe ePRO-MP’s restricted
automatic optimization function using two examples:
co-running applications optimization and producer-

consumer application optimization.

6.1. Co-running applications optimization

In this section, we discuss the optimal thread al-

location problem for two multi-threaded applications,

matrix multiplication (MM) and insertion sort (IS) as

one example of co-running applications. We assume

that the baseline thread allocation policy to assign

is four threads per each program, because program-

mers usually parallelize their programs into the max-

imum number of physical cores (in our target sys-

tem, which is four) to fully exploit the available cores.

When 4-threaded MM and 4-threaded IS are executed

simultaneously, the profiled performance and the en-

ergy consumption results are shown in Fig. 5 using the

ePRO-MP’s thread level GUI. The block A indicates

the four threads of MM while the block B indicates

the four threads of IS. The total energy consumption is

1,155,528 mJ which is computed by summing up the

values in the Energy column.

Our automatic optimizer tries to find a near-optimal

number of threads using a simple heuristic. Starting

from using one thread for each program, the optimizer

increments the number of threads by one at a time and

executes the applications. After each execution, using

the profiled data, the automatic optimizer compares the

performance or the energy consumption of the current

application with the previous execution. When there is

no more improvement in both the performance and the

energy consumption, the optimizer stops searching and

finally compares the current optimal profiling informa-

tion with that of the baseline (4, 4). Figure 6 illustrates

the problem space and its exploration orders of the op-

timizer. The pairs and the arrows indicate the number

of threads of each co-running program and exploration

orders, respectively. In this example, the search stops

W. Choi et al. / ePRO-MP 291

Fig. 5. Profiling result of (4, 4) thread allocation.

Fig. 6. Problem space of our case study.

after eight different configurations were executed. The

asterisked pair, three threads for MM and one thread

for IS, is the near-optimal number of threads deter-

mined by the optimizer.

Figure 7 shows the result of the automatic optimiza-

tion when three threads are used for MM and one

thread for IS. Over the baseline (4, 4) configuration,

the (3, 1) thread configuration for MM and IS improves

the total execution time by 6.1% and reduces the to-

tal energy consumption by 4.1%. Although the energy

improvement is less than the maximum prediction er-

ror 4.9%, the prediction error for Matrix Multiplica-

tion and Insert Sorting is much less around 1%, which

makes the energy improvement meaningful.

Furthermore, in order to better understand why (3, 1)

configuration worked better than (4, 4) configuration,

we profiled the performance and the energy consump-

tion of each application alone by changing the num-

ber of threads from one to four. From the analysis re-

sults, we found two interesting trends. Multi-threaded

MMs show better performance and energy consump-

tion than a single-threaded MM. Because a matrix

array is shared among multiple threads in MM, the

higher the number of threads in MM is, the higher the

L2 cache hit ratio is in general. On the other hand, IS

is not sensitive to the number of threads because each

thread sorts its local array with little sharing of the

data among different threads. Therefore, increasing the

number of threads for MM and decreasing the number

of threads for IS generally improves the energy con-

sumption. The other finding is that the speedup of pro-

grams is bounded by the number of cores not threads.

For four cores of ARM11 MPCore, the four threads,

three for MM and one for IS, are sufficient.

6.2. Producer-consumer application optimization

In this section, we describe the automatic optimiza-

tion support for producer-consumer applications. As

pointed out in [8], for high-performance producer-

consumer applications, an efficient implementation of

synchronization between the producer and consumer

is critical. (For example, if a consumer is much faster

than the corresponding producer, the consumer spends

a large number of cycles waiting for the results of the

producer, thus wasting a significant amount of energy

as well as the CPU cycles.) In multiprocessor embed-

ded systems, the waiting times and the total execution

time can be reduced by allocating different number of

threads for the producer and consumer and balancing

the speed of the producer and consumer. As the num-

ber of cores as well as the number of producers and

consumers increase, determining the optimal number

of threads for the producer and consumer becomes a

challenging task.

Furthermore, achieving the high speed of each

thread itself can lead to the high-performance applica-

tion. For example, if there is a matrix multiplication

job as either the producer or consumer, finding the op-

292 W. Choi et al. / ePRO-MP

Fig. 7. Profiling result of (3, 1) thread allocation.

timal size of the matrix tile can improve the cache ef-

ficiency, thus achieving high performance and low en-

ergy consumption. (Tiling [5] is a cache-aware opti-

mization technique which divides the entire matrix into

small matrices that fit better with the cache size, thus

reducing the number of cache misses significantly.)

Finding the optimal tile size (that maximizes the num-

ber of cache hits) also requires to explore another large

problem space. The ePRO-MP’s automatic optimizer

can help programmers find the near-optimal number of

threads for the producer and consumer and the tile size

for the matrix multiplication job.

As a case study, we executed a producer-consumer

application using a matrix multiplication task (MM)

as a producer and a matrix transpose task (MT) as a

consumer. To apply two optimization strategies dis-

cussed above, the application was implemented to sup-

port multiple threads (for the thread allocation prob-

lem) and different tile sizes (for the tile size selection

problem). We assume that the baseline configuration

is (2, 2) thread allocation without the tiling technique

used. When programmers do not know the speed bal-

ance in advance between the producer and consumer,

they might start the optimization from allocating the

same number of threads to each side.

Our automatic optimizer tries to find the near-

optimal number of threads for MM and MT and the

near-optimal tile size for MM using a simple heuristic

shown in Fig. 8. At first, the automatic optimizer starts

to find the near-optimal number of threads for the pro-

ducer and the consumer. After the application with the

(1, 1) thread allocation is executed, the waiting times

of both the producer and consumer are calculated us-

ing the synchronization analyzer. If the waiting time of

the consumer is longer than that of the producer, the

speed of the producer should be increased (by allocat-

ing more threads) to reduce the waiting time of the con-

sumer, and vice versa. We call a task τslow when the

task (τslow) makes other tasks wait. Starting from one

thread, the optimizer increments the number of threads
for τslow by one at a time and executes the applications.
After each execution, the performance or the energy
consumption is profiled and compared with the previ-
ous execution. When there is no more improvement in
the performance and the energy consumption, for the
second problem space exploration, the optimizer tries
to find the near-optimal tile size for the matrix multi-
plication job. Starting from the original matrix size as
the tile size, the optimizer decrements the tile size by
1
n

of the original matrix size at a time and executes it
(with the thread allocation determined in the first prob-
lem space exploration). The variable n, initially set to
two, is incremented by one at a step. After each ex-
ecution, the performance or the energy consumption
is profiled and compared with the previous execution.
When there is no more improvement, the optimizer ex-
plores repeatedly the thread allocation problem space
for the producer and consumer because the exploration
result from the tile size selection problem can make
other thread configurations better. If there is no change
in the thread allocation, the optimizer stops searching
and finally outputs the number of threads and the tile
size for the target application. In case of the MM-MT
application, because MM was much slower than MT,
MM was decided to be τslow. The more threads were
allocated to MM, the better performance and energy
consumption was measured until the (4, 1) thread con-
figuration. From 500 × 500 to 100 × 100 for the tile
size (the baseline tile size is same as the original matrix
size, 500 × 500), the performance and the energy con-
sumption were getting better. When the tile size was
less 100 × 100, the performance and the energy con-
sumption started to be degraded and the exploration
was finished.

The performance and the energy consumption re-
sults of our case study are shown in Fig. 9. The re-
sults are normalized to the baseline (2, 2) thread allo-
cation without the tiling technique because program-
mers might start the optimization from allocating same

W. Choi et al. / ePRO-MP 293

INPUT: Target Application (TA) (e.g., multi-threaded MM-MT), Original Matrix Size

OUTPUT: Best Alloc. & Best Tile Size

1: Best Alloc. = (1,1)

2: Measure Perf./Energy of TA with (1,1) thread allocation (baseline execution)

3:

4: If (WaitTimeProducer < WaitTimeConsumer) Tslow = Producer

5: else Tslow = Consumer

6: While (true)

7: Current Alloc. = Allocate one more thread to Tslow
8: Measure Perf ./Energy with Current Alloc.

9: if (Current Alloc. is better Perf ./Energy than Best Alloc.) Best Alloc. = Current Alloc.

10: else if (PrevDecidedAlloc == Best Alloc.) Goto 25.

11: else break

12:

13: PrevDecidedAlloc = Best Alloc.

14: Best Tile Size = Original Matrix Size

15: SizeAdjuster = 1

16: Measure Perf ./Energy with Best Alloc. & Best Tile Size

17: While (true)

18: While (true)

19: SizeAdjuster ++

20: Current Tile Size = Original Matrix Size / SizeAdjuster

21: if (Original Matrix Size % SizeAdjuster == 0) break

22: Measure Perf ./Energy with Best Alloc. & Current Tile Size

23: if (Current Tile Size is better than Best Tile Size) Best Tile Size = Current Tile Size

24: else Goto 3.

25: Return OUTPUT

Fig. 8. ePRO-MP’s Heuristic for optimizing MM-MT application.

Fig. 9. Optimization result of MM-MT application.

number of threads to each when the programmers do
not know the producer and the consumer’s loads. Ex-
ploring only thread allocation problem space, the (4, 1)
thread configuration for MM and MT improves the
total execution time by 43.5% and reduces the en-
ergy consumption by 26.8%. After the near-optimal
tile size is determined, the performance and the en-
ergy consumption are further improved by 17% and
16.5%, respectively. By allocating three more threads
to MM from the (1, 1) thread allocation, MM’s produc-
ing speed and MT’s consuming speed were balanced.
However, because one more thread allocation for MM
(the (5, 1) thread allocation) makes MM’s speed faster
than MT’s speed and the entire six threads are not ef-

ficiently scheduled to get the four physical cores, the

execution time and the energy consumption start to in-

crease. For the tile size, when the tile size close to the

L1 cache size was used, its performance was the best.

7. Conclusions

We described ePRO-MP, an energy and performance

profiler and optimizer for embedded multiprocessors.

ePRO-MP provides both energy profiling information

and performance profiling information that can be

important in developing high-performance and low-

energy embedded multi-threaded applications. One of

294 W. Choi et al. / ePRO-MP

main strengths of ePRO-MP is that ePRO-MP can ac-

curately estimate the energy consumption of multi-

threaded applications without using extra power mea-

surement equipments. Furthermore, we demonstrated

the usefulness of ePRO-MP’s automatic optimization

capability using the thread allocation problem of two

co-running multi-threaded applications. Experimental

results show that we can improve the performance and

the energy consumption over the baseline thread allo-

cation by 6.1% and 4.1%, respectively. We also use the

optimizer for optimizing a producer-consumer appli-

cation where there is a matrix multiplication job as ei-

ther the producer or consumer. After the optimizer de-

termined the number of threads for both the producer

and consumer and the tile size for the matrix multipli-

cation job, the execution time and the energy consump-

tion were reduced by 60.5% and 43.3%, respectively.

Although the current version of ePRO-MP can be

useful in building efficient multi-threaded embedded

applications, it can be extended in several directions.

First, we plan to implement different kinds of multi-

processor task schedulers in the Linux running on the

target system. The default task scheduler used by the

current version of ePRO-MP limits the improvement of

the performance and the energy consumption because

the critical performance factors such as the cache effi-

ciency and waiting times among threads are affected by

the scheduling policy as well as the program efficiency

itself. Based on the profiled characteristics of the target

application, if ePRO-MP can select the best task sched-

uler for it, the performance or the energy consumption

can be more improved. We also plan to develop a more

fine-grained automatic optimizer that can work on the

compiler option level. For example, we are interested

in finding compiler options for given multi-threaded

applications that can generate binary executable with

the lowest power/energy consumption, possibly em-

ploying different compiler options for each thread.

Acknowledgments

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) Grant funded by

the Korea government (MEST) (No. R0A-2007-000-

20116-0). This work was supported by World Class

University (WCU) program through the Korea Science

and Engineering Foundation funded by the Ministry of

Education, Science and Technology (R33-2008-000-

10095-0). This work was also supported in part by the

Brain Korea 21 Project in 2008 and Samsung Electron-

ics Inc. The ICT at Seoul National University provides

research facilities for this study.

References

[1] ARM11 MPCore [Online], available at: http://www.arm.com/

products/CPUs/ARM11MPCoreMultiprocessor.html.

[2] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Hus-

bands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W.

Williams and K.A. Yelick, The landscape of parallel comput-

ing research: A view from Berkeley, Technical Report No.

UCB/EECS-2006-183, University of California, Berkeley, CA,

2006.

[3] W. Baek, Y. Kim and J. Kim, ePRO: A tool for energy and per-

formance profiler for embedded applications, in: Proceedings

of International SoC Design Conference, Seoul, Korea, 2004,

pp. 372–375.

[4] D. Brooks, V. Tiwari and M. Martonosi, Wattch: A framework

for architectural-level power analysis and optimizations, in:

Proceedings of International Symposium on Computer Archi-

tecture, Vancouver, BC, Canada, 2000, pp. 83–94.

[5] S. Coleman and K.S. Mckinley, Tile size selection using cache

organization and data layout, in: Proceedings of Conference on

Programming Language Design and Implementation, La Jolla,

CA, 1995, pp. 270–290.

[6] G. Contreras and M. Martonosi, Power prediction for Intel XS-

cale processors using performance monitoring unit events, in:

Proceedings of International Symposium on Low Power Elec-

tronics and Design, San Diego, CA, 2005, pp. 221–226.

[7] Performance application programming interface [Online],

http://icl.cs.utk.edu/papi/.

[8] A. Grama, A. Gupta, G. Karypis and V. Kumar, Introduction

to Parallel Computing, Addison-Wesley, Boston, MA, 2002.

[9] C. Hsu and W. Feng, A feasibility analysis of power aware-

ness in commodity-based high-performance clusters, in: Pro-

ceedings of International Conference on Cluster Computing,

Boston, MA, 2005, pp. 1–10.

[10] Perfsuite [Online], http://perfsuite.ncsa.uiuc.edu.

[11] Linux x86 performance monitoring counters driver [Online],

http://www.csd.uu.se/mikpe/linux/perfctr/.

[12] D. Shin, H. Shim, Y. Joo, H. Yun, J. Kim and N. Chang,

Energy-monitoring tool for low-power embedded programs,

Design and Test of Computer 19(4) (2002), 7–17.

[13] H.L. Truong and T. Fahringer, SCALEA: A performance

analysis tool for distributed and parallel programs, in: Proceed-

ings of Euro-Par Conference on Parallel Processing, Parder-

born, Germany, 2002, pp. 75–85.

[14] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh and A. Gupta,

The SPLASH-2 programs: characterization and methodolog-

ical considerations, in: Proceedings of International Sympo-

sium on Computer Architecture, St. Margherita Ligure, Italy,

1995, pp. 24–36.

[15] W. Ye, N. Vijaykrishnan, M. Kandemir and M.J. Irwin, The de-

sign and use of simple power: A cycle accurate energy estima-

tion tool, in: Proceedings of Design Automation Conference,

Los Angeles, CA, 2000, pp. 340–345.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

